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Many areas of computer science are concerned with some form of variation in software—from
managing changes to software over time, to supporting families of related artifacts. We present
the choice calculus, a fundamental representation for software variation that can serve as a com-
mon language of discourse for variation research, filling a role similar to the lambda calculus in
programming language research. We also develop an associated theory of software variation, in-
cluding sound transformations of variation artifacts, the definition of strategic normal forms, and
a design theory for variation structures, which will support the development of better algorithms
and tools.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Extensibility, Version Control; D.2.9 [Software Engineering]: Management—Software
Configuration Management; D.3.1 [Programming Languages]: Formal Definitions and Theory
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1. INTRODUCTION

Effectively dealing with variation is a fundamental problem in software engineering
that emerges in many different ways throughout the field. As such, equally many
tools have been developed for managing variation. Virtually all non-disposable soft-
ware projects use some sort of revision control system for managing variation in
software over time, and tools like the C Preprocessor and software-product-line sys-
tems manage variation in many other dimensions. Each of these tools is a concrete
solution to a particular view of this common problem, each with its own way of indi-
cating which parts of a system vary, and how a particular variant is produced. While
the diversity of variation representations is not inherently a problem, it would be
nice if advances in one line of research could be easily understood and incorporated
in others. Additionally, by focusing on domain-specific applications, researchers may
miss insights that can only be gained by examining the problem from a broader, more
abstract point of view.

In this paper we develop the choice calculus, a language that provides a general
representation for software variation, intended to support research in variation man-
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agement, and to provide a foundation for variation management tools with widely
varying goals. We provide a semantics for this representation and a set of semantics-
preserving transformations which will be of use in tools. We also identify useful nor-
mal forms and a set of quality criteria for choice calculus expressions, which together
provide a foundation for a robust variation design theory.

Explicitly, our goals for this work are as follows:

—To provide a common language of discourse, the choice calculus, for software vari-
ation management, to facilitate the sharing of ideas and tools between fields. Ide-
ally, this would fill a role similar to that of the lambda calculus for the representa-
tion and discussion of programming languages and language features.

—To provide a theoretical foundation on which tools and future research can be built.
Lowering the barrier to entry and providing solutions for the mundane details
common to all variation management problems allows subsequent researchers to
focus only on the parts most relevant to their problem.

—To develop theoretical results that can inform existing research, lead to the devel-
opment of provably correct operations on variational artifacts, and form the basis
of a variation design theory.

—To reveal previously unexplored areas of research by approaching the problem of
software variation from first principles. While solving a concrete problem has the
benefit of being immediately useful, a purely theoretical perspective can expose
underlying patterns and uncovered territory.

To provide a theoretical foundation for diverse variation management research, a
representation must have several qualities; these will mostly be introduced through-
out the next two sections. The most fundamental qualities, however, follow directly
from the above goals. In particular, the representation should be a formal and gen-
eral representation of software variation. In Section 4 we provide the requisite for-
mality with precise definitions of both the syntax and semantics of choice calculus
expressions. Generality is a more subjective quality, but is often supported in rep-
resentations with a small number of simple, but highly composable fundamental
elements. The lambda calculus, for example, has only three constructs and is highly
recursive; we have emulated this approach in the choice calculus.

In the next section we will provide a brief overview of variation management re-
search, touching on the strengths and weaknesses of some existing approaches, and
establishing a frame of reference for the rest of the paper. Section 3 incrementally
introduces and motivates the choice calculus, while Section 4 provides the formal
syntax and semantics. In Section 5, we present several semantics-preserving trans-
formations of choice calculus expressions, and we identify theoretically important
normal forms in Section 6. In Section 7 we provide formal quality criteria for choice
calculus expressions, and transformations for improving them. We provide a deeper
comparison with related work in Section 8, discuss future work in Section 9, and
offer conclusions in Section 10.

2. BACKGROUND

Existing work on variation management can be generally split into two categories.
The first is primarily concerned with managing program variation over time and
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includes revision control systems [Tichy 1982] and the larger field of software config-
uration management (SCM), an overview of which can be found in [Estublier et al.
2005]. There have been several efforts to capture general principles of SCM, for
example through the creation of taxonomies [Buckley et al. 2004] and metamodels
[Westfechtel et al. 2001]. While these works strive for generality by examining many
different existing systems, we provide a different view by approaching the problem
from first principles.

In this paper, we focus more on the second category of existing work: managing
software variation in multiple non-temporal dimensions. SCM systems often provide
support for this type of variation as well, through branching features. However,
branches are a highly redundant representation—code and data common to multiple
branches are usually duplicated across each branch. Besides being inefficient, this
often forces users to manually copy changes in one branch to other, related branches.
This significantly increases the costs of changes and creates a high potential for
the introduction of errors. An ideal variation representation should thus seek to
minimize redundancy. The management of branching problems in SCM is largely
institutional rather than technical; branching structures and change patterns must
adhere to one of many sets of best practices to be manageable [Wingerd and Seiwald
1998; Walrad and Strom 2002].

The C Preprocessor (CPP) [GNU Project 2009] is the most widely used tool for
larger-scale, multi-dimensional variation management [Ernst et al. 2002]. Although
CPP can do other things, like macro definition and expansion, we are interested only
in its ability to conditionally include parts of files. CPP provides a set of directives
for this purpose—#if, #elif, #else, etc.—which combine to form conditional state-
ments in the obvious way. Text between these directives is then included or not
depending on the settings of various macros. The biggest advantage of CPP is that
it is very general. Despite the name, CPP is almost completely indifferent to the
type of underlying artifact—it must simply be a text file and not contain text that re-
sembles CPP syntax. Another advantage is that CPP can capture very fine-grained
variation, since any text that can be isolated on a line can be conditionally included.

However, CPP is also a very unstructured language that leads to code which is dif-
ficult to read and edit, and is often a source of errors [Spencer and Collyer 1992]. The
ability to vary practically any piece of text can easily lead to situations where only
some variants of a CPP-annotated program even compile (e.g. one could conditionally
include the closing brace of a procedure definition in C). Worse, these situations can-
not be easily detected without additional tool support—one must explicitly generate
a faulty variant and then attempt to compile it.

Another major deficiency of CPP is that it does not capture the relationships and
constraints that exist between macros used in conditional compilation. To demon-
strate this, in a very simple case study we looked at the conditional compilation
structure of the source code for the open-source MySQL database.1 Considering only
the 557 C source code files (i.e. disregarding header files, which often use conditional
compilation for non-variational purposes), we found 938 unique CPP macros used
in conditional compilation directives. Even if we assume only two possible values
for each, “defined” or “undefined”, this leads to 2938 potential variants (roughly the

1http://mysql.com
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number of atoms in the universe to the fourth power). Clearly, only a tiny subset
of these represent unique programs, and only a smaller subset of these are valid.
But determining which settings of macros correspond to valid variants is extremely
difficult to derive from the CPP representation.

More rigorous approaches to multi-dimensional variation management have been
developed in the context of software product lines (SPLs) [Parnas 1976; Pohl et al.
2005]. Very generally, a SPL is a collection of related programs generated from a
common set of resources. Most technical research on SPLs is focused on the repre-
sentation and management of features, where a feature is some piece of functionality
which can be included or not in a program. A feature model is a way of describing
relationships and constraints that exist between features in a product line. Feature
models address the variant explosion problem described in CPP-annotated programs
above; only certain combinations of features produce valid programs, and these sets
are defined by the feature model. Feature models can be expressed as diagrams
[Kang et al. 1990], algebras [Höfner et al. 2006], propositional formulas [Batory
2005], and more. Section 8 compares these approaches with each other and the
choice calculus.

SPL systems vary widely in their representation of features. Feature-oriented pro-
gramming (FOP) systems like AHEAD [Batory et al. 2004] and Hyper/J [Ossher and
Tarr 2000] are rooted in object-oriented programming and represent a feature by a
set of classes, subclasses, and mixins [Bracha and Cook 1990] which can be added or
not to some base program. This approach is significantly more structured than CPP,
but obviously captures only much coarser-grained variation.

The graphical CIDE tool [Kästner et al. 2008] is closer in spirit to CPP, allowing
snippets of code to be highlighted and associated with a particular feature. When a
feature is included in a program, all of the associated pieces of code are included, and
when a feature is excluded its associated code is as well. CIDE limits these optional
pieces of code to syntactically optional elements (e.g. a statement in a statement
block, or a method in a class definition). Code and most other types of artifacts that
make up software are inherently structured, and CIDE works with this structure
rather than discarding it as CPP does. This approach allows it to capture finer-
grained variation than FOP systems, while avoiding some of the pitfalls of CPP. Of
course, one must have a syntax definition for each type of artifact under variation
management in order to get these benefits (or fall back on the line-based approach
otherwise).

