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Abstract

Using spreadsheets is the preferred method to calculate, display or store anything that fits into a table-like structure.
They are often used by end users to create applications, although they have one critical drawback—spreadsheets are
very error-prone. Recent research has developed methods to reduce this error-proneness by introducing a new way of
object-oriented modeling of spreadsheets before using them. These spreadsheet models, termed ClassSheets, are used
to generate concrete spreadsheets on the instance level. By this approach sources of errors are reduced and spreadsheet
applications become easier to understand.

As usual for almost every other application, requirements on spreadsheets change due to the changing environment.
Thus, the problem of evolution of spreadsheets arises. The update and evolution of spreadsheets is the uttermost source
of errors that may have severe impact.

In this article, we will introduce a model-based approach to spreadsheet evolution by propagating updates on
spreadsheet models (i.e. ClassSheets) to spreadsheets. To this end, update commands for the ClassSheet layer are au-
tomatically transformed to those for the spreadsheet layer. We describe spreadsheet model update propagation using a
formal framework and present an integrated tool suite that allows the easy creation and safe update of spreadsheet mod-
els. The presented approach greatly contributes to the problem of software evolution and maintenance for spreadsheets
and thus avoids many errors that might have severe impacts.
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1. Introduction

Spreadsheets are one of the most popular and important programming languages used in business applications
today. Estimates say that “each year tens of millions of managers and professionals around the world create hundreds
of millions of spreadsheets” [1]. Reasons for this wide-spread use of spreadsheets are the ease of creating highly
sophisticated spreadsheet applications using the simple and intuitive two-dimensional tabular layout and of course the
fast and broad availability of spreadsheet applications. Due to their availability to non-experts, spreadsheets belong to
the category of end-user development environments. However, the simplicity of spreadsheets is misleading. Although,
the spreadsheet user group usually is able to develop complex spreadsheets, the users often do not have the knowledge
to prevent errors leading to error-prone and unstructured spreadsheets [2]. Studies estimate rates of at least 80 percent
of erroneous spreadsheets [3, 4]. How costly these errors can be is evident in recent news stories. For example, in 2006,
the Office of Government Commerce Buying Solutions erred in informing 29 suppliers that they had been successful
in the public sector tendering process. In a subsequent letter, they stated: “Unfortunately, [we are] not, as we had
hoped, in a position to accept your tender at this time. This is because an error in the original evaluation spreadsheet
has been identified, necessitating rescoring of all tenders for this project. . . this error has now been corrected and this
has caused a small number of changes to the original award decision” [5].

Reasons for these failures are manifold, the most important reason being the missing business model. A business
model of spreadsheets specifies which business entities are represented by the specific spreadsheet. For instance, a
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spreadsheet for budget calculation may comprise entities like category or year (cf. Figure 1, categories in rows 4 and 5
and years in columns C upto H). A spreadsheet’s business model is not given explicitly to the spreadsheet application,
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Figure 1: A Spreadsheet for Budget Calculation

but usually is kept in the developer’s idea and captured implicitly in the spreadsheet’s layout and data. Taking into
account the complexity of today’s spreadsheets, the gap between the implicit business model of a spreadsheet and the
resulting implementation (i. e. the spreadsheet itself) is too large. Figure 2 shows the current approach of spreadsheet
development. The user has an idea of the spreadsheet’s business model in mind and develops the spreadsheet ac-
cordingly. However, spreadsheet development is very low-level and current spreadsheet applications do not allow to
implement all elements of the business model. The semantic gap between the implicit business model and the spread-
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Figure 2: The current Spreadsheet Development Approach

sheet leads to misleading error reports (e. g. the spreadsheet application complains about a formula that differs from
surrounding formulas) or even missed errors. Spreadsheet applications like Microsoft Excel fail to sufficiently mitigate
this situation. The reason for this failure is that the business model is not described explicitly and thus cannot be used
to automatically validate the current state of a spreadsheet (i. e. the inserted data, formulas, and references). Bridging
the described gap between the business model (captured in the developer’s idea) and the IT implementation is recently
known under Business/IT Alignment. The need for Business/IT alignment was emphasized by the Sarbanes-Oxley
Compliance (see [6]) leading to plenty of tools that are concerned with increasing the quality of use and development
of spreadsheets. However, these approaches rather provide process guidance and support security aspects but do not
tackle the problem at its root, the gap between business and IT. But how can the business model help to prevent errors?

Usually, errors are produced while changing a spreadsheet. We distinguish two different kinds of spreadsheet
changes, namely instance evolution and model evolution. Both kinds of changes are part of spreadsheet evolution.
Instance evolution describes changes that concern a spreadsheet’s data but not its representation and interrelations.
For instance, inserting a new category in the budget spreadsheet mentioned above, is part of instance evolution. In
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turn, model evolution describes changes that concern the relation between data (e. g. formulas) or the insertion and
deletion of data types. For instance, the insertion of a new column that holds a new type of data (e. g. an exchange rate
for given costs) is a change at the underlying business model. Those changes must be applied to all inserted data, e. g.
the exchange rate must be inserted for all categories and years. See Figure 3 for the distinction of instance evolution
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Figure 3: Model and Instance Evolution for Spreadsheets

and model evolution. For reasons of understandability, we chose UML class diagrams [7] to represent the business
model. Of course every other representation is applicable, e. g. the Entity Relationship Model [8]. Both instance and
model evolution are sources of errors. The most frequent error in instance evolution is a missed or wrong update
of a formula, such as the missed update of the total formulas in Figure 3. While Microsoft Excel supports updating
formulas that range over connected regions (e. g. A17:A42) it lacks support for automatically updating formulas that
range over unconnected regions, e. g. every second cell in a column (A1;A3;A5). Thus, insertion of data in complex
large spreadsheets that contain many formulas over regions that are not connected is very prone to errors. The problem
of model evolution is that a change at the implicit business model cause necessary changes on each inserted data record.
For instance, adding the mentioned exchange rate to the budget sheet (cf. Figure 3 on the left) requires the insertion of
multiple columns and the change of multiple formulas as shown in Figure 4. For complex large spreadsheets, this task
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Figure 4: Model Evolution requires Multiple Changes at the Spreadsheet

is not only burdensome but also very error-prone.
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1.1. Solving the Problem of Instance Evolution

To solve the problem of instance evolution, an approach proposed by Engels and Erwig [9] introduces ClassSheets
using proved and well-tried techniques from modern Software Engineering like object-orientation and model-driven
development to yield Business/IT alignment. ClassSheets are explicit specifications of business models which can be
translated to spreadsheets automatically. These explicit specifications support a better understanding of the underlying
business model, yield less erroneous spreadsheets due to the distinction of business model and implementation, and
insure the correctness of spreadsheets regarding their business model (i. e. ClassSheet) with fully automated tool
support. But why are object-orientation and model-driven development a good choice for bridging the gap between
business and IT?

