Adding Configuration to the Choice Calculus

Martin Erwig
Oregon State University

Tillmann Rendel
University of Marburg

ABSTRACT

The choice calculus, a formal language for representing variation
in software artifacts, features syntactic forms to map dimensions of
variability to local choices between source code variants. However,
the process of selecting alternatives from dimensions was relegated
to an external operation. The lack of a syntactic form for selec-
tion precludes many interesting variation and reuse patterns, such
as nested product lines, and theoretical results, such as a syntactic
description of the configuration process.

In this paper we add a selection operation to the choice calculus
and illustrate how that increases the expressiveness of the calcu-
lus. We investigate some alternative semantics of this operation
and study their impact and utility. Specifically, we will examine se-
lection in the context of static and dynamically scoped dimension
declarations, as a well as a linear and comprehensive form of di-
mension elimination. We also present a design for a type system to
ensure configuration safety and modularity of nested product lines.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—Software Configu-
ration Management; D.3.1 [Programming Languages]: Formal
Definitions and Theory
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1. INTRODUCTION

The need to maintain variation in software artifacts is widely
acknowledged, and has led to the development of many models,
methods, and tools. The topic has been approached from differ-
ent angles, and a diverse set of perspectives and subfields have
emerged as a result (for example, software product lines, feature-
oriented software development, and configuration management).
While there are several formal approaches in some of these sub-
fields, a widely accepted, general formal model of variation that
applies across a wide range of fields does not exist so far.
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One such general model that has been proposed is the choice
calculus [6]. It provides a formal foundation for the study of some
aspects of variability in software [3]. As a calculus, it can serve
as a vehicle for the exploration of the meta-theory of variation, as
a backend (or core language) for the implementation and compari-
sion of more practical tools, and as an implementation language for
smaller case studies. We expect that a layer of syntactic sugar on
top of the choice calculus would enable its use also for larger case
studies and industrial projects, but in the present paper, we focus on
the core calculus. Specifically, the choice calculus addresses three
facets of variation: (1) the organization of the variation space into
dimensions of variability, (2) the introduction of choices to cap-
ture points of variation, and (3) a selection process to generate a
particular variant. The prior work has focused on dimensions and
choices as first-class elements of the choice calculus and relegated
selection to a second-class operation that is only available exter-
nally, as a meta-theoretic operation. This asymmetry is apparent in
the syntax of the choice calculus, which provides syntactic forms
for declaration and choice, but not for selection.

The lack of a syntactic form for selection is unfortunate from
both practical and theoretical perspectives. From a practical per-
spective, we cannot model software systems that fully or partly
configure themselves, such as build scripts for variational software
systems, nested product lines, computed configurations, or wrap-
pers that rename dimensions of variation. From a theoretical per-
spective, we cannot explore the meaning of selection with syntactic
means such as rewriting rules or type systems.

To expand the scope of the choice calculus as a vehicle to
study variation, we propose to extend it with a selection operation.
Specifically, this paper makes the following contributions.

e We review the choice calculus with a focus on its formal
structure in Section 2] where we also explore the structural
similarities to the A-calculus.

e We extend the choice calculus with a syntactic form for se-
lection. Section [Blintroduces the syntax and an intuition for
the semantics and illustrates how selection supports renam-
ing and modularity.

e To better understand the requirements for a selection seman-
tics we discuss in Section[l a series of design questions that
explore how a selection behaves in particular situations and
how it interacts with other choice calculus constructs.

e We consider the design of a type system for the extended
choice calculus. Section [Slintroduces a notion of configura-
tion safety and explores the differences between a flat and a
nested notion of configuration.

e In Section [6] we explore how a variation of the type system
can be employed to guarantee a form of information hiding
for nested product lines.
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Figure 1: Modeling dimensions of variation.

2. THE CHOICE CALCULUS

The choice calculus [5,16] is a formal language for variational
software artifacts that organizes the configuration space of a vari-
ational software system into dimensions. Each dimension models
one of the decisions that must be made to obtain a particular vari-
ant. For example, Figure shows four variants of an assign-
ment software snippet that varies in two independent dimensions:
One dimension is the name of the variable to read, and the other
dimension is the factor to multiply with. These two independent
dimensions of variation give rise to four different variants. Since
the two dimensions are independent of each other, the shown vari-
ation illustrates the challenge of “combinatorial explosion” that is
typical for variability: A relatively small number of configuration
options induces a potentially huge number of variants. If we want
to store and analyze variational software artifacts efficiently, we
better avoid such enumerations of all variants.