Most existing SPL research seems to consider feature representation and feature
modeling to be two fundamentally different problems, and Section 8 discusses sev-
eral more approaches to each. In contrast, the choice calculus is a more integrated
approach. The concepts of features and feature models are replaced by the concept of
choices—rather than optionally including some piece of code, one chooses between al-
ternative pieces of code. This distinction is subtle but significant. For example, using
the choice calculus, one can lift the constraint that variation in CIDE be limited to
optional syntactic elements; instead, any syntactic element can be varied by simply
requiring that every alternative in a choice be in the same syntactic category.2

All of the work discussed so far is focused on long-term variation; that is, variation

2Recent work on CIDE has begun to extend it in this direction also [Rosenthal 2009].
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which is planned and intended to be maintained indefinitely. However, there is a sec-
ond category of short-term variation which is currently very poorly supported by tools
despite evidence that it is needed [Szekely et al. 1992]. Short-term variation repre-
sents an exploration of alternatives. When faced with a design decision which would
otherwise force a premature commitment—for example, choosing a data structure
when the operations required of it are not yet known—short-term variation allows
the user to make a tentative decision and add alternatives as they present them-
selves. The impact of these alternatives can then be analyzed before a final decision
is made and the variation is removed. A general model of variation can lead to tools
which better support this exploration process, making the contemplation of alterna-
tives easy and providing fundamental support for decision making processes.

Finally, we also want to support the development of tools that assist understand-
ing and reasoning about variational structures. This influences the representation’s
design in several ways. For example, we have stated that minimizing redundancy
is a primary goal of a good representation, but from a tool user’s perspective, it may
be more helpful to see both implementations of a short method with two variants
side-by-side than it would be to see a combined, redundancy-free representation.
These sorts of tradeoffs between technical goals and usability are common and sug-
gest that, more important than, for example, supporting or minimizing redundancy,
is that a representation be highly flexible. That is, it should be able to represent
the same set of variations in different ways, and provide transformations for moving
between forms that are desirable for different reasons. Such transformations for the
choice calculus are presented in Section 5. In the next section, we walk through and
motivate the basic design of the choice calculus.

3. DESIGN OF A VARIATION REPRESENTATION

In this section we will derive the choice calculus by considering the qualities of a
good representation of software variation (identified in the previous two sections),
then by incrementally manipulating our representation to maximize these qualities.
Although we explored many more branches of the design-decision tree and many
other intermediate representations, this section illustrates a sort of idealized design
process to help motivate the final representation. But first, in order to talk more
concretely about the representation, it will help to have an example and establish
some terminology.

Consider the following four implementations of the function twice which takes a
numerical argument and returns that value doubled.

Implementation

plus times

Name

x
int twice(int x) {

return x+x;
}

int twice(int x) {
return 2*x;

}

y
int twice(int y) {

return y+y;
}

int twice(int y) {
return 2*y;

}

These functions vary in two independent dimensions with two options each. The
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functions in the top row differ from the bottom row in the choice of parameter name,
with options “x” and “y”. The functions in the left column column differ from the right
column in the choice of implementation method, with options “plus” and “times”.

Together, these two dimensions with two options produce four variants of the pro-
gram. If we were to add a third option, “z”, to the parameter name dimension, we
would have six total variants. If we were to then add a new dimension, for exam-
ple, “function name” with options “twice” and “double”, we would have twelve total
variants. Clearly, the number of variants grows multiplicatively with respect to the
number of options in each independent dimension. Together with the MySQL/CPP
case study in Section 2, this suggests that another quality of a successful represen-
tation is that it be highly scalable. As the number of dimensions in a varying piece of
software increases, the number of variants grows very quickly, making it infeasible
to consider every possible variant. Of critical importance to managing this complex-
ity is representational modularity. One must be able to work on and integrate a part
of the structure without considering the whole.

The goal of our representation is to provide a formal model to represent variation
in all kinds of languages and documents. To this end, we employ a simple tree model
to represent the underlying artifact. This allows us to focus on the variational as-
pects of the representation, while providing a general and structured model to build
on. Therefore, we define that an expression is given by some constant information a
and a possibly empty list of subexpressions, written as a�e1, . . . , en�.3 For example,
the first variant of the twice function above could be represented by the following
(simplified abstract syntax) tree.

twice�int,�int,x�,�return�+�x,x����

In the following we rarely show this tree structure explicitly, instead using con-
crete syntax whenever there is no danger of ambiguity.

The fundamental concept of our representation is that of choice. A choice is a
set of alternative expressions from which one can be selected. This selection can be
facilitated by associating tags with each alternative expression in the choice; one
then selects a tag to replace a choice with the corresponding alternative. There are
(at least4) two ways to implement this association of alternatives and tags.

(1) A choice is represented as a mapping from tags to alternative expressions. We
call this the direct tagging approach.

(2) The introduction of tags and their association with expressions are separated.
Since the separate introduction of the tags amounts to the definition of a dimen-
sion of variation, we call this the dimension approach.

Representing the variation of the parameter name in the definition of the twice
function using direct tagging would look as follows. We write sets of alternatives as
mappings from tags to code alternatives. Such a set is called a choice.

int twice(int 〈x: x, y: y〉) {
return 2*〈x: x, y: y〉;

}

3The term “expression” includes all kinds of tree-structured documents.
4We will mention briefly a few other approaches in Section 10.
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To represent both dimensions of variation, name and implementation method, we
could use nested choices in the body of the function, as shown below.

int twice(int 〈x: x, y: y〉) {
return 〈plus: 〈x: x+x, y: y+y〉, times: 〈x: 2*x, y: 2*y〉〉;

}

Unfortunately, this representation results in a lot of redundant code. For example,
the code associated with each implementation method (+ and 2*) is represented twice
each. In fact, had we not only two but 17 parameter name options, we would need
17 copies of the code for each implementation method. Changing the nesting of
choices can change the number of choices involved,5 but has no effect on the amount
of redundant code. Neither dimension, naming or implementation method, can be
extended or changed independently of the other. For example, if we decide to add
a new parameter name, we are forced to extend both implementation alternatives.
Similarly, if we want to add a new implementation method, we have to add it twice
(or 17 times), once for each naming variant.

Such redundancy in the representation can easily lead to “update anomalies” (a
term used in the database field to motivate and explain normalization of schemas
[Date 2005]). If we want to change the name x to z, we have to do it in both imple-
mentation alternatives. Or if we want to change one implementation method, say
change x+x to plus(x,x), we have to do it for all parameter name alternatives. It is
very easy to forget such a change or do it inconsistently. We can avoid the redundant
representation by factoring common parts using a let construct. For example, the
twice function can be represented as follows.

let v=〈x: x, y: y〉 in
int twice(int v) {

return 〈plus: v+v, times: 2*v〉;
}

This representation can be easily extended by a new name or a new implementation
method. Moreover, the example doesn’t suffer from update anomalies anymore. For
example, we can easily rename x to z in only one place.

Although the direct tagging approach is very simple and flexible, it has a few
significant shortcomings. To demonstrate these, suppose we add the function thrice
to our program. In the following, whenever we show two expressions in sequence,
it is assumed that they are children of a containing structure node, according to the
object language. For example, two expressions representing Java statements would
be children of a structure node representing a statement-block and two expressions
representing methods would be children of a class node. Our program with the added
thrice function follows.

let v=〈x: x, y: y〉 in
int twice(int v) {

return 〈plus: v+v, times: 2*v〉;
}

5An effect known as the “tyranny of the dominant decomposition” [Tarr et al. 1999].
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let v=〈x: x, y: y〉 in
int thrice(int v) {

return 〈times: 3*v〉;
}

If we assume that tag selection is applied globally, there are a couple of things to
note about this program. First, notice that the implementation of thrice is missing
the plus option. Selecting the plus tag will therefore leave the implementation of
thrice unresolved, while the selection of times will perform a selection in the imple-
mentation of both twice and thrice. This construction seems odd; since plus and
times are related (that is, they are in the same dimension), we would expect them to
have to appear together in choices, but there is nothing in the syntax to enforce this.
This demonstrates that the direct tagging approach is too unstructured. It allows
the creation of choices which are not fully defined with respect to some dimension.

The second thing to note is that, since tags are globally defined, it is not possible to
choose the x parameter name for one function and the y for the other. Perhaps this
is what we want for this small example (to select x or y only once and have it apply
to both functions), but if not, the only resolution is to come up with new tag names
for the parameters of every function we want to vary independently. Global tag
names are an even bigger problem when tags from separate dimensions collide. This
can cause the extremely unexpected result of a selection in one dimension affecting
choices in another dimension. These problems demonstrate that the direct tagging
approach is not modular.

As a solution to both of these problems, we introduce constructs for explicit, local
dimension declarations. We also modify the syntax for choices so that each choice
has an associated dimension and must be fully specified in terms of that dimension.
Dimensions, therefore, are similar to a type system for choices. Below are the twice
and thrice examples from above encoded with explicit dimension declarations.

dim Par〈x, y〉 in
dim Impl〈plus, times〉 in
let v=Par〈x,y〉 in
int twice(int v) {

return Impl〈v+v,2*v〉;
}
let v=Par〈x,y〉 in
int thrice(int v) {

return Impl〈v+v+v,3*v〉;
}

In this syntax, each choice has a dimension name associated with it, and the number
of elements in the choice must be equal to the number of tags in the corresponding
dimension declaration. This means that omitted alternatives, as in our original def-
inition of thrice, are syntactic errors.

In this example, the selection of a parameter name will be applied to both func-
tions. If we want to vary each function’s parameter name independently, we can
instead define two local dimension declarations as in the alternative program below.
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dim Impl〈plus, times〉 in
let v=(dim Par〈x, y〉 in Par〈x,y〉) in
int twice(int v) {

return Impl〈v+v,2*v〉;
}
let v=(dim Par〈x, y〉 in Par〈x,y〉) in
int thrice(int v) {

return Impl〈v+v+v,3*v〉;
}

For the choice calculus we have adopted the second, dimensioned approach because
it provides a more structured representation, is more modular, and obeys a richer
set of laws.