Object-orientation, on the one hand, improves the design and development of software by providing a presentation
of the domain that imitates the real world in terms of interacting objects and their properties. Programming languages
evolved from assembler to high-level languages supporting object orientation and thereby enabled efficient develop-
ment of complex applications with high quality. Today’s requirements put into spreadsheets require a similar evolution
in the spreadsheet paradigm. On the other hand, model-driven development evolved into an established development
paradigm bridging the gap between business and IT by using models. Abstraction provides an easy understanding
leading to less redundant models that are focused on the problem space. Working with a clear comprehensible concept
of the business domain speeds up the design and development of software, which is further supported by using partial
automation, e. g. generation of software artifacts.

A major benefit of using ClassSheets is that they can be handled by machines and therefore provide spreadsheet
applications (e. g. Microsoft Excel) with more information about the spreadsheet in use. Thus, the creation and use of
spreadsheets is less prone to errors since the spreadsheet application constrains possible spreadsheet updates according
to the underlying ClassSheet. Figure 5 illustrates the current approach of developing spreadsheets on the left and the
ClassSheets approach on the right side, where the generated spreadsheet is typed over the corresponding ClassSheet.
In contrast to the current approach, the user does not develop low-levelspreadsheets, but creates a ClassSheet (i. e.
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Figure 5: The Current and Intended Approach to Spreadsheet Development

business model) that reflects allnecessary business entities. This information is provided to the spreadsheetapplication
to generate spreadsheets and avoid the mentioned errors, such asmissed formula updates.

Let us investigate ClassSheets by example. Figure 6 shows the ClassSheet for the budget calculation spreadsheet.
ClassSheets look like spreadsheets with some extra functionallity, e. g. qualified references and specification of rep-
etitions. Bold bolders indicate class boundaries, e. g. the whole ClassSheet consists of one embracing class (A1:F5)
containing several other classes. Attribute definitions like year = 2010 assign a name and a default value to a cell.
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Figure 6: The Budget ClassSheet

Each attribute belongs to one class and may be accessed by its quantified name, e. g. Year.year. The budget ClassSheet
defines a (blue) association class (cells C3:E4), associating the two (red and orange) bracketing classes Category (rows
3 and 4) and Year (columns C, D, and E). The association class contains entries for quantity, cost, and total per year and
category. The two aggregated total values for a summation over years and categories are defined in the corresponding
bracketing classes. The overall total is defined in an enclosing (black) bracket class Budget. The budget ClassSheet
allows the expression of an arbitrary number of categories and years, which is denoted using the three dots in the axis
description. The dots refer to all preceding rows/cols that are not divided by bars, i. e. for every year three columns
are repeated (C, D, and E) while for every category, only row 4 is repeated. In Section 2.1, we discuss ClassSheets
in more detail. Figure 7 shows an instance of the budget ClassSheet indicating its instance evolution, i. e. new data is
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Figure 7: Adding a new Year to the Budget Sheet

inserted while the structure of composed classes remains. In the example the user decides to insert a new year (i. e.
an instance of the Year class) which is supported by the spreadsheet application by inserting the three corresponding
columns and the initial values. The example also demonstrates the automatic update of all involved formulas (marked
yellow in the last column). Moving the user’s decision (i. e. inserting a bunch of new columns) to a higher level (i. e.
inserting a new instance of the class Year) does not only simplify working with spreadsheets, but also provide the
spreadsheet application with a better understanding of the user’s intention and thus yields a lower error rate due to the
enabled automation. Therefore, ClassSheets solve the described problem of inserting errors in the process of instance
evolution.
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1.2. Solving the Problem of Model Evolution

Figure 8 shows the life cycle of a spreadsheet using ClassSheets. First, a ClassSheet is created using a supporting
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Figure 8: Life cycle of a Spreadsheet using the ClassSheet Approach

tool. The use of ClassSheets at this stage simplifies the design of spreadsheets since well-known techniques from
object-orientation can be used. For example, cells can be grouped to classes and formulas can refer to specific cells
by using meaningful names. The ClassSheet approach comes with a rule system to identify correct ClassSheets,
such that illegal ClassSheets cannot be created [9]. The second step in the life cycle is the generation of an empty
ClassSheet instance (i. e. a spreadsheet) and its evolution. The ClassSheet tool suite comes with an Microsoft Excel
plug-in that support instance evolution regarding the corresponding ClassSheet. The third step comprises the change
of a ClassSheet in the presence of one or more corresponding instances. Those model changes must be replayed on all
instances. Currently, there is no support for systematic model evolution in the spreadsheet paradigm.

This article presents a model evolution method that is based on ClassSheets and therefore is coined ClassSheet
evolution. ClassSheet evolution is a special case of model evolution and comparable to schema evolution known from
databases. However, the difficulty of ClassSheet Evolution is that the spreadsheet’s spatial layout has to be considered.
This is usually not the case for database schema evolution or other types of model evolution.

The core problem of model evolution is the need to replay the changes on existing instances of the model. For
instance, changing a XML schema definition requires the change of all XML files that are described by the schema
accordingly. The same applies to the paradigm of databases, where a database schema update must be reflected on
every database build upon this schema. Many solutions for this problem had been proposed, including model-to-model
transformations and graph grammar-based solutions [10, 11, 12]. However, for the spreadsheet paradigm, this problem
is yet unsolved. Figure 9 describes the problem for ClassSheets in more detail. Whenever the user updates an existing
ClassSheet, the problem of how to propagate this update to existing ClassSheet instances (i. e. spreadsheets) occurs.
Manually updating the ClassSheet instances is definitely not advisable since this task is very prone to errors. Thus, an
approach to automatically propagate ClassSheet updates to spreadsheets updates has to be developed.

The rest of this article is structured as follows. In Section 2, ClassSheets will be discussed in more detail, providing
the reader with a detailed example on ClassSheet evolution in Section 2.2. In Section 3 we describe the implementation
of the ClassSheet propagation approach. Therefore, we formally describe the used data structures and propagation
rules. After discussing related work in Section 4, we conclude this article in Section 5 giving a short summary and
pointing at some interesting future work.

