
Finding Common Ground: Choose, Assert, and Assume

Alex Groce
School of Electrical Engineering and Computer

Science
Oregon State University

Corvallis, OR, USA
alex@eecs.oregonstate.edu

Martin Erwig
School of Electrical Engineering and Computer

Science
Oregon State University

Corvallis, OR, USA
erwig@eecs.oregonstate.edu

ABSTRACT
At present, the “testing community” is on good speaking
terms, but typically lacks a common language for express-
ing some computational ideas, even in cases where such a
language would be both useful and plausible. In particular,
a large body of testing systems define a testing problem in
the language of the system under test, extended with op-
erations for choosing inputs, asserting properties, and con-
straining the domain of executions considered. While the
underlying algorithms used for “testing” include symbolic
execution, explicit-state model checking, machine learning,
and“old fashioned”random testing, there seems to be a com-
mon core of expressive need. We propose that the dynamic
analysis community could benefit from working with some
common syntactic (and to some extent semantic) mecha-
nisms for expressing a body of testing problems. Such a
shared language would have immediate practical uses and
make cross-tool comparisons and research into identifying
appropriate tools for different testing activities easier. We
also suspect that considering the more abstract testing prob-
lem arising from this minimalist common ground could serve
as a basis for thinking about the design of usable embedded
domain-specific languages for testing and might help iden-
tify computational patterns that have escaped the notice of
the community.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Languages, Verification

Keywords
Random testing, model checking, symbolic execution, do-
main specific languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA ’12, July 15, 2012, Minneapolis, MN, USA
Copyright 2012 ACM 978-1-4503-1455-8/12/07 ...$10.00.

1. INTRODUCTION
Figure 1 shows 6 code fragments, covering four languages,

six tools/libraries, and six different algorithms or programs.
Figure 1a shows part of the Java code for a test harness that
can perform either random testing [22] or reinforcement-
learning based testing [15] using adaptation-based program-
ming [5]. Figure 1b shows a portion of a PROMELA [23]
model checking harness enabling the SPIN model checker to
call C code for a file system used in a NASA mission [19],
usable for either random testing or model checking. Fig-
ure 1c shows code for symbolic verification [32] of a binary
tree class using NASA’s open source Java Pathfinder model
checker [2]. Figure 1d shows an example from the refer-
ence manual for the CBMC bounded model checker for C
programs [25]. Figure 1e shows an example taken from the
tutorial for the KLEE symbolic execution system [6], test-
ing a regular expression library [3]. Finally, Figure 1f shows
Haskell code using the QuickCheck testing library [7], taken
from haskell.org’s introduction to QuickCheck [1].

The differences between these examples are significant,
but at a high level all of these fragments define (and the
figure highlights):

• a choice

• a (possibly implicit) set of properties to be checked
over the executions resulting from those inputs,

• and a set of (possibly empty) constraints over the in-
puts or executions to be generated.

In other words, these examples are all, essentially, test
harnesses. Moreover, they are (with one partial exception)
test harnesses that are largely written in the language of
the software under test (SUT). The first and last examples
(Figures 1a and 1f) are simply programs in the host lan-
guage, using a library for testing; the other four examples
all require special tools and/or compilation.

This paper proposes the following: the differences between
these examples are more accidental than essential; in partic-
ular, the information contained in these code fragments is
largely independent of the test generation (or verification)
algorithm to be used. Therefore, a common method for ex-
pressing this kind of problem — testing or verification via
nondeterministic choice — should be agreed upon by the
testing community, and to the degree possible, used in all
tools that accept the kind of “embedded” test/verification
specification shown here, where the input is (almost) a pro-
gram in the language of the System Under Test (SUT).

public static void
testAvlTree (Object currentSUT,

String S) {
AvlTree SUT =
(AvlTree)currentSUT;

int v = chooseVal(S).ordinal();
switch (chooseOp(S)) {
case INSERT:
SUT.insertElem(v);
break;

case DELETE:
SUT.remove(v);
break;

case FIND:
Object r = SUT.find(v);
break;