4. THE CHOICE CALCULUS

In Section 4.1 we present the syntax of the choice calculus together with some con-
ditions for well-formed choice expressions. Based on an operation for the systematic
elimination of choices described in Section 4.2 we define the formal semantics of
choice calculus in Section 4.3.

4.1 Syntax

The syntax of the choice calculus is based on four disjoint sets: (1) a set of symbols, a,
to be stored in expressions, (2) a set of tags, t, to label alternatives of choices, (3) a set
of dimension names, D, used to identify choice expressions, and (4) a set of variable
names, v, to bind and refer to expressions.

e ::= a�e, . . . , e� Structure
| let v=e in e Binding
| v Reference
| dim D〈t, . . . , t〉 in e Dimension
| D〈e, . . . , e〉 Choice

We require that a dimension declaration contain at least one tag and that all the
tags in one dimension are pairwise different. We call a D.t a qualified tag, and we
use the metavariable q to range over qualified tags.

For expressions we use the standard definitions of free and bound variables, and
FV(e) is used to denote the set of free variables in expression e. In addition, we
can define a similar notion for dimensions, which are bound by dim expressions and
referenced by choices. Specifically, FD(e) denotes the set of free dimension names
contained in e.

FD(a�e1, . . . , en�)=FD(e1)∪ . . .∪FD(en)

FD(let v=e in e′)=FD(e)∪FD(e′)
FD(v)=∅

FD(dim D〈t1, . . . , tn〉 in e)=FD(e)− {D}

FD(D〈e1, . . . , en〉)= {D}∪FD(e1)∪ . . .∪FD(en)

Similarly, we have a definition of the set of bound dimension names BD(e). The
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definition is identical except for the last two cases.

BD(dim D〈t1, . . . , tn〉 in e)= {D}

BD(D〈e1, . . . , en〉)=BD(e1)∪ . . .∪BD(en)

We call an expression e well dimensioned if each choice D〈e1, . . . , en〉 is in scope of
a corresponding dimension definition dim D〈t1, . . . , tn〉, that is, the dimension decla-
ration that binds d introduces exactly as many tags as each choice that references
d has alternatives. Thus, being well dimensioned is a stronger property than just
having no unbound dimensions.

This property is expressed formally by the judgment ∆` e, which says that for
each choice D〈e1, . . . , en〉 used in e, n = ∆(D) where ∆ is an environment that maps
dimension names to numbers. We use ∆ as a stack when extending it with new
bindings, which means that when we use ∆ as a function to look up entries, we start
searching from the top of the stack. We use the notation ∆⊕(D,n) to push the binding
(D,n) onto the stack ∆.

The judgment is defined by the rule system given below in which we employ the
following notational abbreviations for writing expressions involving sequences. A list
of n expressions (or other syntactic elements) e1, . . . , en is written as en. This notation
can be generalized to allow for context around the enumerated elements: we write
C(e i)i:1..n for C(e1), . . . ,C(en). For example, (xi +1)i:1..n represents x1 +1, . . . , xn +1.

(∆` e i)i:1..n

∆` a�en�
∆` e ∆` e′

∆` let v=e in e′
∆` v

∆⊕ (D,n)` e

∆`dim D〈tn〉 in e

∆(D)= n (∆` e i)i:1..n

∆` D〈en〉
We say that a choice calculus expression e is well formed if it is well dimensioned
and contains no free variables, or more formally, if ∅` e and FV(e)=∅.

Finally, an expression e is called dimension linear if all dimension names in e that
are introduced by a dim construct are pairwise different. The rationale for this defi-
nition is that a dimension linear expression can be transformed into a useful normal
form in which dimension declarations are maximally factored (see Section 6). Note
that any expression can be made dimension linear by simply renaming conflicting
dimensions and their bound choices.

4.2 Choice Elimination

Choice calculus expressions represent choices, and the process of choosing alterna-
tives from these choices is called choice elimination. Sets of choices can be synchro-
nized through the use of dimensions. An operation called tag selection formalizes
choice elimination, allowing one to simultaneously choose alternatives in all choices
in one dimension with a single tag. More specifically, when a qualified tag D.t is
selected, a choice D〈e1, . . . , en〉 yields e i if the choice is in scope of a dimension decla-
ration dim D〈t1, . . . , tn〉 with t = ti.

We write becD.t for selecting from choices in e with the qualified tag D.t. The
semantics of tag selection is defined in two steps. First, we have to find a dimen-
sion definition for D that includes the tag t and determine t’s index, say i, in that
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definition. After that we find all choices tagged by D in the scope of the identified
dimension definition and replace each of them by their ith alternative.

The first step, finding a dimension definition for the tag D.t, can be defined in two
principally different ways.

(1) Arbitrary dimension access. We can match an arbitrary dimension definition and
perform tag selection in its scope.

(2) Ordered dimension access. We require that selections in dimensions be made in
a specific order, for example, in the order in which they are encountered during
a preorder traversal.

The first approach is appealing since it allows users to make decisions in different
(although not completely arbitrary) orders. However, it also complicates the seman-
tics and severely limits semantics-preserving transformations. Conversely, the sec-
ond approach prescribes an ordering on decisions, but has the advantage of support-
ing more transformations and, in particular, guarantees the existence of important
normal forms.

In this paper we pursue the second approach, because it better supports modu-
larity of the choice representation. Therefore, we will define below a function V
for computing variants by traversing (in preorder) a choice calculus expression and
creating a mapping from encountered dimensions and tags to expressions that are
obtained by performing tag selection along the way.

The second step of the semantics definition, replacing each bound choice by its
ith alternative, can be defined by traversing the subexpression of the declaration for
dimension D with the selector, or qualified index, D.i. This traversal will reach all
choices tagged by D, but recursion will stop whenever a nested dimension declara-
tion of the same name is encountered.

bvcD.i = v
ba�e1, . . . , en�cD.i = a�be1cD.i, . . . ,bencD.i�
blet v=e in e′cD.i = let v=becD.i in be′cD.i

bdim D′〈tn〉 in ecD.i =
{

dim D′〈tn〉 in e if D = D′
dim D′〈tn〉 in becD.i otherwise

bD′〈e1, . . . , en〉cD.i =
{be icD.i if D = D′

D′〈be1cD.i, . . . ,bencD.i〉 otherwise

In general, tag selection will result in an expression that still contains dimensions
and choices. To talk about the different forms that an expression can have we intro-
duce the property of being s free, which means that an expression does not include a
syntactic category s. For example, a dimension-free expression does not contain any
dimension declarations (but may still contain choices, bindings, or any other syntac-
tic category). Additionally, an expression is called variation free if it is dimension
free and choice free, and it is called sharing free if it is reference free and binding
free. Finally, an expression is called plain if it is variation free and sharing free.

With these definitions we can say that the goal of repeated tag selection is to obtain
variation-free expressions, but we observe that, in general, this property cannot be
guaranteed by any particular tag selection.
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4.3 Choice Semantics

The meaning of a choice expression is the total set of decisions it represents and the
results of those decisions. We represent the semantics as a mapping from sequences
of tags to expressions. We define the semantics in two steps. First, we define the
set V (e) of variants denoted by e as a mapping from sequences of tags to variation-
free expressions. After that we define the semantics based on V (e) by expanding all
let expressions. We use q̄ to range over tuples of qualified tags. We also employ
an auxiliary function Π that computes the variants for a tuple of n expressions and
combines the results. The combination is done by taking one pair (q̄i, e′i) from each
set, and forming a new pair (q̄, e′n) by concatenating all tuples q̄i and forming a
sequence of the expressions e′i.

Π(en)= {(q̄n, e′n) | ((q̄i, e′i) ∈V (e i))i:1..n}

The function V is then defined as follows.

V (v)= {(〈〉,v)}

V (a��)= {(〈〉,a��)}

V (a�en�)= {(q̄,a�e′n�) | (q̄, e′n) ∈Π(en)}

V (let v=e1 in e2)= {(q̄, let v=e′1 in e′2) | (q̄, (e′1, e′2)) ∈Π(e1, e2)}

V (dim D〈tn〉 in e)= {((D.ti, q̄), e′) | i ∈ {1, . . . ,n}, (q̄, e′) ∈V (becD.i)}

V (D〈en〉)= {(q̄,D〈e′n〉) | (q̄, e′n) ∈Π(en)}

Note that V leaves choices unchanged. In a well-dimensioned expression, V will not
encounter any choices because they will have been resolved by tag selections trig-
gered by their binding dimensions. We define V to propagate over choices anyway,
for completeness.

By definition, expressions in the range of V (e) do not contain dimensions; if e is
well-dimensioned, they will not contain choices either. However, expressions in the
range of V (e) may still contain let expressions and variables references. To obtain
plain expressions, we can eliminate bindings and references with the function µ,
which takes as a parameter an environment ρ for storing variable bindings.

µρ(a�e1, . . . , en�)= a�µρ(e1), . . . ,µρ(en)�
µρ(dim D〈tn〉 in e)=dim D〈tn〉 in µρ(e)

µρ(D〈e1, . . . , en〉)= D〈µρ(e1), . . . ,µρ(en)〉
µρ(let v=e in e′)=µρ⊕(v,µρ (e))(e′)

µρ(v)= ρ(v)

Although they are not strictly needed for defining the semantics of well-dimensioned
expressions, the cases for dimensions and choices are provided for completeness.