2. ClassSheets

2.1. Basics

ClassSheets are two-dimensional grids that consist of classes, attributes, and labels. Attributes may have a con-
crete value or describe a formula (cf. Figure 6). The underlying business model of a ClassSheet (i. e. its conceptual
information) can be expressed using UML class diagrams or similar representations. Figure 10 shows a UML class
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diagram that expresses the business model of the budget ClassSheet. We use this representation to show the paral-
lelism of ClassSheets and object-oriented design. Furthermore, we will use common terms that are used together with
UML class diagrams, such as association class. A UML representation may be derived from every ClassSheet by
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forgetting all layout information. The figure shows how the tabular structure of this ClassSheet is directly reflected by
an association class CpY between the two spanning classes Category and Year that act as components of the root class
Budget. Attributes are directly transferable to the UML diagram with labels being ignored. Aggregation formulas are
added as notes to the corresponding attribute definition. Those attributes, called derived attributes in UML, are tagged
by a spreadsheet symbol on the right of the attribute definition.

The use of unique names for classes and attributes in ClassSheets makes it possible to reference attributes by
simply writing ClassName.AttributeName (see the SUM formula in Figure 10 for an example). Cell references such
as SUM(A1:D6) known by classical spreadsheet applications are not used anymore. The distinction between relative
and absolute cell references (i. e. A1,$A$1) is not needed since the correct update of references can be inferred from
the relative locations of the referencing and referenced cells in the ClassSheet model [13]. Colored borders depict the
different classes within a ClassSheet. Parts of classes may be spread over header and footer entries in spreadsheets,
which results in a bracket-like structure indicated by a square-bracket-like notation of (open) class rectangles. For
example, in Figure 6, the red class Year (columns C, D, and E, rows 1, 2, and 5) is split into a header and a footer
part that surround the blue association class. Repeatable rows or columns are denoted using vertical or horizontal dots
in the axes-labelings. Finally, labels are used to annotate the representation of data (e. g. name, qnty, cost etc.). The
budget ClassSheet (Figure 6) contains two repeatable classes, namely Category and Year.

The repetition applies to all rows or columns that are located before the dots and that are not separated by a bar.
In our example, columns C, D, and E may be repeated horizontally and row 4 may be repeated vertically. Since the
two classes Category and Year are two-dimensionally composed, an association class is necessary (blue framed in
Figure 6 and named CpY in Figure 10). The association class grows with both the Category class and the Year class.
An instance of this ClassSheet allows the insertion of an arbitrary number of categories, as well as quantity and cost
values for each inserted year. The spreadsheet computes three types of totals, namely the total amount of money for
each category and all years, for each year and all categories, and for all years and all categories. Figure 11 shows an
example instance of this ClassSheet. Note that ClassSheet instances that are represented in a spreadsheet application
like Microsoft Excel still make use of cell references. However, these cell references are continously inspected to
match the qualified references specified in the ClassSheet.

Budget Year Year

2009 2010

Category Name Qnty Cost Total Qnty Cost Total Total

Apples 0 0 =(C4*D4) 0 0 =(F4*G4) =SUM(E4;H4)

Pears 0 0 =(C5*D5) 0 0 =(F5*G5) =SUM(E5;H5)

Bananas 0 0 =(C6*D6) 0 0 =(F6*G6) =SUM(E6;H6)

Total =SUM(E4;E5;E6) =SUM(H4;H5;H6) =SUM(E7;H7)

Figure 11: An instance of the Budget ClassSheet

Class repetitions are called class instances as known from the oo-paradigm. Note that some classes are repeatable
while others are not. Non-repeatable classes correspond to singleton classes while repeatable classes may have an
arbitrary number of instances. The same applies to attributes. Attributes that are located outside of a repetition group
can be compared to static class attributes. ClassSheets do not distinguish between static class attributes and attributes
of a singleton class.

ClassSheets can be designed using a tool described in [14]. The tool allows the export of ClassSheets to an
intermediate language that is used by an Excel plug-in to constrain the work with spreadsheets. Further information
about the tool support is given in Section 3.

2.2. Evolution

Changing requirements and thus adaptation of developed applications is common in the software engineering
business. However, in contrast to most other development paradigms, spreadsheets require updates on the data and
updates on the application to take place in the same environment—the two-dimensional grid. Using ClassSheets,
these two different types of evolution are strictly distinguished. Updates of data, which we call instance evolution,
take place inside the spreadsheet application and is solved by the presented ClassSheet approach [15, 9]. Updates of
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the conceptual model behind a spreadsheet, called model evolution, have to be performed on the ClassSheet level such
that these updates are propagated to existing ClassSheet instances. This is the target of this article.

For example, let us consider the addition of an attribute that contains an exchange rate to the association class from
Figure 6. The resulting ClassSheet is shown in Figure 12 with the changes colored yellow. We set a default value 0
for the attribute rate that will initially be set for each association class instance.

To propagate this update to the instance spreadsheet shown in Figure 11, we have to add the new column to each
year entry and update all formulas that compute a category total. Figure 13 shows a ClassSheet instance with all
necessary changes marked yellow. The parallels to the database paradigm are remarkable. For each association class
instance a new data field with a default value is inserted. However, in contrast to ClassSheets, databases do not have to
care about the location of fields. Also changing the association class affects the two associated classes as well, which
is not the case for databases. In the concrete case of our example, the Year class representation had to be extended by
an additional column.

Even for this small example, this task performed manually is quite annoying and, above all, error-prone. A solu-
tion that overcomes this problem is discussed in this article and depicted in Figure 14. At (1) an existing ClassSheet

Budget Year Year

2009 2010

Category Name Qnty Cost Rate Total Qnty Cost Rate Total Total

Apples 0 0 0 =(C4*D4*E4  ) 0 0 0 =(G4*H4*I4  ) =SUM(F4;J4)

Pears 0 0 0 =(C5*D5*E5  ) 0 0 0 =(G5*H5*I5  ) =SUM(F5;J5)

Bananas 0 0 0 =(C6*D6*E6 ) 0 0 0 =(G6*H6*I6 ) =SUM(F6;J6)
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Figure 13: An instance of the Budget ClassSheet with the column Rate added

constrains a spreadsheet. Regarding instance evolution, ClassSheets ensure that the spreadsheet is a proper instance of
the ClassSheet at any time [15]. If a ClassSheet is changed (2) using update commands, these commands are trans-
formed (3) to spreadsheet update commands to reflect the model change on instance level (4). The whole process
yields a new spreadsheet version that is a proper instance of the changed ClassSheet while all semantic information
(i.e. datasets) is preserved (5). These steps are performed for every single atomic ClassSheet update.