2.1 Modeling Variation by Choices

The choice calculus helps to avoid combinatorial explosion by
allowing local choices between the fragments of a software artifact
that actually vary. For example, the code in Figure [[(b)| represents
all four variants discussed above in a single choice-calculus expres-
sion. The common parts “z =" and “*” are stated only once, and
the dimensions are disentangled because the associated choices are
as local as possible.

A choice expression such as Factor(2,3) means that depending
on the configuration for dimension Factor, we choose between the
code fragments 2 and 3. In a well-formed choice-calculus expres-
sion, all dimension names used in choice expressions have to be
bound by explicit dimension declarations, and the number of al-
ternative code snippets in the choices have to match the number of
tags declared for that dimension. For example, the expression in
Figure [I(b)] is well-formed, because both dimensions used in the
choice expressions are bound in the surrounding dimension decla-
rations. The declaration dim Factor(two, three) in introduces the
Factor dimension with its tags two and three. The dimension name
is in scope for choice expressions that follow the in keyword. The
association of alternatives in choice expressions to tags in dimen-
sion declarations is by position: the first alternative 2 belongs to the
first tag two, and so on.

Dimension declarations can also occur nested inside the expres-
sion. For example, the expressions in Figures[I(b) and[(c)jmean the
same. The choice calculus allows us to state and proof such equiv-
alences between expressions formally. In prior work we have pro-
posed more equivalences as well as normalization procedures [0].
To formally verify an equivalence, we have to also define a seman-
tics for the choice calculus.

2.2 Modeling Configuration by Tag Selection

The semantics of the choice calculus is based on the notion of
configuring an expression by selection of tags for each dimension
used in the expression. This incremental process resolves a choice-
calculus expression into a concrete program variant. Selection of a
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Figure 2: Selecting a variant.

qualified tag D.t proceeds in two steps: (1) The first (that is, top-
most, leftmost) dimension declaration that introduces D is located
in the expression. (2) All choices bound by that dimension declara-
tion are replaced by the alternative that corresponds to the position
of the selected tag ¢ in the declaration for D. For example, Figure2]
shows some example selections for our running example. Follow-
ing the left path, after selection of Input.x and Factor.three, we
have fully configured the variational software artifact. We can also
reach the same variant with the opposite order of selections. Both
sequences of selections would resolve the alternative expression in
Figure[I(c)]to the same variant. This observation is the basis of the
formal notion of equivalence between choice calculus expressions.

Formally, the semantics of each choice calculus expression is de-
fined as a mapping from sequences of tags to plain expressions, and
the semantic function [[¢]] produces this mapping [6]. Tag selection
can thus be expressed as function application. Therefore, if e repre-
sents the choice calculus expression shown in either Figure [I(D) or
we can express the equivalence between the different selection
ordering discussed above in the form of an equation, such as the
following.

[le] (Factor.three)(Input.x) = [[e]| (Input.x)(Factor.three)

The choice calculus is about declaring dimensions on the one hand
and selecting tags on the other hand. The original choice calculus
does not support these two aspects in a balanced way. Dimension
declaration is supported syntactically by expressions of the form
dim D(¢,...,t) in e, but tag selection is only supported semanti-
cally by the notion of tag selection that is external to the calculus
itself. We would like to complement the semantic account for tag
selection with a syntactic account. That requires two steps: (1) a
syntactic form to request tag selection as part of a choice calcu-
lus expression, and (2) a contraction law to connect tag selection
with dimension declaration syntactically. By explaining dimension
declaration and tag selection as the corresponding introduction and
elimination forms with a contraction law, we provide a symmetric
treatment of these two complementary constructs, which makes it
more similar to the treatment as found in the A-calculus. This anal-
ogy helps us to better understand the current and desired treatment
of opperations in the choice calculus.
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Figure 3: Overview of the choice calculus and its analogy with the A-calculus.