The semantics of well-formed choice expressions can now be defined as a mapping
from sequences of tags to plain expressions.

JeK = {(q̄,µ∅(e′)) | (q̄, e′) ∈V (e)}

Because the semantic function can also be applied to expressions which are not well
formed, we capture the relationship between well-formedness and the semantics in
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the following lemma.

LEMMA 1. If e is well formed, then ∀e′ ∈ rng(JeK) : e′ is plain.

PROOF. The semantics definition is based on V . We can observe from the defini-
tion of V that all dimension definitions and all bound choices are eliminated. There-
fore, if e is well dimensioned, JeK will be variation free.

Moreover, the definition of the semantics employs µ to remove all let binding in all
variants produced by V for e. If e does not contain any free variables, all references
will be removed through the last case of µ, and thus JeK is also sharing free and
therefore plain.

We show some examples of the semantics later in Section 7.

5. FACTORIZATION AND DISTRIBUTION OF DIMENSIONS AND CHOICES

We observe that the choice representation is not unique, that choices can be generally
represented on different levels of granularity, and that dimension definitions can be
moved around too. For example, the following three expression are all equivalent in
the sense that JeK = Je′K = Je′′K.

e =dim A〈a,b〉 in 5+ A〈1,2〉
e′ =dim A〈a,b〉 in A〈5+1,5+2〉
e′′ = 5+dim A〈a,b〉 in A〈1,2〉

This observation raises several questions: Does it matter which representation is
chosen? Is there a preferred representation that should be chosen, or do we need
different representations and operations to transform between them?

It turns out that different representations are useful for different purposes. For
example, maximally factored choices (as in e and e′′) keep common parts out of al-
ternatives as much as possible and thus simplify the editing of these common parts,
avoiding update anomalies. On the other hand, fewer and bigger choices that repeat
common parts are sometimes better suited to compare alternatives than a huge col-
lection of fine-grained representations. Moreover, having dimensions as far at the
top as possible (as in e and e′) reveals the variational structure better than deeply
nested dimensions. This might be desirable or not, depending on the context.

In this section we identify a number of semantics-preserving relationships be-
tween choice-calculus expressions that can be used to transform expressions into
a desired form. A complete set of relationships can be obtained by observing that
in principle any syntactic form, that is, Structure, Binding, Reference, Dimension,
or Choice, can be commuted with any other. An attempt to systematically enumer-
ate all possibilities reveals further that (1) we need two rules for commutation with
bindings since we have two recursive occurrences of expressions (that, unlike in the
structure and choice case, cannot be dealt with in one rule using our pattern nota-
tion) and (2) that for the case of self-commutation we can in some cases consider the
merging of the two identical constructs into one. The naming of rules follows this
system and uses the initials of the syntactic constructs being commuted, possibly
with a suffix indicating further detail.

We present the rules in several groups. First, we show rules for factoring and
distributing choices across other syntactic constructs in Figure 1. In the rules we
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C-S
a�en[i :D〈e′ j:1..k〉]�≡ D〈a�en[i : e′j]�

j:1..k〉

C-B-DEF

let v=D〈en〉 in e ≡ D〈(let v=e i in e)i:1..n〉

C-B-USE

let v=e in D〈en〉 ≡ D〈(let v=e in e i)i:1..n〉

C-D
D 6= D′

dim D′〈tm〉 in D〈en〉 ≡ D〈(dim D′〈tm〉 in e i)i:1..n〉

C-C-SWAP

D′〈en[i :D〈e′ j:1..k〉]〉 ≡ D〈D′〈[en[i : e′j]〉 j:1..k〉

C-C-MERGE

D〈en[i : e′i]〉 ≡ D〈en[i :D〈e′n〉]〉

Fig. 1. Choice commutation rules.

make use of a further notational convention to expose the ith element of a sequence.
The pattern notation en[i : e′] expresses the requirement that e i has the form given
by the expression (or pattern) e′. For example, en[i : e′+1] says that e i must be an
expression that matches e′+1.

In the case of nested choices for the same dimension D (rule C-C-MERGE), distri-
bution amounts to merging the two choices into one. In that case the nested choice
(D〈e′n〉) does not really present a choice since all alternatives except e′i are dead
and cannot be reached because the semantics of tag selection recursively selects the
same component from a nested choice. That is, if tag selection selects D〈e′n〉 as the
ith alternative of the outer choice, it will also select e′i from the inner one.

To apply the rules C-B-DEF and C-B-USE from right to left it is required that all
alternatives in the choice contain a let binding. Whenever that is not the case,
we can employ the relationships in Figure 2, for manipulating let expressions, to
prepare for the application of the C-B-* rules. In rule premises we use j 6= i as an
abbreviation for j ∈ {1, . . . ,n}− {i}. The first two rules can be used to both introduce
new let expressions and eliminate redundant ones, the two B-USE-USE rules are for
commuting let bindings, and the two B-S rules are for moving bindings into and out
of structures.

Note that all semantics-preserving transformations must not introduce or remove
dimension declarations, nor change the order in which they appear in an in-order
traversal of the expression’s abstract syntax tree. The binding rules contain condi-
tions which ensure that these constraints on dimension declarations are enforced, in
addition to the obvious conditions that prevent the capture of free variables. Con-
sider, for example, the application of the B-S rules from right to left. Pulling the
binding at position i out of the structure changes the ordering of the subexpressions:
expression e now precedes expressions e1 through e i−1. This transformation is only
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NAMING

e ≡ let v=e in v

B-NEW
v ∉FV(e) BD(e′)=∅

e ≡ let v=e′ in e

B-USE-USE
v 6= w v ∉FV(e′) w ∉FV(e) BD(e)=∅

let v=e in (let w=e′ in e′′)≡ let w=e′ in (let v=e in e′′)

B-USE-USE’
v 6= w v ∉FV(e′) w ∉FV(e) BD(e′)=∅

let v=e in (let w=e′ in e′′)≡ let w=e′ in (let v=e in e′′)

B-S
v ∉∪ j 6=iFV(e j) BD(e)=∅

let v=e in a�en[i : e′]�≡ a�en[i :let v=e in e′]�

B-S’
v ∉∪ j 6=iFV(e j) (BD(e j)=∅) j:1..i−1

let v=e in a�en[i : e′]�≡ a�en[i :let v=e in e′]�

Fig. 2. Binding commutation rules.

semantics-preserving if it does not affect the ordering of the dimensions, so either e
does not contain any dimension declarations (rule B-S) or none of e1 through e i−1 do
(rule B-S’).

Also note that unlike the C-B-* rules, we do not merge similar let expressions
in the B-S rules. Such a transformation would not be semantics preserving if the
bound expressions contain dimension declarations. Similarly, we do not have a rule
S-D∗, which would lift and combine several dimension declarations (with the same
dimension name and tags) out of a structure. When commuting let expressions or
dimension declarations with choices (as in rule C-D and the C-B-* rules), creating
or merging duplicates does not affect the semantics since only one alternative can
ever be selected. In other cases, duplicating an expression containing a dimension
declaration increases the number of decisions that must be made and increases the
number of variants.

Next we present the rules for factoring and distributing dimensions in Figure 3.
We have omitted the rule D-C since, due to symmetry, it is identical to the rule C-
D already given in Figure 1. Like the binding commutation rules, these rules take
similar care to prevent the reordering of dimension declarations and the capture of
free dimensions.

We also add reflexivity, symmetry, and transitivity rules for ≡ to make it an equiv-
alence relationship, and add a congruence rule to transform expressions within the
same context.

REFL

e ≡ e

SYMM
e ≡ e′

e′ ≡ e

TRANS
e1 ≡ e2 e2 ≡ e3

e1 ≡ e3

CONG
e ≡ e′

C[e]≡ C[e′]
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D-S
D ∉∪ j 6=iFD(e j) (BD(e j)=∅) j:1..i−1

a�en[i :dim D〈tm〉 in e]�≡dim D〈tm〉 in a�en[i : e]�

D-B-DEF
D ∉FD(e′)

let v=(dim D〈tn〉 in e) in e′ ≡dim D〈tn〉 in (let v=e in e′)

D-B-USE
D ∉FD(e) BD(e)=∅

let v=e in (dim D〈tn〉 in e′)≡dim D〈tn〉 in (let v=e in e′)

Fig. 3. Dimension commutation rules.

An important property of the transformation rules is that they are semantics pre-
serving. This property is captured in the following theorem.

THEOREM 1. If e is well formed, then e ≡ e′ =⇒ JeK = Je′K
A proof of this theorem is provided in the appendix. The factorization/distribution
rules provide a powerful means to transform choice expression and make the repre-
sentation very flexible.

6. DIMENSION AND CHOICE NORMAL FORMS

The rules presented in Section 5 can be used to transform expressions in many differ-
ent ways. In this section we identify three strategically significant representations:
dimension normal form, choice normal form, and dimension-choice normal form. We
then show that any expression can be transformed into choice normal form, and that
any dimension-linear expression can be transformed into dimension normal form
and consequently, dimension-choice normal form.

We say that an expression e is in choice normal form (CNF) if it contains only
choices that are maximally factored. That is, e is in CNF if no subexpression of e
matches the right-hand side of any of the rules given in Figure 1 (without violating
a premise). CNF is significant because it reduces redundancy in the representation.
This is an important feature for the development of variation editing tools because
it decreases the risk of update anomalies.