}
}

(a) ABP/Random

pick(pathindex, NUM_PATHS);
c_code {
enter_nvfs();
now.res =

nvfs_unlink(path[now.pathindex]);
now.nvfs_errno = errno;
leave(); }

...
c_code{

enter_ramfs();
now.ramfs_res =

ramfs_unlink(path[now.pathindex]);
now.ramfs_errno = errno;
leave(); }

:: else -> skip
...
assert(res==ramfs_res);
assert(nvfs_errno==ramfs_errno);

(b) SPIN

static BinTree t = new BinTree()
public static void main(String[] args) {

...
for (int i = 0; i < M; i++) {

Verify.beginAtomic();
String vn = "v" + i;
SymbolicInt v =

new SymbolicInt(vn);
switch(Verify.random(1)) {

case 0: t.add(v); break;
case 1: t.remove(v); break;

}
Verify.endAtomic();
Verify.ignoreIf

(checkSubsumptionAndStore(t));
}

}

(c) JPF

unsigned char nondet_uchar();
int main() {

unsigned char a, b;
unsigned int result=0, i;
a=nondet_uchar();
b=nondet_uchar();
for(i=0; i<8; i++)
if((b>>i)&1)

result+=(a<<i);
assert(result==a*b);

}

(d) CBMC

int main() {
// The input regular expression.
char re[SIZE];
// Make the input symbolic.
klee_make_symbolic(re, sizeof re,

"re");
klee_assume(re[SIZE - 1]

== ’\0’);
// Try to match against a
// constant string "hello".
match(re, "hello");
return 0;

}

(e) KLEE

import Data.Char
import Test.QuickCheck
instance Arbitrary Char where

arbitrary =
choose (’\32’, ’\128’)

coarbitrary c =
variant (ord c ‘rem‘ 4)

deepCheck p = check (defaultCon-
fig configMaxTest = 10000) p
deepCheck

(\s -> length (take5 s) < 5)

(f) QuickCheck

Figure 1: “Test code” for ABP/Random, SPIN, JPF, CBMC, KLEE, and QuickCheck. Shaded code is
choose/assert/assume equivalent.

1.1 Test Generation vs. Test Programming
The abstract commonality we believe to be present in the

six examples in Figure 1 does not, of course, cover all in-
teresting testing problems well. It is reasonable to distin-
guish between test generation in general, which considers
test cases as “inputs to a program” and the style above,
which we would like to call “test programming.” In auto-
mated test generation algorithms, it is natural to think of
two inputs to a testing tool: a program to run and a defi-
nition of possible inputs to send that program, from which
the tool will select test cases. The input definition will often
be “baked into” the generation system, for complex real-
world testing systems. As an example, the Csmith compiler
testing system [33] is a standalone tool that takes as input
parameters a set of configuration options determining which
C language features to use, and a random seed, and outputs
a C program. This is test generation, but does not map
well into the choose/assert/assume framework considered
in this paper. Grammar-based testing in general has a dif-
ferent flavor than API-based testing. We therefore consider
test programming as the subset of test generation problems
that are based on a framework that resembles a kind of gen-
eralized unit test, or “test harness” as it is often referred to
in the literature:

while (!done) {

operation = choose();

input = choose();

assume(precondition);

operation(input);

assert(postcondition);

}

In fact, this generic harness is quite close to the actual
structure of a large number of API-call based testing systems
in explicit-state model checking and random testing, includ-
ing the vast array of container-class testing frameworks [30].
Bounded exhaustive testing and other approaches also fit
this framework. Symbolic execution based systems often
feature shorter, fixed-length sequences of API calls (or fix
the operation choice, but not the inputs [18]), due to the
high cost of constraint solving for long sequences of calls.
The term “test programming” arises from the fact that the
test generation here is, at least in concept, a side effect of
running the generalized unit test program. Moreover, many
examples, particularly for random testing and model check-
ing, add a large amount of hand-coded test manipulation,
feedback [29, 17], etc. to the harness, making it much more
of a “program” (albeit with choose/assert/assume) than
simply a stylized way of writing a grammar for API calls
mixed with a specification.

2. THE SIMPLE, PRACTICAL CASE FOR
A COMMON LANGUAGE

In a sense, the most obvious reason to propose developing
a common language for test programming problems is purely

negative: there does not seem to be a compelling reason to
have a number of different languages that greatly exceeds
the number of programming languages targeted by tools. In
fact, C and Java share a sufficiently similar semantics and
syntax at this level of abstraction that we suspect they could
also benefit from a unified representation.