2.3 Relationship to the Lambda Calculus

The A calculus models computation by substitution. It features
three syntactic forms: Ax.e to introduce functions, applications e e
to eliminate functions, and variable occurrences x that refer to vari-
able names bound by A. Substitution e[x — €] is a meta-function
that eliminates variable occurrences by replacing them with some
other term. The expressive power of the A-calculus arises from the
interaction of introduction and elimination forms as specified by 8
and 7 equivalence:

e f-equivalence specifies that an A-abstraction nested on the
left-hand side of an application triggers substitution, see Fig-
ure In the practice of functional programming, f-
equivalence corresponds to inlining of function definitions.
In the theory of computation, f-reduction is used to model
step-wise computation of the value of an expression.

e m-equivalence specifies that an application to a variable
nested in the A-abstraction of that variable is superfluous,
see Figure In the practice of functional programming,
n-expansion can be used to control evaluation order. In the
theory of computation, n-equivalence is used to model ex-
tensional equivalence.

The relationship of the choice calculus to these concepts is shown
in Figure Just like the A-calculus models computation by
substitution, the choice calculus models variation by tag selection,
so substitution corresponds to selection. The choice calculus fea-
tures dimension declarations that correspond to A-expressions and
choice nodes that correspond to variable occurrences. There is no
equivalent of application, however, and therefore no rules that cor-
respond to B and 1 equivalence. By not having an elimination
form, that is, selection as a syntactic construct, the choice calculus
misses out on such powerful interactions.

3. INTERNALIZING SELECTION

We propose to add a syntactic form for selection to the choice
calculus: select D.z from e. The full syntax of the choice calculus
with selection is shown in Figure[d Intuitively, an expression of the
form select D.t from e should mean the same as e after selecting
D.t. That is, we expect the new semantics [|-] to relate to the old
semantics [[] 44 in the following way.

[select D.z from e]] = [[e]],a(D-t)
Therefore, the following expression e, should be equivalent to 1.

eqr = select D.a from
dim D(a,b) in D(1,2)

In the following we present some patterns that illustrate how the
select construct increases the expressiveness of the choice calculus.

(c) n-equivalence.

e = a<e,...,e> Object Structure
| dimD(t,...,t)ine Dimension
|  Die,...,e) Choice
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| v Reference

Figure 4: Choice calculus syntax.

3.1 Renaming

In the choice calculus as introduced in Section 2] a dimension
cannot be renamed after it has been declared. This inflexibility
can lead to invasive changes if existing code is adapted to work
with a new feature model, that is, if code is reused in a differ-
ent project or if the dimension names change due to evolution of
the requirements. The lack of renaming also affects the potential
for reusing independently developed code that might inadvertently
use the same dimension names. In the choice calculus as-is, clash-
ing dimensions names are allowed, but they are resolved in a fixed
left-to-right order. This fixed order of configuration cannot suit the
partial-configuration needs of all projects. A way to explicitly re-
name dimensions would give control back to the developers.

Tag selection can be used for renaming of dimensions. For ex-
ample, if e exposes a dimension A with tags b and ¢, but we would
rather expose a dimension X with tags y and z, we can wrap the
expression e as follows:

sharev=ein
dim X (y, z) in
X (select A.b from v, select A.c from v)

This construction is not invasive: The implementation of e remains
unchanged. This is similar to 17-expansion in the A-calculus.

3.2 Modularity

The choice calculus without a syntactic form for tag selection
cannot fully model nested product lines, that is, variational soft-
ware artifacts that reuse other variational software artifacts as com-
ponents. The missing piece is fine-grained control over how the
variability of a component contributes to the variability of the over-
all system. We distinguish three cases:

e Direct contribution to the overall variablity, that is, the
dimension of the component is automatically exposed to
clients of the overall system. This is the default behavior
of the choice calculus for nested dimension declarations.

e Local resolution, that is, the dimension is fully configured
as an implementation detail of the component that uses it,
and its existence is kept unknown to clients of the overall
system to ensure proper information hiding. This is trivially
supported by wrapping the component in a select form.

e [ndirect contribution, that is, the dimension of the compo-
nent is explicitly mapped to one or more dimensions of the



overall system. The complexity of the mapping can range
from simple renaming to complex dependencies on several
dimensions. This is supported by wrapping the component
in dependent selections as in Section 3.1}

The situation is similar to how the A-calculus supports combinator
libraries (collections of closed A-terms) and their adaption to given
interfaces by wrapper code. We believe that support for code reuse
is crucial for scaling a calculus to large systems, and a syntactic
form for selection can provide that support.