We similarly say that an expression e is in dimension normal form (DNF) if all di-
mensions are maximally factored. We consider a dimension maximally factored if its
declaration appears at the top of the expression, at the top of an alternative within
a choice, or directly beneath another maximally-factored dimension. DNF is conve-
nient because it groups dimension declarations according to their dependencies. For
example, all dimensions at the top of an expression are independent—the selection
of any tag in any independent dimension does not affect the possible selections in
other independent dimensions. Dimensions grouped within an alternative are de-
pendent on the corresponding tag being chosen in the enclosing choice—if the tag is
not chosen, we need not make a selection in any dimensions in the group.

Finally, we say that an expression is in dimension-choice normal form (DCNF) if it
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is in choice normal form and in dimension normal form. Naturally, DCNF combines
the benefits of both CNF and DNF, avoiding redundancy and clearly revealing the
dimension structure. It is therefore a prime candidate for a variation representation
in an editor tool or IDE since it avoids update anomalies while editing and groups
related dimensions.

We call an expression that is well dimensioned and dimension linear linearly di-
mensioned. In the following we will show that any linearly dimensioned expression
can be transformed into DCNF. Any expression e can be transformed into an equiv-
alent expression e′ that is maximally choice factored (that is, in CNF). This can be
achieved by repeatedly applying the rules from Figure 1 from right to left.

LEMMA 2. ∀e.∃e′.e ≡ e′∧ e′ is in CNF.

PROOF. The definition of CNF is based on the applicability of transformation
rules. For an expression e, there are two possibilities: Either no rule is applica-
ble, in which case e is in CNF already. Otherwise, a rule can be applied, which yields
an expression e′ to which the same reasoning can be applied inductively.

To show that the transformation process must end after a finite number of steps,
we define a measure, called the choice depth, as follows. If n is the number of choices
in an expression, and m is the distance of the choice furthest from the root of that
expression, the choice depth is 1

n+m. It is clear that all of the C-* rules, when applied
from right to left, increase the choice depth of an expression without increasing the
size of the expression.

Lemma 2 is significant on its own, demonstrating that any e can be transformed into
CNF, minimizing redundancy. However, only expressions that are linearly dimen-
sioned can, in general, be brought into dimension normal form.

LEMMA 3. If e is linearly dimensioned, then ∃e′ in DNF such that e ≡ e′.

PROOF. This result follows from the fact that we have a rule for moving a dimen-
sion out of each syntactic category. The premises that would prevent the application
of a rule are of two forms. Either they prevent the capture of free choices or they
constrain the order in which the rules can be applied. The first case does not apply
since e is well dimensioned and also dimension linear. The conditions about bound
dimensions can be met by simply moving out those “earlier” dimensions before the
current one.

From Lemmas 2 and 3 the following result about dimension-choice normal form fol-
lows directly.

THEOREM 2. If e is linearly dimensioned, then ∃e′ in DCNF such that e ≡ e′.

As a final illustration of the three types of normal form, recall the following expres-
sions from Section 5.

e =dim A〈a,b〉 in 5+ A〈1,2〉
e′ =dim A〈a,b〉 in A〈5+1,5+2〉
e′′ = 5+dim A〈a,b〉 in A〈1,2〉

Comparing these to the definitions above, we see that e is in DCNF, while e′ is (only)
in DNF and e′′ is (only) in CNF.
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7. VARIATION DESIGN THEORY

We can observe that not every choice expression is a good variation representation. A
trivial example is a choice of the form A〈e, e〉 that contains two identical alternatives.
Since it does not matter which alternative we select, this is a “false choice” that could
be simply replaced by e.

In this section we formalize several quality criteria for choices and dimensions
that can serve as guidelines for the design of variation structures. In Section 7.1 we
compare a syntactic and a semantic approach to deriving design criteria. In Section
7.2 we then develop a semantic criterion for identifying equivalent alternatives in
choices and equivalent tags in dimensions. We also define transformations to re-
move redundant alternatives and tags. In Section 7.3 we give semantic criteria for
identifying spurious choices and dimensions, and transformations to remove them.
Finally, in Section 7.4 we provide a transformation for eliminating undesireable nest-
ings of choices by removing unreachable alternatives.

7.1 Syntactic vs. Semantic Design Criteria

There are two ways to approach the formalization of variation design criteria. First,
we can pursue a syntactic approach and identify patterns of dimension and choice
expressions directly, as we have done with the example A〈e, e〉. However, it is not
always syntactically obvious when two expressions are equivalent. Consider the
following choice expression abc.

dim A〈a,b〉 in
dim B〈c,d〉 in
dim C〈e, f 〉 in

A〈B〈C〈1,2〉,C〈3,4〉〉,C〈B〈1,3〉,B〈2,4〉〉〉 (abc)

In the above example, the A dimension is irrelevant, but this is very difficult to see
in the syntax.

We can apply transformations to make the situation more obvious. For example,
applying the rule C-C-SWAP to C〈B〈1,3〉,B〈2,4〉〉, the second alternative of A, and
fixing i to 1, yields the following choice.

B〈C〈1,B〈2,4〉〉,C〈3,B〈2,4〉〉〉
Now we apply C-C-SWAP two more times, swapping B〈2,4〉 twice with C. After swap-
ping the first occurrence of B〈2,4〉, we obtain the following expression.

B〈B〈C〈1,2〉,C〈1,4〉〉,C〈3,B〈2,4〉〉〉
Swapping the second occurrence gives us the following.

B〈B〈C〈1,2〉,C〈1,4〉〉,B〈C〈3,2〉,C〈3,4〉〉〉
Next we can apply the rule C-C-MERGE twice, which simplifies the first alternative
by dropping its second alternative C〈1,4〉 as follows.

B〈C〈1,2〉,B〈C〈3,2〉,C〈3,4〉〉〉
Similarly, if we apply C-C-MERGE again, we can simplify the second alternative by
dropping its first alternative C〈3,2〉 to obtain the following.

B〈C〈1,2〉,C〈3,4〉〉
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Altogether we obtain the following transformed expression, in which it is obvious
that both alternatives of A are identical.

dim A〈a,b〉 in
dim B〈c,d〉 in
dim C〈e, f 〉 in

A〈B〈C〈1,2〉,C〈3,4〉〉,B〈C〈1,2〉,C〈3,4〉〉〉
This shows that we could replace abc with the following expression bc.

dim B〈c,d〉 in
dim C〈e, f 〉 in

B〈C〈1,2〉,C〈3,4〉〉 (bc)

Alternatively, we can formulate criteria based on the semantics of choice expres-
sions. However, requiring semantics preservation would be too strong a criterion. To
illustrate this point let us consider the following choice expression ab.

dim A〈a,b〉 in A〈1,1〉 (ab)

It is easy to see that ab and the expression 1 do not have the same semantics since
J1K = {((),1)} whereas JabK = {(A.a,1), (A.b,1)}. Nevertheless, it seems justified to
replace ab by 1. Even though such a transformation is not semantics preserving,
it is variant preserving in the following sense. First, we define the variants of an
expression e to be rng(JeK), that is, the expressions contained in the range of e’s
denotation. From Lemma 1 we know that if FD(e) = ∅ and FV(e) = ∅, then all
variants of e are plain. Based on this notion of variants we can define that two
expressions e and e′ are variant equivalent, written as e ∼ e′, if rng(JeK) = rng(Je′K),
and we can call a transformation that maps e into e′ variant preserving if e ∼ e′.

We can now see that ab∼ 1 because ab and 1 have the same variants. Therefore,
the replacement of ab by 1 is variant preserving. Likewise, the variants of abc and bc
are both {1,2,3,4}. Therefore, they too are variant equivalent and the simplification
of abc to bc is variant preserving and thus justified according to this criterion.

The semantic approach provides a simpler and more general avenue to a design
theory since the semantics flattens the potentially complex, nested dimension and
choice structure of an expression into a plain relation.

Redundancies and corresponding simplification opportunities can occur in choice
expressions on different levels and in different forms. Employing semantics-based
criteria, we will investigate the binary equivalence of alternatives and tags in Sec-
tion 7.2. For equivalent tags, we can identify a simplification transformation that
reduces the size of the corresponding dimension and choices. In Section 7.3 we lift
those relationships to sets of entities, that is, choices and dimensions, and we iden-
tify simplification transformations that can eliminate whole choices and dimensions.

7.2 Equivalent Alternatives and Tags

The simplest form of equivalence that we can observe is that of different alternatives
in individual choices, as in A〈1,1〉. We say that two alternatives e i and e j of a choice
D〈en〉 are equivalent in context C, written as e i ∼D

C e j, if JC[D〈en〉]K is unchanged by
swapping alternatives e i and e j; that is, if

JC[D〈en〉]K = JC[D〈e1, . . . , e j, . . . , e i, . . . , en〉]K
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This definition seems overly complicated. Why can’t we just define equivalence to
hold if Je iK = Je jK? The problem is that requiring the equality of semantics is too
strong a condition. Consider, for example, the choice A〈v,v〉. The semantics of both
alternatives is undefined since v is unbound. Still, we would like to say that both
alternatives are equivalent. We can’t use plain term equality either since this would
miss the equivalent alternatives in A〈dim B〈a,b〉 in B〈1,2〉,dim B〈b,a〉 in B〈2,1〉〉.