Figure 2 hypothesizes the re-creation of the C-language
examples in Figure 1 in a common form, where the choices
to be made, the restrictions on relevant executions, and the
assertion of properties are all made in a common language.
Ideally, any tool for C-language test programming could use
this format as an input, perhaps (trivially, in most cases,
we suspect) rewriting it in the form first shown. Further-
more, given such a language, it would be relatively easy for
all the tools shown to produce outputs in a common format,
such that compiling the programs with a single tool for test
execution could run a test case defined by any of these sys-
tems, with the choice operator always reading in the next
value stored in a file. At present, moving from a “test case”
in some of these tools (e.g. CBMC) to something executable
in a debugger is actually difficult, despite being conceptually
trivial.

Having to learn multiple embedded languages when one
would suffice needlessly complicates the use of testing and
verification tools and makes it more difficult to convince
users outside the research community to use our tools. From
the viewpoint of a non-expert, many of these tools provide
the same functionality. Unfortunately, the effort required to
learn one tool does not always pay off when using another,
very similar tool. Maintaining an automated test suite be-
comes very difficult when multiple versions of “the same”
test harness must exist to support a variety of tools, and
there is no single-point-of-truth that can be modified when
(for example) an assertion is modified due to a change in
system requirements.

Moreover, the lack of a shared language makes cross-tool
comparisons inside the research community more technically
challenging, and more likely to be invalidated by subtle dif-
ferences in supposedly “equivalent” harnesses. Such cross-
tool comparisons are increasingly important, as a common
question from practitioners to the dynamic analysis commu-
nity is: “There is a multitude of tools, each requiring consid-
erable effort to install, learn, and use. Which one will work
best on my program?” Despite our best efforts, the answer
we must give is often “We don’t know; try several.” Use of
multiple languages not only makes it harder for practitioners
to apply our advice, it makes it harder for the community
to develop more sophisticated answers to the question.

Finally, lack of a common language forces every testing
tool creator to invent and name these operations, which may
result in somewhat ad hoc and confusing results. For ex-
ample, students learning model checking often fail to under-
stand that Verify.random in JPF (Figure 1c) tells the model
checker to explore all possibilities, rather than working“just
like” a random number generator. Abstracting to the no-
tion of choice makes it somewhat clearer that both random
generation and true nondeterminism with backtracking are
“ways of choosing.” Having different syntactic expressions
for conceptually similar things in a single language makes
appropriate generalization difficult: for different program-
ming languages, it is reasonable for the expression of choice,
assumption, and assertion to match the idiomatic forms of
the “host language”, but having different expressions for the

same concept for a single host language (e.g., C in our ex-
ample) needlessly multiplies entities.

3. OBSTACLES TO THE COMMON LAN-
GUAGE

The chief obstacle to a common language lies in the defi-
nition of nondeterministic choice. Implementing assert and
assume is usually non-problematic, though defining a gen-
eral semantics for assume offers several possibilities, none
completely satisfactory. For test execution, however, we can
simply assume that tools produce inputs that guarantee that
assume can be omitted without changing the program se-
mantics, since otherwise the tool has violated the semantics
of assume. During test generation (choice-making), a sym-
bolic execution based method typically uses assumes as ad-
ditional constraints, and explicit-state methods can provide
similar functionality (at a higher price) by defining assume in
the manner of Java Pathfinder’s ignoreIf [21], which simply
terminates the current trace if the assumption is violated,
without reporting a failure1.

In a language such as C, however, implementing choose

such that an off-the-shelf C compiler can, using a proper
library definition, compile examples such as these seems very
difficult. One problem, relatively easy to handle, is that
choose is essentially polymorphic. While defining different
choose operations for primitive types is not overly onerous,
the C (and Java) type systems are not ideal for composing
such basic choice operations to handle complex types such
as arrays, structures or objects.