3.3 Operational Semantics

The semantics of the choice calculus without tag selection are
specified using a denotational approach. With the addition of a
syntactic form for tag selection, we can hope to complement this
denotational semantics with an operational semantics that is based
on a contraction law for the select and dim forms. In the begin-
ning of this section, we have shown a simple instance of such a
law where the expression e, reduces to 1 because the elimination
form select D.a matches the introduction dim D(a,b). For a full
operational semantics, we expect an equivalence like the following
(le]p.i selects the ith alternative of all free D choices in e [6]).

select D.1; from (dim D(t|, ..., t;, ..., tp)ine) = |e|p,;

This rule triggers selection just as $-reduction triggers substitution
in the A-calculus, see Figure Additionally, we would have
to add a contraction for share v and v to define the semantics of
sharing, and congruence rules for other pairs of syntactic forms.

It turns out, however, that the intended meaning of selection is
less clear than we hoped, so we have to refrain from defining a
full semantics in this paper. Instead, we use example expressions
involving select to discuss trade-offs for such a semantics.

4. OPEN QUESTIONS

In many scenarios, the intended meaning of a selection is not
obvious. In this section, we collect a number of challenges for a
formal definition of selection. We discuss the merits and drawbacks
that the potential resolutions present, along with the often subtle
interactions between these design decisions.

4.1 Undeclared Dimension

The first question is what to do when a dimension that is selected
is not declared, as in the following example.

select D.t from 1 + 2

There are two possible definitions for the selection in an undeclared
dimension.

1. Itis ill-formed, and an error is reported.
2. Itis idempotent. The example is equivalent to 1 + 2.

On the one hand, the purpose of selection is to eliminate dimen-
sions, so a selection that does not do this is anomalous and should
perhaps be identified as such. However, the idempotent behavior
permits a larger set of well-defined expressions and more meaning-
preserving transformations, as we will see later in this section.

4.2 Multiple Dimensions

The meaning of a selection is also unclear when there are multi-
ple matching declarations in parallel. This situation is encountered
when dimension declarations are nested in different siblings of a
program structure, as in the following example.

select D.a from
(dim D(a,b) in D(1,2)) + (dim D{a,c) in D(3,4))

There are at least four possible resolutions:

1. Selections can only be applied directly to dimension declara-
tions, preventing the multiple dimension issue from arising.
The example is ill-formed and an error is reported.

2. Selections that match multiple dimension declarations are
considered ambiguous. The example is ill-formed and an
error is reported.

3. The left-most matching dimension declaration is resolved.
The example is equivalent to 1 + (dim D{a,c) in D(3,4)).
We call this behavior of eliminating one dimension with one
selection linear selection. This selection behavior is used in
the old semantics.

4. All matching dimension declarations are resolved. The ex-
ample is equivalent to 1 + 3. We call this behavior of re-
moving all matching, parallel dimension declarations with
one selection comprehensive selection.

The first resolution initially seems quite restrictive, although it
emphasizes the correspondence between the choice calculus and
lambda calculus, sketched in Section[2.3] Just as lambda abstrac-
tions are reduced only when applied directly to an argument, di-
mensions are only eliminated when directly affected by a selection.
This may help to enforce modularity since only a dimension decla-
ration at the root of an expression can be referenced and eliminated.
Section[6]describes a type system that enforces this constraint.

A simple observation is that the linear and comprehensive forms
of selection are equivalent when all of the dimensions declared in
an expression use different dimension names. An expression that
satisfies this constraint is called dimension linear [6]]. In the ab-
sence of dimension linearity, however, there are many interesting
trade-offs between the two approaches. An advantage of the com-
prehensive approach is that it suggests the following confluence
relation.

select D.t from a<ey,... e~
= a<select D.t from ey, ... select D.t from e, >

This relationship can be used to push selection operations down
to the dimensions they affect, leading to a simple, purely syntactic
account of selection. Here we encounter our first interaction with
a resolution for another challenge. If some e; does not contain a
dimension declaration for D, we encounter the undeclared dimen-
sion challenge described in Section[d.] To preserve the confluence
relation, we will prefer that selections without corresponding di-
mension declarations are idempotent.