The chosen context-dependent definition leads to situations that might seem a bit
unintuitive at first. Consider, for example, the following expression ab1.

dim A〈a,b〉 in A〈A〈1,1〉,1〉 (ab1)

The semantics for this expression and the version in which A〈1,1〉 and 1 are swapped
are {(A.a,1), (A.b,1)}, which means that the alternatives A〈1,1〉 and 1 are equiva-
lent even though they are different. However, considering that both alternatives
ultimately always produce the same results, the definition seems appropriate.

We define the function ᾱC/i(e) to perform the removal of the ith alternative of
a choice in context C within expression e. This function is defined only if C is a
context that matches a choice in e with at least i alternatives; that is, we assume
e = C[D〈en〉] with n ≥ i. Then we obtain the following, obvious definition.

ᾱC/i(e)= C[D〈e1, . . . , e i−1, e i+1, . . . , en〉]
As an example, consider the following expression abx.

dim A〈a,b, x〉 in A〈1,1,9〉 (abx)

With C = dim A〈a,b, x〉 in [], we can remove the second alternative in the choice
in abx by applying ᾱC/2(abx). This yields the expression dim A〈a,b, x〉 in A〈1,9〉,
which is not well dimensioned. This example demonstrates that we cannot, in gen-
eral, simplify a choice that contains equivalent alternatives in isolation. Since the
number of alternatives in a choice must match the number of tags in its binding di-
mension, reducing the number of alternatives in a choice requires the removal of the
corresponding tag in the binding dimension to maintain well dimensionedness. In
this example, this would actually work since we have only one choice that is bound
by dimension A. But in cases where we have other choices, the removal of the tag is
possible only if all corresponding pairs of alternatives in all those other choices are
redundant too, which is generally not the case.

On the dimension level, we can consider the equivalence of tags. As an example,
consider again the expressions ab and ab1. The tags a and b are equivalent in the
sense that selection with one tag yields the same result as selection with the other.
Therefore, we define that two tags ti and t j are equivalent in context C, written as
ti ∼C t j, if JC[dim D〈tn〉 in e]K is unchanged by swapping tags ti and t j; that is, if

JC[dim D〈tn〉 in e]K = JC[dim D〈t1, . . . , t j, . . . , ti, . . . , tn〉 in e]K

Tag equivalence is in a sense a stronger property than equivalence of alternatives
since a dimension that defines two equivalent tags can bind many choices, and thus
the equivalence has a broader scope. However, equivalent tags do not imply equiva-
lent alternatives, which can be seen in the following simple example.

dim A〈a,b〉 in A〈A〈1,2〉,1〉
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It is clear that selection with either A.a or A.b produces 1 as a result; that is, tags
a and b are equivalent. However, neither pair of alternatives in either of the two
bound choices is equivalent.

Two equivalent tags are redundant with respect to each other, and therefore, one
of them can be safely removed, because the removal is variant preserving. Removing
a tag amounts to reducing the size of a dimension and all of its bound choices by one
and is done as follows. If ti ∼C t j, replace the dimension declaration dim D〈tn〉 with
dim D〈t1, . . . , t j−1, t j+1, . . . , tn〉 and every choice D〈en〉 bound by that dimension with
D〈e1, . . . , e j−1, e j+1, . . . , en〉. We write τ̄C/t j (e) for applying this simplification opera-
tion to an expression e with e = C[dim D〈tn〉 in e′]. For our examples we obtain the
following possible removals.

τ̄C/a(ab)=dim A〈b〉 in A〈1〉 τ̄C/b(ab)=dim A〈a〉 in A〈1〉
τ̄C/a(ab1)=dim A〈b〉 in A〈1〉 τ̄C/b(ab1)=dim A〈a〉 in A〈A〈1,1〉〉
τ̄C/a(abx)=dim A〈b, x〉 in A〈1,9〉 τ̄C/b(abx)=dim A〈a, x〉 in A〈1,9〉

Since an equivalent tag represents a redundancy in an expression, the systematic
removal of equivalent tags does not affect the represented variants. This is summa-
rized in the following theorem.

THEOREM 3. ti ∼C t j =⇒ τ̄C/t j (e)∼ e

Obviously, Theorem 3 applies to our examples ab, ab1, and abx. We can also apply
it to the choice expression abc. In all examples except for expression abx, the tag
removal results in a dimension that contains only one tag and corresponding choices
with only one alternative each. Such dimensions and choices are trivially superflu-
ous and can thus be eliminated. We will consider this kind of transformation in the
next subsection.

7.3 Removing Pseudo-Choices and Pseudo-Dimensions

A choice in which all alternatives are pairwise equivalent is not really a choice since
the decision of what alternative to pick has no impact on the semantics of the expres-
sion. We call a choice with this property a pseudo-choice. In the previous subsection
we have observed that a single pair of equivalent alternatives cannot be removed
in general. In contrast, a pseudo-choice can be safely replaced by any one of its
alternatives, a fact that is summarized in the following lemma.

LEMMA 4. ∀i, j ∈ {1, . . . ,n} : e i ∼D
C e j =⇒ JC[D〈en〉]K = JC[e i]K

We write γ̄C(e) for removing the choice in the context C within expression e. This
operation is, of course, defined only when C matches a choice expression in e, that is,
when e = C[D〈en〉].

As an example, consider again the expression ab1. Since both alternatives A〈1,1〉
and 1 are equivalent (that is, A〈1,1〉 ∼D

C′ 1 with C′ =dim A〈a,b〉 in []), we can replace
A〈A〈1,1〉,1〉 by 1 (or A〈1,1〉), that is, we apply γ̄C′ (ab1). The same also trivially
applies to the expression ab.

For both expressions, the application of γ̄ results in the expression
dim A〈a,b〉 in 1, which can be obviously further simplified to 1 by removing the
dimension definition. This simplification opportunity is captured more generally in
the following lemma.
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LEMMA 5. D ∉FD(e) =⇒ dim D〈tn〉 in e ∼ e

The rationale for this kind of transformation is that the semantics of the expression
is completely independent of the tags in the dimension. Therefore, we can take
the idea of pairwise equivalence to the dimension level and arrive at the notion of
a pseudo-dimension, which is a dimension in which all tags are equivalent. For
example, dimension A is indeed a pseudo-dimension in expressions ab and ab1 since
tags a and b, the only tags of A, are equivalent. In contrast, dimension A is not a
pseudo-dimension in the expression abx.

Like pseudo-choices, pseudo-dimensions are not needed at all and can be removed,
but we must suitably replace all of their bound choices as well. A pseudo-dimension
can be removed as follows. First, replace dim D〈tn〉 in e by e. Then replace all free
choices D〈en〉 in e by some e i (in a well-dimensioned expression the free choices in
e are exactly those that were previously bound by the just removed dimension). The
tag-selection operation bdim D〈tn〉 in ecD.ti defined in Section 4.2 performs exactly
this function. We define the simplification operation δ̄ on an expression e with e =
C[dim D〈tn〉 in e′] as follows.

δ̄C(e)= C[be′cD.1]

The case for pseudo-dimensions can be made by induction over redundant tags. That
is, we can repeatedly apply Theorem 3, followed by an application of Lemma 5. We
capture the validity of pseudo-dimension removal in the following theorem.

THEOREM 4. ∀i, j ∈ {1, . . . ,n} : ti ∼C t j =⇒ δ̄C(e)∼ e

Since any tag is equivalent to itself, the premise of the theorem is trivially fulfilled
for dimensions that contain only one tag, which means that those dimensions can
always be safely removed. This fact is summarized in the following corollary.

COROLLARY 1. dim D〈t〉 in e ∼ becD.t

7.4 Choice Fusion

The rule C-C-MERGE shown in Section 5 allows, when applied from right to left,
the removal of unreachable alternatives from a nested choice. It is therefore well
suited as a basis for improving choice expressions. However, the rule as given is of a
syntactic nature, which means that, in general, other transformations have to take
place for it to be applicable. We have illustrated in Section 7.1 that this can be a
tedious process and have therefore also investigated semantics-based descriptions of
transformations. So a natural question is: Can we express the idea of choice merging
in a more declarative way based on semantics criteria?

A simple way to achieve this is by employing tag selection. We can safely project
on the ith alternative in all choices in dimension D that occur nested within the ith
alternative of a choice in dimension D. This is due to the definition of selection with
a qualified index. We can summarize this idea in the following lemma.

LEMMA 6. JC[D〈en〉]K = JC[D〈be1cD.1, . . . ,bencD.n〉]K
This lemma describes a form of algebraic optimization reminiscent of constant fold-
ing and propagation in compiler theory. Note that the described transformation is
actually semantics preserving and not just variant preserving.
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8. RELATED WORK

Section 2 provided an overview of existing work in software variation management,
their strengths and weaknesses, and hinted at differences between existing work
and the choice calculus. In this section we complete this discussion by presenting
other related work and providing deeper comparisons of the existing work to the
choice calculus.

Most current research on multi-dimensional variation management is focused on
the development and maintenance of software product lines, as introduced in Sec-
tion 2. Recall that this research revolves around the notion of optional functionality
encapsulated as features and constraints on the sets of features that can be incor-
porated into a program, captured in feature models. Representing and implement-
ing feature models are usually approached as two fundamentally different problems.
Implementation is lower-level, concerned with annotating or encapsulating and com-
bining code, while feature modeling is significantly more abstract, usually treating
features as fundamental elements. Ostensibly, one could choose an implementa-
tion strategy and a feature modeling technique independently, then combine them to
form a complete software-product-line system. In practice, certain implementation
methods work better with certain model representations; for example, the order in
which features are incorporated is significant in some implementations (most FOP
systems), but not with others (CIDE), and only some types of feature models include
ordering constraints.