3. Formalization and Implementation

There are at least two approaches for propagating ClassSheet changes to spreadsheets. The first one identifies
changes on ClassSheets and reconstructs these changes on the spreadsheets. This approach is difficult to realize since
there are countless changes that could be applied to a ClassSheet and especially for a whole sequence of changes it
is difficult to reconstruct the atomic updates.1 Using this approach means to find rules for every possible change on

1In the following, we distinguish between update and change. While a change is a passive observation from comparing two ClassSheets, an
update is the active action that has been applied to the ClassSheet to achieve a change.
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Figure 14: Evolution of ClassSheet - The Approach

a ClassSheet and transform those changes to updates on the corresponding spreadsheets. When demanding semantic-
preserving transformations, or reversible transformations respectively, further complications arise. The second ap-
proach to tackle the problem of propagating model changes to spreadsheets is by propagating the update commands
instead of the resulting change. For this approach, an update command language for ClassSheets has to be defined,
along with transformation rules to transform update commands to updates on spreadsheets. In this article we will
describe the latter approach of transforming update commands.

To express the propagation of ClassSheet updates to spreadsheets, we introduce a specialized formal graph repre-
sentation of ClassSheets named ClassSheet graph (CS graph). These CS graphs allow a convenient description and
computation of propagation details. Figure 15 shows the different levels classified using the MDA levels PIM, PSM,
and code. For each visual language used during spreadsheet development, a formal representation exists. Spread-
sheets are formalized using sets of triples consisting of cells coordinates and cell content. The formalization used
for ClassSheets are CS graphs. Class diagrams that hold only the conceptual information of ClassSheets may be
formalized using class graphs. Technically, CS graphs are class graphs annotated with spatial information. Thus,
a ClassSheet can be represented as a class diagram at any time giving a condensed view of the ClassSheet’s busi-
ness model. Changes on class graphs are transformed to changes on CS graphs using defaults for the layout options.
Changes on the CS graphs are automatically transformed to changes on spreadsheets. In this article, we will describe
the red framed area in Figure 15. The integration of class graphs and diagrams into an MDA-like approach is left to
future work.

The propagation of ClassSheet updates is implemented within three main components shown in Figure 16. The
rightmost component Claos is an editor that allows the visual modelling of ClassSheets [15]. The creation of
ClassSheets is enabled by simple operations such as adding a new class before, behind or inside the active class,
deleting a class or renaming a class. Each of the classes can be equipped with attributes. Each class has a defined
height and width given with the number of spanned cells. Attributes can be arbitrarily placed within these cells. Fi-
nally, the editor comprises a rule system that prevents the user from modelling illegal ClassSheets. The Claos editor
with the budget ClassSheet opened is shown in Figure 17.

The leftmost component in Figure 16 is given by a VBA plug-in for Microsoft Excel. The VBA plug-in is responsi-
ble for representing a ClassSheet instance within a spreadsheet, informing the server about the instance evolution of the
spreadsheet, and finally receiving and performing commands from the server that are necessary for model evolution.

The last component in Figure 16, the server, holds the current state of the ClassSheet and its instance and computes
instance evolution as well as model evolution commands. The server is an extension to Gencel, a spreadsheet generator
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Figure 16: Integrated ClassSheet Tool Suite

that is described in [13]. Gencel employs a visual template language, called Vitsl, to specify spreadsheet models.
It provides the ability to specify repeatable areas in spreadsheets which can be expanded in Excel automatically.
The ClassSheets specific extension of Gencel introduces the concept of object-orientation and the ability of update
propagation.

All three components together form the Integrated ClassSheet Tool Suite (ICTS). While the server holds the both
the ClassSheet and its instance, the Claos editor is used as a view to the ClassSheet, while Excel represents the view
on one particular ClassSheet instance. The ICTS is created as a client server architecture, where the server acts as the
heart of the system. The connection to the Claos editor is one-directional, whereas the connection to the Excel side is
bi-directional. None of the provided interfaces is mandatory for the server to run, neither does Claos need the server
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Figure 17: The Claos Editor

to operate. This means that the Claos editor is usable as a stand-alone application to create and save ClassSheets2.
Which interfaces have to be served depends on the tasks to be performed. If Claos is not connected, no propagation
commands will be created, but instance evolution is still supported. The only mandatory interface from the Excel side
is the one named INST-UPD since otherwise Excel would not be able to check the spreadsheet for compliance with
the ClassSheet after new data has been inserted.

In the following we will describe the formal model, the CS graph, that is created and changed with Claos and hold
by the server. After a brief example of instance evolution, which is described in detail in [9, 15], we focus on the
computation of propagation details, i. e. how a ClassSheet update is reflected on its instances.

3.1. A formal representation of ClassSheets for Update Propagation

During our research we found out that while the ClassSheet representation is well-chosen concerning readability
and thus user acceptance, it helps to formally define them using graph structures when it comes to propagation of
updates to spreadsheets. Employing a graph structure allows us to easily represent and cluster the object-orientation
means (i.e. classes and contained attributes) within the data structure and in turn helps to define simple propagation
rules. Along with the formal representation of ClassSheets, i. e. CS graph, we employed semantics for the update
language to formally describe transformation and propagation rules. The CS graphs, used in the server component to
describe a ClassSheet, is defined as follows.

S = (V,E, LV)
V ⊆ Name
E ∈ V × V→ LE

Figure 18: Definition of CS graphs

As shown in Figure 18 a CS graph is a three tuple consisting of a set of nodes V, a set of edges E and a labeling
function LV. The set of nodes V matches the set of classes from the ClassSheet. The edges, given by the mapping
E, describe the spatial relations between classes where a label le ∈ LE gives the type of an edge (cf. Figure 19(a)).
The aggregation type Comp marks one of the edge’s adjacent nodes as being contained in the other. The direction
specifies whether the class is inserted horizontally or vertically into its parent class. Figure 19(b) shows the definition

2Though, this would not be able to propagate changes since they are not yet saved to be propagated in transactions.
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of an edge between the two classes Budget and Category (Bud and Cat for short), while the left column defines the
Category class to be inserted horizontally into the Budget class, while the right column defines the vertical insertion.
The given offset n defines the position of one class in the other. n ranges over N. For example, in Figure 19(b), the

le ∈ LE F Comp⇒ O | Comp⇓ O
| Succ⇒ | Succ⇓

| ISucc | Assoc V

(a) Grammar

(Bud,Cat,Comp⇒ 2) (Bud,Cat,Comp⇓ 2)

Budget

Category

B
u
d
g
e
t

C
a
t
e
g
o
r
y

(b) Horizontal and Vertical Composition

Figure 19: Class Labels

Category class is located at position 3 inside the Budget class. Edges of type ISucc (inner successor) specify the order
of inner classes. This is useful whenever two inner classes are located at the same offset of their parent class. Classes
that are located next to each other have to be connected by the successor edge Succ. The direction specifies whether
a class is located below or beneath another class. Two classes are connected by an association class v ∈ V using the
Assoc edge.