While the comprehensive solution supports pushing selections
down in an expression, the linear approach better supports lifting
them up. Consider the following expression.

a<eyp,...,select D.t frome;, ... e,>

With the comprehensive approach, the selection can only be fac-
tored out of the object structure if eq,...,e;_1,€j+1,...,e, do not
contain an unselected dimension D, which would be captured. With
the linear approach, we can factor the selection out by prioritizing
ej over eq,...,e;_1 by introducting a sharing construct.

select D.t from
sharev=¢;ina<ey,...,v,...,e,>

With the linear approach, a selection can be pushed down an object
structure only by examining each of the subexpressions to deter-
mine which contains the dimension that would be matched. This is
undesirable since it is not a local syntactic transformation [7]].

The choice of comprehensive or linear selection interacts with
many of the other challenges describes in the rest of this section.



4.3 Undeclared Tag

What do we do when the dimension referred to in a selection is
declared, but it does not contain the selected tag? This is illustrated
in the following example.

select D.a from
dim D(b,c) in D(1,2)

Assuming we consider selections in undeclared dimensions to be
idempotent, there are two ways to view mismatched tag names:

1. All unmatched selections should be treated similarly. There-
fore, the selection is idempotent and the example is equiva-
lent to dim D{b,c) in D(1,2).

2. A selection of an undeclared tag in a declared dimension is
considered ill-formed. An error is reported.

The argument for the first view is a simple appeal to consistency.
The argument for the second is more subtle, and is best viewed
through the interaction of this design decision with the treatment of
parallel dimension declarations, discussed in the previous subsec-
tion. Consider the following example.

(dim D(b,c) in D(1,2)) + (dim D(a,b) in D(3,4))

If we assume that the selection does not match the left dimension
declaration and does not induce an error, then the expression ex-
hibits a strange asymmetry with both linear and comprehensive se-
lection: With linear selection, observe that we can select either D.b
or D.c from the left dimension, or D.a from the right dimension,
but not D.b from the right dimension. With comprehensive selec-
tion, if we choose D.b, the two dimensions will be synchronized as
expected, but if we first choose D.a or D.c, we can then unilaterally
choose D.b in the remaining dimension. Since this is probably not
the intended behavior, we might choose the second solution, which
prevents this scenario by making the top-level selection of D.a or
D.c an error. However, this effectively restricts all parallel dimen-
sion declarations to define exactly the same tags in the context of
comprehensive selection, so this may be an overly strict require-
ment.

4.4 Dependent Dimensions

Another question is how to treat the selection of a dimension that
is declared nested within a choice in a different dimension. Such
nested dimensions are said to be dependent on the corresponding
tags in the outer dimension(s). In the following example, the di-
mension B is dependent on A.a.

select B.c from
dim A(a,b) in
A(dim B(c,d) in B(1,2),3)

There are at least three possible resolutions.

1. Selection from dependent declarations is considered ill-
formed. (The appropriate selection in the outer dimension
must be applied first.) An error is reported.

2. The matching declaration is resolved, preserving alternatives
where the selected dimension is not declared. The example
is equivalent to dim A{a,b) in A(1,3).

3. The matching declaration is resolved, removing alternatives
where the selected dimension is not declared. The expression
is equivalent to dim A (a) in A(1).

An argument for the third solution can be made from a usability
perspective: Making a selection in a dependent dimension requires
the selection of the tags it is dependent on. Consider the following
excerpt from a variational list of errands.

select BuyPie.yes from
dim VisitBakery(yes,no) in
VisitBakery(
dim BuyPie(yes,no) in
BuyPie(buy pie, leave bakery), ...)