There are two different ways of relating the choice calculus to the feature model
view of variation management. The first is to consider the choice calculus primar-
ily as a means of implementing feature models. This could be augmented by tra-
ditional feature modeling techniques or a higher-level “choice-model” that enforces
additional, inter-dimensional constraints on selections applied to a choice expres-
sion. For example, one could specify that the selection of a tag in one dimension
implies the selection of a tag in another, or that two particular tags in two different
dimensions cannot both be selected. The choice calculus compares favorably as an
implementation strategy. Its use of an underlying tree model and local dimension
declarations make it more structured than most annotation systems, but it is able
to capture significantly finer-grained variation than FOP systems. Also, by basing
variation on choices among alternatives, rather than on optionality, the choice cal-
culus is not restricted to varying only optional syntactic elements (as are most FOP
systems and the currently available version of CIDE, for example).

The second view is to consider the choice calculus a representation that spans both
the implementation and feature modeling levels. In a choice calculus expression,
tags can be considered to correspond to features, and dimensions and the structure
of choices constitute the feature model. This view does not support inter-dimensional
constraints, but it is still appealing since it unifies the representation and implemen-
tation of feature models. In particular, it does not suffer from the “optional feature
problem” [Kästner et al. 2009] that can arise when there are constraints in the im-
plementation of a feature model not present in the model itself. Fortunately, we are
not restricted to just one of these views of how the choice calculus relates to existing
work, and we will alternate between them in the following discussion.

In Section 2 we introduced FOP (feature-oriented programming) as one approach
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to representing features. In FOP, features are represented by sets of classes, sub-
classes, and mixins, which can be optionally added to the program. Due to their
reliance on inheritance to introduce variation, FOP systems are good at capturing
(and limited to) relatively ad hoc, coarse-grained, and hierarchically structured vari-
ation. Aspect-oriented programming (AOP) [Kiczales et al. 1997] excels at capturing
a complementary class of regular, finer-grained, and non-local variation. Naturally,
recent work has sought to combine the two [Mezini and Ostermann 2004, Liu et al.
2006, Apel et al. 2008a]. Feature representations relying on FOP and AOP are re-
lated to traditional ideals of software reuse, and particularly the pursuit of a sep-
aration of concerns [Tarr et al. 1999]. These approaches emphasize the complete
modularization of features—that code comprising a feature should be self-contained
and separate from code describing other features or the “base program”—leading to a
highly distributed feature representation. This contrasts sharply with the approach
of tools like CPP, CIDE, and the choice calculus, which represent variation in a way
that is integrated with the rest of the program.6 While there are several trade-offs
between the two approaches, perhaps the most interesting is in comprehensibility.
In general, with the distributed approach we might expect that as the complexity
of a variational structure increases, its comprehensibility will degrade more slowly
thanks to a separation of concerns. However, with the integrated approach we might
expect higher comprehensibility in smaller programs, or when trying to understand
the interaction of multiple features, since variable parts can be seen in the context
of the rest of the program. CIDE offers an elegant compromise through a virtual
separation of concerns, allowing one to optionally hide or show the code associated
with certain features [Kästner et al. 2008]. Thus, with tool support, the integrated
approach is able to gain many of the benefits of both approaches.

Like features, feature models are represented in a variety of ways. At the simplest
end of the spectrum is the algebraic feature model used by the FOP system GenVoca
[Batory and O’Malley 1992]. GenVoca’s algebra includes two types of values: a pro-
gram is represented as a constant, while a feature is represented as a function that
takes a program and produces a new program (with the corresponding feature in-
cluded); the only operation is function application. Valid combinations of features
are simply enumerated, and each of these variants is bound to a unique name. Apel
et al. [2008b] generalize and formalize this basic idea into a sophisticated algebra for
feature composition, where features are represented by trees and operations describe
various ways of composing these trees. This approach provides explicit support for
feature implementations with ordering constraints, and is general in the sense that
any subset of all possible variants can be expressed. However, the drawbacks of
this approach relative to the choice calculus and other types of feature models are
obvious: enumerating all valid combinations of features is tedious and potentially
error-prone, especially as the number of variants grows large.7

Feature diagrams [Kang et al. 1990] are a simple graphical notation for expressing

6The XML-based Variant Configuration Language [Zhang and Jarzabek 2004] and “invasive software
composition” [Aßmann 2003] attempt to straddle both the separated and integrated approaches, to gain
the benefits and mitigate the weaknesses of each.
7This problem is mitigated by the invention of “Origami matrices” that allow features to be organized into
a grid that can be “folded” to produce several different products [Batory et al. 2002; 2003].
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relationships between features. Although many different feature diagramming nota-
tions and extensions have been developed [Schobbens et al. 2006], the core language
has remained constant. In a feature diagram, features are arranged hierarchically,
such that children are dependent on their parents. A feature can also be marked as
mandatory or optional, and groups of features with a common parent can be joined
together as alternatives, exactly one of which may be included. Each of these re-
lationships have corresponding structures in the choice calculus: Dependency re-
lationships are expressed by nesting choices within other choices, the alternative
relationship corresponds directly to dimensions in the choice calculus, and optional
features can be simulated by choices with two alternatives, one which includes the
code and one which does not. Many feature diagram extensions are less straight-
forward to represent in the choice calculus, however. For example, many feature
diagram notations allow arbitrary connections between features to indicate AND or
NAND relationships (that is, that two features must always be included together,
or can never be included together, respectively). These sorts of constraints between
arbitrary features cannot be directly expressed in the choice calculus, and so fall in
the domain of a higher-level choice model.

Unlike the algebras described above, feature diagrams are usually not a process-
able part of a SPL system but rather employed as design documents and developer
specifications. In other words, the constraints on features that they specify are usu-
ally not technically binding, leaving room for error in their realization in the code.
The static analyses supported by the choice calculus (in particular, the well-formed
property defined in Section 4.1) can help this situation.

The core feature diagram notation is equivalent to several other representations
of feature models, as outlined in [Batory 2005]. Höfner et al. have taken a substan-
tially different approach, presenting an algebraic description of feature models based
on semirings [Höfner et al. 2006]. This allows common problems to be expressed as
algebraic operations. For example, finding commonalities between products to sup-
port reuse can be expressed as the greatest common divisor problem. This work has
an emphasis on formalism in common with the choice calculus, but is considerably
higher level, with no means of associating features with the underlying artifacts.

9. FUTURE WORK

The choice calculus provides a rich platform for further research in software varia-
tion management. In particular, the theoretical results presented in Sections 5, 6,
and 7 can support the development of variation management tools. In this section we
will place our work in this context and discuss potential directions for future work
and how the choice calculus and theoretical results will support this research.

We have begun work on methods and tools for improving variation management
in existing artifacts. In particular, we are considering how the choice calculus can be
useful to the large base of existing CPP users. We can translate a program with CPP
annotations into the choice calculus by initially considering each macro to correspond
to a dimension with two tags (corresponding to whether the macro is defined or not),
then translating conditional statements into (potentially nested) choices. Consider,
for example, the following CPP-annotated code.
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#if LINUX || MAC
newline = "\n";

#elif WINDOWS
newline = "\r\n";

#else
error("Unknown OS!");

#endif

We can straightforwardly translate the above code into the following choice calculus
expression.

dim Linux〈t, f 〉 in
dim Mac〈t, f 〉 in
dim Windows〈t, f 〉 in

let v=newline = "\n";
in Linux〈v,Mac〈v,Windows〈newline = "\r\n";,error("Unknown OS!");〉〉〉

A tag t indicates that the corresponding macro is defined, while f indicates that it is
undefined. A sequence of tag selections then corresponds to a configuration of macros
passed to the preprocessor.

Once translated, we can already apply several of the results from Section 7. For
example, we can identify and remove dead macros with pseudo-dimension removal
and remove dead code with choice fusion. However, a significant problem with CPP,
that is still present in the direct-translation to the choice calculus, is that relation-
ships between macros are only implicitly defined (and almost never documented).
This exacerbates the variant explosion problem and leads to code which is difficult
to understand and error-prone. We hope to identify sets of macros which may consti-
tute a dimension by analyzing patterns in the translated choice expressions. In the
example above, choices nested in the “undefined” alternatives of other choices may
indicate that the macros are part of an implicit dimension. We can present this set
of macros to the user and once verified, we can merge the corresponding dimensions
and choices. The example above could be transformed into the following.

dim OS〈Linux,Mac,Windows,Unknown〉 in
let v=newline = "\n";
in OS〈v,v,newline = "\r\n";,error("Unknown OS!");〉

This work could form the foundation of several different tools: (1) a static checker
for verifying that CPP code conforms to some expected macro structure and is oth-
erwise well formed, (2) a code optimizer, which eliminates bad or redundant code, or
transforms it into more consistent or understandable state, or (3) a documentation
tool for describing the current conditional compilation structure of the code and the
relationships between macros.

Ultimately, we would like to develop an IDE for creating, managing, and explain-
ing variation. This requires developing a set of principles for interacting with dimen-
sions and choices, and designing visualization techniques for complex choice calculus
expressions. We believe the results from Section 5 and 6 will be essential here. The
transformation rules can be used in editing operations, and by factoring expressions
into CNF we can remove redundancy and therefore avoid update anomalies. The
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rules for moving dimension definitions could be employed to hide or reveal dimen-
sion information in specific contexts, depending on the intents and needs of the user.