Finally, the labeling function LV, shown in Figure 20, assigns to each class its attributes and labels, as well as a
size and information about the repetition of classes. We let the variable ct range over the set of a class’s content, i.e.
its attributes and labels.

lv ∈ LV ⊆ V→ 2Content × Type
ct ⊆ Content = N × N→ (Name→ Fml) ∪ N × N→ Label

Type F Class Size Rep | Assoc
Size = N × N

Rep = N × N

Figure 20: Labeling Function of CS graphs

The set Content contains named formulas together with labels. Labels are quoted strings. Attributes and labels
are assigned to coordinates that must range within the class’s size. The type contains the size and information about
the repetition. The first component of Rep specifies the first row or column that can be repeated. This information
allows us to have regions in classes that are not repeatable, i.e. headers. For example, in Figure 6, the upper row of the
Category class will not be repeated with each category entry. Thus the first row of repetition would be 2. The second
component of Rep describes how often the class has already been repeated in actual instance spreadsheets. Note that
the size and the information about the repetition are not specified for association classes since this information is
obtained from the associated classes.

Using the introduced definitions, we can represent the budget ClassSheet from Figure 17 and Figure 6 as S =
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(V,E, LV) where

V = {Bud,Cat,Year,CpY}

E = {(Bud,Cat,Comp⇒ 2), (Bud,Year,Comp⇓ 2), (Cat,Year,Assoc CpY)}
LV = {(Bud, {(1, 1, "Budget"), (1, 3, "Total"), (3, 3, total = SUM (Year.total)},Class (3, 3) (0, 0)),

(Cat, {(1, 1, "Category"), (2, 1, "Name"), (3, 1, "Total"),
(2, 2, name = "abc"), (3, 2, total = SUM (CpY.total)},Class (3, 2) (2, 0)),

(Year, {(1, 1, "Year"), (1, 2, year = 2007), (3, 3, total = SUM (total))},Class (3, 3) (1, 0)),
(CpY, {(1, 1, "Qnty"), (2, 1, "Cost"), (3, 1, "Total"),

(1, 2, qnty = 0), (2, 2, cost = 0), (3, 2, total = qnty × cost)},Assoc)}

The rough structure of our CS graph can be extracted from the set of nodes V and the set of edges E. The annotation
function LV contains all attributes and labels for the classes, or nodes respectively, in V. Leaving out all spatial infor-
mation, i.e. coordinates, labels, orientations and offsets (Comp⇒ 2), the graph structure describes the corresponding
class graph. The ICTS server component uses this formal ClassSheet representation to store the ClassSheet and the
current state of its instance.

3.1.1. Update Language
During the creation of a ClassSheet using Claos, the user makes use of several update commands. For instance,

constructing the budget ClassSheet, the user starts with an empty ClassSheet and initially uses a command to add a
class named Budget. Next the user would probably add an inner class Category, and so on. Formally, these update
commands take an existing CS graph and return a new CS graph that was changed accordingly. Figure 21 illustrates
an update command within Claos. In the following, we define the set of update commands, which are necessary to

add new 

class inside

selected

Add new 

class inside

update command

Figure 21: Update Command in Claos

create and update a ClassSheet.
In Figure 12, we altered spatial as well as conceptual information of our ClassSheet: adding a new column changed

the spatial layout and adding or changing attributes influenced the conceptual information. While the class diagram
contains only conceptual information, ClassSheets mix spatial and conceptual information as known from common
spreadsheet applications (e.g. Microsoft Excel). Therefore, we can classify ClassSheet changes into conceptual and
layout changes. Conceptual changes are all those changes that affect conceptual information captured in the class
diagram. In contrast, layout changes never affect a spreadsheet’s conceptual information, such as computations, but
rearrange a spreadsheet’s spatial layout, such as the location of formulas in the spreadsheet grid.

Structural changes on ClassSheets can be expressed by the update language shown in Figure 22. All these op-
erations reflect common updates on class diagrams. We use the meta variable f to range over formulas. Formulas
are defined over (qualified) attributes and standard calculation operations supported by the respective spreadsheet
application.
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u ∈ Upd F add v
| add v.a = f
| add v�k v
| add v←↩v↪→v
| del v
| del v.a
| del v�v
| del vev (updates)

k ∈ Card F (i,i) | ? (cardinality)

Figure 22: CS graph Update Language (structural updates).

The operation add v adds a new class with given name to the CS graph. The second add operation adds the
given attribute consisting of a name a and a formula f to the class v. There are two kinds of edges in our CS graph
representation that can be added with two different commands. The add c1 �k c2 command adds a compositional
relation between two given classes. This means that the class v1 will be parent of class v2. The additional argument
k allows the specification of a cardinality that describes the possible number of repetitions of information (rows or
columns) in class v2. In a spreadsheet instance this repetition could be limited to a few rows or columns of the class,
i.e. not the whole class has to be repeated. This will be shown in detail in Section 3.1. On the other hand, the
command add c1←↩c↪→c2 sets the class v to be the association class of the classes v1 and v2. The last four operations
delete classes (del c), attributes (del c.a), compositions (del c1�c2) and associations (del c1ec2). A class is given
by its name, the attribute is given by its qualified name (class and attribute name), compositions are given by their
adjacent classes and associations are given by the names of the associated classes.

Of course, the same update operations can be applied to class graphs in order to synchronize the models on the
different levels. However, since these operations applied to CS graphs have to define spatial aspects of classes and
attributes, they make some initial assumptions, such as where to place a new attribute in the tabular grid. To adjust
these assumptions and to maintain the grid, further update operations shown in Figure 23 can be applied to CS graphs.
To change a CS graph’s orientation, the toggleOri operation can be used, which toggles the whole graph’s orientation3,

u ∈ Upd F toggleOri | move v d | move v (i,i) d
| add v (i,i) l | del v (i,i)
| enlarge v d | shrink v d | rep� v | rep� v (updates)

d ∈ Direction F {�, �,�, �} (direction)

Figure 23: CS graph Update Language (layout updates).

for example to change a horizontal to a vertical orientation. The operations move v d and move v (i,i) d move classes
and cell content, respectively, into the given direction d. Cell content is referred to by coordinates related to the class’s
upper left cell. The operations add v (i,i) l and del v (i,i) allow the addition and deletion of labels, while the operations
add v.a and del v.a allow the addition and deletion of attributes in a CS graph. Enlargement and shrinking of a class
v can be achieved by applying the enlarge v d and shrink v d operations, where d is the direction in which to change
the size. Finally, the operations rep� v and rep� v increase and decrease the first row or column of repetition in a
repeatable class v. For example, increasing the first row of repetition to 2 does not repeat the first row on the class for
every single class instances. The first row might be a header. If the first row or column of repetition is set to 0, the
class may not be repeated at all (i.e. the class is a singleton class). Since a class cannot be repeatable in vertical and
horizontal direction at the same time, one number suffices to represent the repetition. In the example from Figure 6
this number is set to 2 for the Category class and to 1 for the Year class. The Budget class cannot be repeated at all,

3mirroring at the diagonal axis

15



thus the first row or column of repetition is set to 0.