Perhaps more importantly, it is with choose that the
“identity of problem”between the test case generation prob-
lems begins to break down. In symbolic testing or model
checking, the range of choice can often simply include all le-
gal values for the type of the choice expression, with assume

used to enforce preconditions on inputs. In random testing
and explicit-state model checking, however, such“wide”non-
deterministic choices do not work well. In random testing,
the probability of matching two nondeterministic values be-
comes extremely low, often making tests ineffective (e.g., if
such random items are added to containers, they will be al-
most impossible to select again for finding or removing). In
explicit-state model checking, introducing a branching fac-
tor based on the number of legal values of even a “small”
type such as a short makes breadth-first search impossi-
ble and turns depth-first search into a sampling algorithm
rather than a complete search, even if most choices quickly
terminate due to a violated assumption. In the example,
we provide a range to choose in the SPIN example to show
this mismatch. There is no simple, obvious solution to this
problem — the non-symbolic methods need more informa-
tion to restrict explicit search spaces, and the symbolic ap-
proaches take full advantage of the flexibility of minimal,
assumption-based pruning. One possibility is to always use
assumption-style constraints, but define the common lan-
guage to allow “choice hints” that only apply when using
explicit-state methods: x = choose(1,20) in C might indi-
cate a choice where model checking and random testing can

1Producing accurate coverage results in random testing or
model checking with assume does require some attention to
rollback and commit that we suspect is lacking in most cur-
rent tools.

pathindex = choose(0, NUM_PATHS);
enter_nvfs();
res = nvfs_unlink(path[pathindex]);
nvfs_errno = errno;
leave();
...
enter_ramfs();
now.ramfs_res = ramfs_unlink(path[pathindex]);
ramfs_errno = errno;
leave();
assert(res==ramfs_res);
assert(nvfs_errno==ramfs_errno);

(a) SPIN

int main() {
unsigned char a, b;
unsigned int result=0, i;
a=choose();
b=choose();
for(i=0; i<8; i++)

if((b>>i)&1)
result+=(a<<i);

assert(result==a*b);
}

(b) CBMC

int main() {
// The input regular expression.
char re[SIZE];
re = choose();
assume(re[SIZE-1]) == ’\0’);
// Try to match against a
// constant string "hello".
match(re, "hello");
return 0;

}

(c) KLEE

Figure 2: Testing using a common extension of C.

restrict x to between 1 and 202. Since ranges are sometimes
rooted in actual program specification (where these are the
only valid values) or useful for focusing on simple counterex-
amples [20], it might be useful to have the option to enable
such ranges in symbolic tools as well.

4. RELATED WORK
The problem of a generalized language for test specifica-

tion is hardly novel. Indeed, the core concepts here date to
the earliest work on program correctness, including that of
Dijkstra [10] and its extensions [28]. The notion of a com-
mon, embedded notation suitable for verification/semantics
definition but primarily aimed at testing is somewhat ob-
vious, but to our knowledge has not previously been em-
phasized. In 2008, Groce and Joshi [19] pointed out that
random testing [22] and many uses of explict-state model
checking [8] could, at the highest level, for sufficiently large
state spaces, be seen simply as different exploration strate-
gies. BoogiePL [9] and other languages have been proposed
as front ends to theorem provers, essentially supporting a
choose/assert/assume semantics.

The specific problem of nondeterministic choice is also
quite longstanding. From McCarthy’s amb [26] and Floyd’s
choice [13], to Dijkstra’s guarded command language (again)
[10] and Milner’s work [27], this wheel has been repeatedly
invented [31] with slightly different purposes and semantics,
often including a notion of program or execution correct-
ness. The gap between these efforts and modern testing and
verification tools is the essential point noted by this paper.
It is likely that a testing-based approach to this problem
will end up sharing results and needs with the continuing
body of work on nondeterminism in general, but with a fo-
cus on test generation rather than (e.g.) concurrency and
true (exhaustive) nondeterminism.

It has been observed that Haskell’s QuickCheck [7] is a
domain-specific language (DSL) for testing. A DSL offers
notations and abstractions that are designed to work in a
specific application domain [14], here testing. The notion
of internal domain specific languages (DSLs) or, as they are
often called, domain-specific embedded languages (DSELs)
[24] is long standing, but to our knowledge has not seriously
been investigated in the context of testing and verification,
despite the fact that the community has been using what
amount to ad-hoc DSELs for quite some time now.

2Ideally, the range might be an annotation in a comment,
but in C this is impractical since many tools only see a C
program after pre-processing has removed comments.