Other directions for future work include developing an exchange format for vari-
ations. This could be used, for example, as a mode of communication between tools,
and as way of managing variation in a more distributed manner. The normal forms
described in Section 6 could be useful here. Exchanging expressions in DCNF would
minimize redundancy and expose dimensions at the top level, perhaps simplifying
the task of identifying conflicts when combining documents.

10. CONCLUSIONS

We have proposed the choice calculus as a general representation platform for vari-
ation structures. In Section 3 we have briefly compared the chosen syntax with an
alternative, more direct representation. We have argued that the chosen represen-
tation is superior. But this is only one example of a number of alternative represen-
tations that we have considered. For example, in the course of developing the choice
calculus, we have investigated the following three alternative representations: one
that enforced that all dimensions are kept at the top level, one that required that
all choices for a dimension are stored in one place, and one that did both. However,
while these representations simplified some aspects of the theory (for example, the
selection semantics), they all suffered from a lack of modularity, making it very diffi-
cult to combine choice expressions. The additional constraints also led to inflexibility,
making transformations considerably more complex. By providing local dimension
declarations and flexible choice constructs, we attain a highly modular and much
more flexible and scalable representation.

Therefore, we believe that the choice calculus provides a general, flexible, and
modular representation for software variation. This representation has wide appli-
cability in computer science and software engineering, but also in a much broader
range of fields. In addition to providing a common language of discourse for variation
researchers and facilitating the development of sophisticated variation-supporting
tools, the choice calculus could be used to represent variation in mechanical designs,
project plans, workflows, travel plans, resource planning, laws/policies, human re-
source management, and much more.

The theoretical results presented in this paper are significant for supporting the
development of sound algorithms and advanced tools for analyzing, manipulating,
and explaining variations. Using these results directly we can represent variation
with minimal redundancy; avoid update anomalies; recognize and purge dead alter-
natives, choices, and dimensions; and describe complex, semantics-preserving trans-
formations.
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APPENDIX

In this appendix we provide a proof of Theorem 1, which states that all of the trans-
formation rules presented in Section 5 are semantics preserving. The theorem is
repeated below for convenience.

THEOREM 1. If eL is well formed, then eL ≡ eR =⇒ JeLK = JeRK

PROOF. There are two principal ways in which rules can change the semantics.
First, a rule could directly change a dimension or choice; second, a rule could move
a dimension declaration, choice, or let expression, which could potentially alter the
binding status of choices or variables, or the ordering of tags in the domain of the
semantics. Since none of this happens for the rule NAMING, the theorem holds in this
case. The theorem also holds for the rules REFL, SYMM, and TRANS since equality is
an equivalence relationship.

Next we consider the other rules that potentially could change the semantics. In
cases where the ordering of alternatives within choices is not altered, it suffices to
show that the rule in question does not change any variants, which will ensure the
preservation of semantics. Note that we can always assume that choices are resolved
in the semantics since e is well formed.

For the first group of choice commutation rules (C-*) we have to postulate the
existence of a context C such that C[e] is well formed. In particular, C has to provide
one (or more) dimension definition(s) for the choice(s) involved in a rule. The choice
commutation rules can only work in combination with the CONG rule, which provides
this required context C.

C-S The variations that can be produced from a�en[i :D〈e′ j:1..k〉]� are obtained
from choices in the expressions en and e′k. Lifting the choice out of e i has two poten-
tial effects.

First, it could change the variations produced by e i. But it is easy to see that
this is not the case, because if we pick alternative j from D〈e′ j:1..k〉, we obtain
the variation a�en[i : e′j]�, which is the same as when we pick alternative j from
D〈a�en[i : e′j]�

j:1..k〉.
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Second, the lifted choice could potentially shadow and deactivate choices for d in
expressions e j 6=i, that is, if we pick j in d, this will force the selection of all jth alter-
natives in all nested d choices and effectively synchronizes the different d choices.
However, in this case this effect does not change the possible variations since all d
choices in all en are already synchronized. Therefore, the variations and semantics
are preserved.

C-B-DEF Consider selecting the ith alternative of d. The definition of µ will pro-
duce [e i/v]e for both eL and eR . Lifting the choice out of the definition may shadow
other choices in e. But here the same argument as in the case C-S applies, which
proves this case. The case for C-B-USE runs completely analogous.

C-D Selecting the ith alternative of d of either eL or eR yields the expression
dim d′〈tm〉 in e i. Since no subexpression is moved, the ordering of dimensions is un-
affected by this rule, which guarantees that the tags in the domain of the semantics
are not changed.

C-C-SWAP Consider the selection of alternative x in choice d′ and alternative y
in d. We have to consider two different cases for x.

First, assume x 6= i. In this case eL simply evaluates to ex, and the choice in d
is not relevant. On the other hand, eR evaluates first to D〈(ex)k〉 since the same
selection is made in each of the k choices for d′. Then the selection of y yields ex, the
same as eL.

Second, assume x = i. In this case eL first evaluates to D〈e′k〉, for which the
selection of y than produces e′y. For eR the selection of x = i produces a different
value e′j in each of the k choices, that is, it evaluates to D〈e′k〉. As for eL, selection
with y yields e′y.

Finally, since the two selections remove all other expressions, changes in the se-
mantics domain cannot occur due to reordering of expressions.

C-C-MERGE Selection of the ith alternative in eL yields e′i. For eR we first obtain
D〈e′n〉, which reduces through a second selection with i also to e′i.

B-NEW Since v is not used in e, the newly introduced let binding does not
change the semantics of e, no matter what e′ is. Moreover, since e′ does not contain
a dimension, the domain of the semantics will not be extended or altered in any way
either.

B-USE-USE Since v 6= w, exchanging the bindings for v and w does not cause any
shadowing of definitions. Moreover, since neither variable occurs freely in the defin-
ing expression of the other, variable capture cannot happen after the transformation.
Finally, since e does not contain a dimension definition, the reordering of expressions
e and e′ does not lead to a change in the ordering of the tags in the domain of the
semantics. The case for B-USE-USE’ is the same.

B-S The first premise ensures that moving the let binding doesn’t lead to the
capture of variables and thus preserves the semantics. The second premise guar-
antees that no reordering of dimension definitions is caused by the transformation.
The case for B-S’ is identical, except that the second premise is replaced by i − 1
premises that provide the same guarantee. The ordering of dimensions is preserved
if e does not contain any dimension declarations, or if none of e1 through e i−1 contain
dimension declarations.

B-S’ This case is identical to rule B-S The other i−1 premises guarantee that
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no reordering of dimension definitions is caused by this transformation, which pre-
serves the ordering of tags in the domain of the semantics.

D-S This case is similar in structure to the rule B-S. The first premise ensures
that moving the dim binding doesn’t lead to the capture of choices in any of the other
subexpressions, which preserves the semantics. The other i−1 premises again guar-
antee that no reordering of dimension definitions is caused by this transformation,
which preserves the ordering of tags in the domain of the semantics.

D-B-DEF Since e′ does not contain a choice in dimension d, lifting the dimen-
sion definition does not lead to choice capture. Moreover, since all dimensions will
be eliminated by the semantics before let expression are expanded, dimension defi-
nitions cannot be duplicated, that is, they cannot be eliminated multiple times due
to multiple references to the bound variable. Therefore, lifting an expression out of
a let definition does not change the semantics.

D-B-USE To move a dimension expression into or out of the body of a let expres-
sion we have to ensure that the defining expression e does not contain any dimension
definitions so that the tags in the domain of the semantics are not reordered. More-
over, we require that e does not contain any choices for d, which prevents capturing.

CONG We know that eL = C[e′L] and eR = C[e′R] with e′L ≡ e′R . We can consider
two cases.

First, if e′L is well formed, we can assume by induction that Je′LK = Je′RK. To prove
this case we use the following auxiliary lemma.

LEMMA 7. If ẽ is a plain expression and both e and C[e] are well formed, then
V (C[e]) = {(q̄1 q̄e q̄2,C′[e′]) | (q̄C ,C′[ẽ]) ∈V (C[ẽ]), (q̄e, e′) ∈V (e),ξC′/e0 (q̄C)= (q̄1, q̄2)}.

The expression ξC′/e0 (q̄C) decomposes the tag sequence into two parts, those tags (q̄1)
that are produced by V during the traversal before e0 is encountered and those (q̄2)
that are produced afterwards.

Now according to Lemma 7, V (eL)=V (C[e′L])= {(q̄1 q̄e q̄2,C′[e′])} where (q̄C ,C′[ẽ]) ∈
V (C[ẽ]) and (q̄e, e′) ∈ V (e′L). Since Je′LK = Je′RK, we also know that V (e′L) = V (e′R) up
to expansion of let expressions, that is, V (e′L) and V (e′R) differ, if at all, only insofar
as one or the other may contain let expressions that the other expression doesn’t,
but the expansion of those let expressions will remove any difference. Therefore,
substituting e′R for e′L doesn’t change the result, and therefore V (eL) = V (eR) (up to
expansion of let expressions). Since the semantics definition is directly based on V
and only performs the expansion of let expressions, it then follows that JeLK = JeRK.

Second, if e′L is not well formed, C will provide dimension declarations and vari-
able bindings for free choices and free variables in e′L. Now, for all those cases in
which a rule transforms an e′L containing free choices or free variables, we have
already argued that the rule does not change the semantics (cf. rules C-*).
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