3.1.2. Update Semantics
In the last section we have shown a formal data structure for ClassSheets (i.e. CS graphs) and an update language

to change ClassSheets. Next we show how the update operations are implemented, by giving some insights into their
semantic function. Since describing the semantics for all update commands would be out of proportion, we will
concentrate on the semantics of the four operations used to perform the update from the initial example in Section 1.
These operations include enlarging a class, moving cells and adding an attribute and a label. For the sake of readability
we use Haskell style for function definitions and applications. In Haskell, arguments are not given in brackets and
comma separated but are written directly behind the function name separated by white spaces.

First of all, we address the problem of enlarging a class. Enlarging of one class may involve other classes. For
example, enlarging a class that is part of a horizontal composition at its bottom edge requires all other classes to
be enlarged at their bottom edge since the resulting ClassSheet must be of rectangular shape. Thus, we introduce a
function sibl that computes the set of all siblings of a class in a ClassSheet.

sibl :: S → 2V → {�,�, �, �} → 2V

The function takes the CS graph as first argument and a singleton set containing the class we are searching the siblings
for as second argument. The passed class is returned in a singleton set, if it has an association class since then there are
no siblings per definition (see Tilings in [15]). The third argument specifies the direction for the search.4 For example,
if we want to find all siblings that are horizontally composed with the given class, we pass � as an argument.

J enlarge c d KU (V,E, LV) = (V,E, (LV \ {LV(c′) | c′ ∈ s})
∪ {enlarge d LV(c′) | c′ ∈ s})

where s = sibl (V,E, LV) {c} d

Basically, the semantic definition calls the enlarge function for each of the passed class’s siblings. The real work is
performed by the enlarge function, defined as follows.

enlarge d (c, ct,Class si r) = (c, ct′,Class si′ r)
where si′ = si + |d|

ct′ =

shiftCont |d| ct if d ∈ {�,�}
ct otherwise

Since enlargement of classes is allowed at all four edges (left, right, up, and down), we have to shift content in
some cases. For example, enlarging a class at its top edge is done by enlarging it at its bottom edge and shifting its
content down. To shift content into a given direction, the function shiftCont is used.

shiftCont (i, j) ct = {((x + i, y + j), a) | ((x, y), a) ∈ ct}

Let us consider as a simple example the following CS graph definition.

S = (V,E, LV)
V = {Bud,Cat}

E = {(Bud,Cat,Comp⇒ 2)}
LV = {(Bud, {(1, 1, "Budget"), (1, 3, "Total")},Class (3, 3) (0, 0)),

(Cat, {(1, 1, "Category"), (2, 1, "Name"), (3, 1, "Total"),Class (3, 3) (2, 0))}

4The defined function distinguishes between horizontal and vertical search. Thus the arguments � and � are handled as synonyms. Same
applies to vertical directions.
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� (0, 1) � (0,−1)
� (1, 0) � (−1, 0)
|d| positive direction − |d| negative direction

i + d adds direction d to tuple i: (i1 + d1, i2 + d2)

Basically, a direction is a tuple, where the first value describes the horizontal direction and the second value describes
the vertical direction. This notation is highly used in mathematics, where these tuples are called vectors. In particular,
the + operation is the vector addition.

Table 1: Directions as Tuples

We want to enlarge the Cat class at its top edge. The semantic rules set the class’s size to (3, 4) and add 1 to the vertical
coordinates of all attributes by calling shiftCont (0, 1) ct.

Moving content into the specified direction basically changes the content with the neighbor cell. The swapCells
function takes the content and a direction to move the content into and returns the updated content. In the following
definition, directions are implicitly converted to tuples as described in Table 1. Now we define the swapCells function
as follows5:

swapCells ct (i, j) d = ct \ {ct(i, j), ct((i, j) + d)}
∪{(i, j, ct((i, j) + d)), ((i, j) + d, ct(i, j))}

Finally, the following definitions show the semantics of adding an attribute and a label while nextFreeCell returns
the coordinates of a class content’s next empty cell.

J add c (i, j) l KU (V,E, LV) = (V,E, (LV \ {LV(c)}) ∪ {(c, (ct \ {ct(i, j)}) ∪ {((i, j), l)}, t)})
where (c, ct, t) = LV(c)

J add c.a = f KU (V,E, LV) = (V,E, (LV \ {LV(c)}) ∪ {(c, ct ∪ {(pos, a, f )}, t))})
where (c, ct, t) = LV(c)

pos = nextFreeCell ct

Due to the chosen data structure and the denotational style of defining the semantic function’s domain, other update
commands are similar straightforward to define. In the following section, we will give a short example of the CS graph
data structure and the defined semantics for update commands.

To experience how the semantic function for the update commands operates, let us enlarge the year class at its
right edge. The denotational semantics updating our CS graph are given as follows where LV|c denotes the tuple from
set LV with the first component matching c.

J enlarge Year �KU (V,E, LV) = (V,E, (LV \
{
LV|c′ | c′ ∈ sibl S {Year} (�)

}
)

∪
{
enlarge � LV|c′ | c′ ∈ sibl S {Year} (�)

}
)

Since Year has an associated class, the siblings function sibl returns {Year} per definition. The enlarge function
adds 1 to the class’s width.

J enlarge Year �KU (V,E, LV) = (V,E, (LV \ {(Year, ct,Class (3, 3) (2, 0))})
∪ {(Year, ct,Class (4, 3) (1, 0))})

5We handle undefined function results (⊥) as values, which allows us to exchange content with an empty cell.
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As shown in this example, we have all means to formally represent ClassSheets and express update operations
applied to them. We employed Claos to enable the user to create and maintain ClassSheets and showed how the
ClassSheets are formally represented and updated in the server. In the following two sections we will give a for-
mal representation for spreadsheets and a corresponding update language to describe the transformation of update
operations on the ClassSheet level to update operations on the spreadsheet level.