While this paper focuses on the problem of “test program-
ming” and does not consider a language or notation for gen-
eralized test input definition, the work of Andrews et al.
arguably provides a way to see “test programming” as a spe-
cialized case of test generation, by introducing a canonical
form for such API tests [4]. As discussed above, an alterna-
tive to the approach suggested here (“test programming”),
the approach taken by most current tools, is to define the
general form of test cases to include API calls and methods.
This is essentially what Randoop does [29].

Our thoughts on testing DSELs were inspired by observ-
ing the nature of our own use of Adaptation Based Program-
ming (ABP) as a DSEL for testing [15, 16], and seeing the
similarities in structure of random and learning-guided test
harnesses to those used in explicit-state model checking.

5. CONCLUSION: TOWARDS A COMMON
LANGUAGE

The key practical reasons for having a common language
to express test programming in a uniform way across differ-
ent programming languages were already discussed above.
In our opinion the two overarching benefits are the follow-
ing, both of which may increase adoption of our tools by
practitioners as a secondary effect:

1. A common testing language facilitates the re-use of
testing harnesses.

2. A common testing language provides a platform for
research on testing that avoids an unnecessary balka-
nization of the research community.

What research is required to realize the vision of a common
testing language?

We believe that a principled first step is the design of a
small core calculus, which we call the Testing Calculus (TC),
that encapsulates the generic semantics of the choose, as-
sert, and assume operations. The formalization of this cal-
culus should be, if possible, generic in the semantics of the
object language (C, Java, Haskell, . . .), which is not quite
the case with the classical efforts in nondeterminism. If that
turns out to be impossible to achieve, we need to identify
a clear “semantic interface” that allows the parameteriza-
tion of the calculus by (semantic) idiosyncrasies of partic-
ular object languages. Ideally, the TC would also enable
us to define many test generation algorithms cleanly in a
language-agnostic form.

An important aspect of the design of the TC is the prop-
erties of its operations, specifically the interaction with the

semantics of the object language. To this end, required and
desired properties of choose, assert, and assume should be
expressed in axioms, and these axioms used to guide the
definition of the TC semantics. This semantics-directed ap-
proach to language design [11] has a number of advantages
[12]. Specifically, it leads to more general language designs,
which is of particular importance in the context of designing
a common testing language for different object languages.

As a second step, after the TC semantics have been estab-
lished, a concrete syntax has to be developed that can be
customized to accommodate syntactic requirements of the
different object languages as well as the semantic adjust-
ments required by the potentially needed semantic interface.

The formalization of a common testing language through a
testing calculus will help the research community to identify,
and focus on, important questions. It will help to share and
reuse results, and potentially enable cross-tool comparison
or cooperation in verification efforts when actualized in real-
world languages. The generic testing calculus will not only
be a DSL for expressing test harnesses, it will also be DSL
for the research community to exchange ideas and advance
the field.

6. ACKNOWLEDGEMENTS
The authors would like to thank Jamie Andrews, John

Regehr, Eric Eide, Chaoqiang Zhang, Amin Alipour, and
Rajeev Joshi for helpful discussions related to the contents
of this paper. A portion of this research was funded by NSF
grant CCF-1054786.

7. REFERENCES
[1] Introduction to QuickCheck.

http://www.haskell.org/haskellwiki/
Introduction to QuickCheck.

[2] JPF: the swiss army knife of Java(TM) verification.
http://babelfish.arc.nasa.gov/trac/jpf.

[3] KLEE - tutorial two.
http://klee.llvm.org/Tutorial-2.html.

[4] Jamie Andrews, Yihao Ross Zhang, and Alex Groce.
Comparing automated unit testing strategies.
Technical Report 736, Department of Computer
Science, University of Western Ontario, 2010.

[5] Tim Bauer, Martin Erwig, Alan Fern, and Jervis
Pinto. Adaptation-based programming in Java. In
ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, pages 81–90, 2011.

[6] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In
Operating System Design and Implementation, pages
209–224, 2008.

[7] Koen Claessen and John Hughes. QuickCheck: a
lightweight tool for random testing of haskell
programs. In ICFP, pages 268–279, 2000.

[8] Edmund M. Clarke, Orna Grumberg, and Doron
Peled. Model Checking. MIT Press, 2000.