3.2. Formalizing Spreadsheet Updates
In our tool suite, there are two different scenarios in which a spreadsheet has to be changed. First, the user decides

to perform an instance evolution, e. g. adding a new year or a new category. To this end, the Excel add-in makes some
buttons available that enable the addition or deletion of class repetitions. For example, the user may select a cell from
year 2010 and use a button to add another year righthand. This would result in adding three new columns with default
values for every existing category and updating all affected formulas. The second scenario in which the spreadsheet
might change is model evolution. Take our example from Section 1, where we added an attribute to the class Year.
This update would result in adding a new column for each year and one default value for each existing category. Both
scenarios require an update language for spreadsheets, which is briefly introduced in the following.

Spreadsheets are represented by a set of triples containing the horizontal and vertical coordinates and the formula:
T = N×N×F. Note that the formulas are different from the ones used in CS graphs since they do not contain qualified
references to attributes but coordinates.

In order to propagate model updates to spreadsheets, we need a simple spreadsheet update language that can be
executed by the spreadsheet application. We call it “T-update” language where T stands for table. T-updates are used
to change actual spreadsheets in an Excel-like application. The corresponding language is defined in Figure 24.

u ∈ T-Upd F addR i | addC i | delR i | delC i
| moveR i+ d | moveC i+ d
| swap ((i,i), (i,i)) | upd (i,i) f (updates)

d ∈ Direction F {�, �,�, �} (direction)

Figure 24: T Update Language.

The addR and addC commands insert rows and columns at the given row or column index. Existing rows or
columns are shifted down or to the right. The operations delR and delC delete the given row or column. The produced
hole is filled with the rows from below, respectively with the columns from the right. The commands moveR and
moveC move the given list of columns or rows into the given direction. swap exchanges the given two cells’ content,
and upd sets the given cell to the given formula.

The update language’s semantics are trivial since they correspond to the behavior known from common spreadsheet
applications. For example, the semantics for the addC i command are defined as follows.

J addC i KXL T = {(x, y, f ) | (x, y, f ) ∈ T, x < i} ∪

{(i, y,t) | y = 1 .. LastUsedRow} ∪

{(x + 1, y, f ) | (x, y, f ) ∈ T, x ≥ i}

Jupd (i, j) f KXL T = {(x, y, f ) | (x, y, f ) ∈ T, (x, y) , (i, j)} ∪ {(i, j, f )}

Adding a new column into a spreadsheet means shifting all columns behind column i−1 to the right and inserting new
empty cells into the new column i. Consider the small spreadsheet shown in Figure 25. The spreadsheet is represented
by the following formula.

T = {(1, 1, "Test"), (2, 1, "Desc"), (1, 2, 3), (2, 2, "abc...")}

Adding a column at position 2 with the command addC 2 updates the spreadsheet as follows.

J addC 2 KXL T = {(1, 1, "Test"), (1, 2, 3)} ∪ {(2, 1,t), (2, 2,t)}
{(3, 1, "Desc"), (3, 2, "abc...")}
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Figure 25: Example Spreadsheet

3.3. Implementing Instance Evolution - A small example
Whenever the user has loaded a ClassSheet in Excel, an additional toolbar is made available. The buttons allow

the insertion or deletion of class repetitions in the neighborhood of the selected cell. For instance, see Figure 26 where
a new income item will be added below the selected cell. Figure 27 shows the corresponding sequence diagram. The

insert a new 

repetition below

Figure 26: Inserting a new repetition of the Category class

initial event to insert a row is triggered by the button click. VBA translates this event into two commands. The first
one updates the cursor position in the spreadsheet. The second one requests the insertion of one row below the actual
cursor position. The server updates the ClassSheet and computes a command to insert the row into the spreadsheet.
Also, commands to update several cells are created. The first inserts a value into the new added row which corresponds
to the default value specified in the ClassSheet (see Figure 17), the remainder updates all cells that contain references
since these may have changed due to inserting a new row.

3.4. Propagation of ClassSheet Changes to Spreadsheets
In the last sections, we showed how ClassSheets are created and persisted in the server. Further, we described a

small update language for spreadsheets and showed how instance evolution is realized in our tool suite. Now the user
shall be able to change the ClassSheet in use while the server shall propagate those changes to the ClassSheet instance.
As mentioned before, this is achieved by translating the update commands for ClassSheets to update commands for
spreadsheets. As an example consider an update on the budget ClassSheet, where we add a new row below row 4.
The command is caught in Claos and sent to the server (see the sequence diagram in Figure 28). The server computes
all propagation details and sends suitable update commands to Excel. The VBA add-in in Excel parses these update
commands and adds several new rows to the ClassSheet instance (one for each existing category). In this section we
will illustrate how an update on a ClassSheet propagates to a spreadsheet by enlarging the category class of our budget
sheet, adding a formula and updating another one. To this end, we will concentrate on a few update commands. Other
commands are handled analogously. Full details, including semantic definitions for the evaluation of formulas, can be
found in [16].

Figure 29 shows the definitions for the two commands enlarge and add. The first case of definition (1) in Figure 29
returns a list of addC i commands, one for each column to be added to enlarge class c at its right edge. Definition (2)
returns a list containing update commands that add the given formula to each instance of class c. For our example,
we assume the instance spreadsheet of our budget sheet (Figure 11) that has three category instances and two year
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Figure 27: The Control Flow for Inserting a Row
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Figure 28: The Control Flow for Inserting a Row in the ClassSheet

J enlarge c d KP S =


[
addC (x + 1) | x ∈ getColI ←→c c S′

]
if d = �

. . . . . .
(1)

where S′ = J enlarge c d KU S

J add c.a = f KP S =
[
upd x f ) | x ∈ getCellI (i, j) c S′

]
(2)

where S′ = J add c.a = f KU S

(i, j) = (S′.LV(c).fst)−1(a, f )

Figure 29:

instances. Visually, the enlargement of our category class is expressed by a new column in our CS graph. Since the
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CpY class’s size depends on its associated classes, it is enlarged as well. The formal definition of the CS graph without
the enlargement is defined as follows.6

S = ({Bud,Cat,Year,CpY},

{(Bud,Cat,Comp⇒ 2), (Bud,Year,Comp⇓ 2), (Cat,Year,Assoc CpY)},
{(Bud, . . . ,Class (3, 3) (0, 0)), (Cat, . . . ,Class (3, 2) (2, 2)),
(Year, . . . ,Class (3, 3) (1, 1)), (CpY, . . . ,Assoc)})

Of most interest are the classes’ sizes and the instance information. The instance information used to perform some
computations hold the number of instances for each class in the particular instance spreadsheet. The type stored in the
labeling function had been defined previously as follows where the second value of the repetition part describes the
number of instances.

Type F Class Size Rep | Assoc
Rep = N × N

Since our Year class has two instances the data structure stores the value 1 to mark the one repetition:
Class (3, 3) (1, 1). Now let us enlarge the Year class at its right edge. The corresponding command is enlarge Year �.
The semantics for this command are defined as follows (cf. Definition (1) in Figure 29).

J enlarge Year �KP S =
[
addC (x + 1) | x ∈ getColI

←−−−→
Year Year S′

]
where S′ = J enlarge Year �KU S

Let us approach the result step-wise. First of all, the updated CS graph S′ is computed in the where clause. This was
shown in Section 3.1.2. The getColI function returns a sequence of all columns that match the given column

←−−−→
Year = 3

in the given class Year in the instance S’. In our example, we have two instances of the Year class and thus—due to
our spatial layout—six columns. The returned sequence is [8, 5]. This sequence is returned to the semantics definition,
and we obtain the following result.[

addC (x + 1) | x ∈ [8, 5]
]

=
[
addC 9, addC 6

]
The result means the spreadsheet application adds columns behind columns 8 and 5 in exactly this order.7

Now we assume that the operations of moving the column and adding the label “Rate” have already been performed
and take a look at the more interesting case of adding the formula. Definition (2) in Figure 29 is instantiated as follows.

J add CpY.rate = 0 KP S =
[
upd x 0 | x ∈ getCellI (i, j) CpY S′

]
where S′ = J add CpY.rate = 0 KU S

(i, j) = (S′.LV(CpY).fst)−1(rate, 0)

In the where clause the update is performed on the CS graph S to retrieve the changed graph S’. The second line in the
where clause retrieves the cell location of the added formula by simple function application. The function fst returns
a tuple’s first component. Using the function getCellI these coordinates are converted into the corresponding list of
coordinates in the ClassSheet instance. In our example, the equation evaluates as follows.

J add CpY.rate = 0 KP S =
[
upd x 0 | x ∈ [(5, 4), (5, 5), (5, 6), (9, 4), (9, 5), (9, 6)]

]
=

[
upd (5, 4) 0,upd (5, 5) 0...

]
Finally, the resulting list of update commands is sent to the VBA add-in in Microsoft Excel, which parses and executes
the commands to complete the model evolution.

6Attributes have been left out.
7This order is mandatory since the insertion of rows might change the overall row numbering.

21



4. Related Work

The problem of erroneous spreadsheets has been addressed from many perspectives. Adopting software engineer-
ing techniques, such as testing [17] and debugging [18], for spreadsheets has been successful in supporting end users
in the effective localization of errors. But even though these approaches cost less time and are an improvement over
the more traditional auditing and code inspection approaches [19, 20, 21], a challenge is still how to motivate the users
to spend time and effort on the error finding process.

Automatic error detection approaches, such as type checking [22, 23, 24, 25, 26], can avoid this problem, but they
can generally only find a subset of errors.

Therefore, approaches that try to avoid errors from getting into spreadsheets in the first place seem to be another
promising alternative. The adoption of good spreadsheet design practices has been repeatedly promoted [27, 28, 29],
but these approaches cannot guarantee any level of correctness. Introducing errors into spreadsheets during mainte-
nance can be prevented using an ontology-driven approach to generate a help system as proposed in [30, 31]. Although,
this approach seems to be very powerful, it appears to be not as user friedly as necessary for most spreadsheet devel-
opers. A more high-level spreadsheet model that can provably guarantee the absence of a large class of referencing
and range errors has been proposed in [13, 32]. The ClassSheet model presented in [9] and discussed in this paper is
a generalization of that model. ClassSheets allow the modeling of spreadsheets in a model-driven approach using the
well-known and user friendly visual Unified Modeling Language (UML).

Model-driven engineering [33] is well-accepted and well-established in science and industy [34]. Current efforts
are spent into developing solid solutions to spread MDE into more and more domains [35, 33]. One of the best known
initiatives of MDE is MDA [36, 37, 38], launched by OMG [39] in 2001. Tool support for a complete MDE process
was provided by Fujaba [40, 41] since 13999, allowing a complete round-trip engineering process [42] with UML and
Java. The UML supports the usage of an MDE process in specific domains by allowing the profiling of their language
[43, 44]. Several approaches use UML extension mechanisms to generate web applications [45, 46, 44] and embedded
systems [47, 48]. MDE approaches either require the user to assemble the generated code manually or are limited to
a small domain where the visual expressiveness suffices to describe software while still keeping clarity. The approach
presented in this article uses the MDA development approach. MDA separates design from architecture where design
maps to class graphs and architecture maps to CS graphs [16]. The use of the UML and the MDA enables utilizing
of well-known design techniques from software engineering such as design patterns and the like. This approach
differs from other spreadsheet development environments such as Quantrix [49] that rely on cell-oriented spreadsheet
programming instead of using explicit object-oriented modeling.

5. Conclusion and Future Work

ClassSheets present an effective way of designing spreadsheet models using several popular paradigms from actual
computer science research. ClassSheets define object-oriented models that are used as templates and allow the use of
an MDE style development process for spreadsheets. To deal with the problem of maintainability, we propose a
formally defined graph data structure for ClassSheets to enable the easy definition of propagation rules that allow the
semantics-preserving propagation of updates on ClassSheets to ClassSheet instances, i.e. spreadsheets. To express
updates on ClassSheets we introduced an update language and described its semantics using denotational style. We
have developed a prototype system that uses the ClassSheet editor Claos to propagate model updates to spreadsheets.

This work does not cover the availability of a ClassSheet’s different versions. That means, once a model has been
modified, its old versions are no longer available for users or applications. This could be addressed by introducing a
concept that resembles the database view concept. Furthermore, we did not go into detail describing a data structure
that allows a transaction-based propagation of updates. Transaction-based propagation would provide the ability
to optimize update sequences. Related to this approach is an undo/redo concept, which is not fully supported in
the prototype yet. The reverse engineering approach of inferring ClassSheets from spreadsheets was not discussed
either. This would enable a convenient way of development, proposed by the ARE paradigm. Similar to the approach
discussed in [50], ClassSheets would have to be inferred from existing spreadsheets. However, this is less trivial since
ClassSheets carry more information than spreadsheets. In particular, if these inferred ClassSheets were compared to
existing, eventually older versions of the underlying ClassSheet, a concept of wildcards would have to be introduced
to match existing class names to automatically inferred class names. The ClassSheet inference combined with, for
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example, a ClassSheet difference algorithm would yield great benefits in handling ClassSheets and spreadsheets. For
example, updates on spreadsheets could be inferred as updates in the ClassSheet model. The user could then be asked
whether this was his purpose. This would greatly contribute to the idea of spreadsheet safety.
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