[9] Robert DeLine and K. Rustan M. Leino. Boogiepl: a
typed procedural language for checking
object-oriented programs. Technical Report
MSR-TR-2005-70, Microsoft Research, 2005.

[10] Edsger W. Dijkstra. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

[11] M. Erwig and E. Walkingshaw. Semantics First!
Rethinking the Language Design Process. In Int.
Conf. on Software Language Engineering, LNCS 6940,
pages 243–262, 2011.

[12] M. Erwig and E. Walkinhgshaw. Semantics-Driven
DSL Design. In M. Mernik, editor, Formal and
Practical Aspects of Domain-Specific Languages:
Recent Developments. IGI Global, 2012. To appear.

[13] Robert W. Floyd. Nondeterministic algorithms. J.
ACM, 14(4):636–644, 1967.

[14] M. Fowler. Domain-Specific Languages.
Addison-Wesley Professional, 2010.

[15] Alex Groce. Coverage rewarded: Test input generation
via adaptation-based programming. In IEEE/ACM
International Conference on Automated Software
Engineering, pages 380–383, 2011.

[16] Alex Groce, Alan Fern, Martin Erwig, Jervis Pinto,
Tim Bauer, and Amin Alipour. Learning-based test
programming for programmers. In International
Symposium On Leveraging Applications of Formal
Methods, Verification and Validation, 2012. To appear.

[17] Alex Groce, Gerard Holzmann, and Rajeev Joshi.
Randomized differential testing as a prelude to formal
verification. In International Conference on Software
Engineering, pages 621–631, 2007.

[18] Alex Groce, Gerard Holzmann, Rajeev Joshi, and
Ru-Gang Xu. Putting flight software through the
paces with testing, model checking, and
constraint-solving. In International Workshop on
Constraints in Formal Verification, pages 1–15, 2008.

[19] Alex Groce and Rajeev Joshi. Random testing and
model checking: Building a common framework for
nondeterministic exploration. In Workshop on
Dynamic Analysis, pages 22–28, 2008.

[20] Alex Groce and Daniel Kroening. Making the most of
BMC counterexamples. In Workshop on Bounded
Model Checking, pages 67–81, 2004.

[21] Alex Groce and Willem Visser. Heuristics for model
checking Java programs. Software Tools for
Technology Transfer, 6(4):260–276, 2004.

[22] Richard Hamlet. Random testing. In Encyclopedia of
Software Engineering, pages 970–978. Wiley, 1994.

[23] Gerard J. Holzmann. The SPIN Model Checker:
Primer and Reference Manual. Addison-Wesley
Professional, 2003.

[24] P. Hudak. Building Domain-Specific Embedded
Languages. ACM Computing Surveys,
28(4es):196–196, 1996.

[25] Daniel Kroening, Edmund M. Clarke, and Flavio
Lerda. A tool for checking ANSI-C programs. In Tools
and Algorithms for the Construction and Analysis of
Systems, pages 168–176, 2004.

[26] John McCarthy. A basis for a mathematical theory of
computation, preliminary report. In Papers presetnted
at the May 9-11, 1961, Western Joint
IRE-AIEE-ACM Computer Conference, pages
225–238, 1961.

[27] Robin Milner. A Calculus of Communicating Systems.
1980.

[28] Greg Nelson. A generalization of dijkstra’s calculus.
TOPLAS, 11(4):517–561, Oct. 1989.

[29] Carlos Pacheco, Shuvendu K. Lahiri, Michael D.
Ernst, and Thomas Ball. Feedback-directed random
test generation. In International Conference on
Software Engineering, pages 75–84, 2007.

[30] Rohan Sharma, Milos Gligoric, Andrea Arcuri,
Gordon Fraser, and Darko Marinov. Testing container
classes: Random or systematic? In FASE, pages
262–277, 2011.

[31] Harald Søndergaard and Peter Sestoft.

Non-determinism in functional languages. Comput. J.,
35(5):514–523, October 1992.

[32] Willem Visser, Corina Păsăreanu, and Radek Pelanek.
Test input generation for Java containers using state
matching. In ISSTA, pages 37–48, 2006.

[33] Xuejun Yang, Yang Chen, Eric Eide, and John
Regehr. Finding and understanding bugs in C
compilers. In Programming Language Design and
Implementation, pages 283–294, 2011.