If we decide to buy the pie, then we must necessarily visit the bak-
ery, so we can consider the above expression equivalent to the fol-
lowing, in which we are now forced to select yes in the VisitBakery
dimension.

dim VisitBakery(yes) in
VisitBakery(buy pie)

We could consider the selection of a dependent dimension to di-
rectly imply the selection of the tags it is dependent on, so that the
above example is equivalent to simply “buy pie”. However, this
approach does not scale to the case when a dependent dimension
occurs in more than one alternative of the surrounding choice.

The drawback of this automatic reduction of variability is that it
is quite complicated and perhaps better described as a combination
of more primitive operations. The other approaches are simpler.

4.5 Scope of Selection

The final challenge is to determine whether selection should be
lexically or dynamically scoped. This is relevant since dimensions
can be declared in shared expressions and reused. This is a diver-
gence from our previous work, where we have considered shared
expressions to be expanded only after all dimensions have been
eliminated [6]]. To illustrate, consider the following expressions:

(a) sharev=(dimA(a,b) in A(1,2)) in v+v
(b) dim A(a,b) in A(1+1,2+2)
(c) (dimA(a,b) in A(1,2))+(dim A{a,b) inA(1,2))

In the context of [[-] ois, (a) and (b) are equivalent. However, one
motivation for a syntactic representation of selection is to support
the reuse and configuration of variational modules. Therefore, in
the context of [[-]], we will consider (a) and (c) to be equivalent.

The issue of the scope of the selection construct can now be seen
in the following example:

share v = (dim D(a,b) in D(1,2)) in
select D.a from v

There are two possible resolutions:

1. Selection has lexical scope. The example is equivalent to
share v = (dim D{a,b) in D(1,2)) in v.

2. Selection has dynamic scope. The example is equivalent to
sharev=1inv.

Lewis et al. [15] propose a type system for dynamically scoped
variables that is based on a similar idea. To reuse a variational
expression, and configure it differently in different locations, seems
to require a dynamically scoped selection operation. For example,
the following would be equivalent to 1+2.

share v = (dim D{(a,b) in D(1,2)) in
(select D.a from v) + (select D.b from v)

However, dynamic scoping is risky since dimensions can be un-
expectedly captured by selections. This is similar to the issue of
macro hygiene in metaprogramming systems [14]. For example,
in the following expression where v is defined far away from the
selection, the user likely intended the selection to affect only the
second declaration of D.



share v = (dim D{a,b) in D(1,2)) in

select D.a from
v + (dim D(a,c) in D(3,4))

This expectation, which is fulfilled by lexically scoped selection,
leads to the following equivalent expression.

dim D{(a,b) in D(1,2) + 3

However, with dynamic scoping, the dimension in the bound ex-
pression v will be captured by the selection. The meaning now
depends on whether we choose the linear or comprehensive form
of selection, described in Section d.2] Under comprehensive selec-
tion, the example is equivalent to 1+2. With linear selection, the
intended dimension is not selected at all, and the example is equiv-
alent to the following expression.

1 + dim D{a,c) in D(3,4)

In both cases, the unwanted dimension capture can be avoided by
simply localizing the selection to the intended dimension, such that
the variable is no longer in its scope. Thus, we can rewrite our
original example in the following way, which behaves as expected.

share v = (dim D{a,b) in D(1,2)) in
v + (select D.a from dim D{a,c) in D(3,4))

While unexpected dimension captures are bad, dynamically scoped
selection is a powerful tool for the reuse of variational expressions.
Consider the following expression in which the expression ep;, is
very large and declares a dimension dim D(a, b).

share v = ep;, in
(select D.a from v) + (select D.b from v)

Without dynamic scoping, ep;, cannot be reused and configured
separately in different parts of the program. This provides a practi-
cal motivation for dynamically scoped selection.

S. CONFIGURATION SAFETY

We next discuss the design of a type system for the choice cal-
culus whose purpose is, first, to ensure choices in expressions are
properly bound by dimension declarations and, second, to track the
configuration status of expressions. The type system is speculative
since we have not yet decided on the semantics definition. Note
that this kind of type system is different in purpose and structure
from other variation type systems that try to ensure type safety of
object languages in the presence of variation, such as [2]] or [13].

Configuration information about choice calculus expressions is
captured by a judgment of the form: I'- e : A. Here, e is a choice
calculus expression, A is its configuration type, and I' is an en-
vironment to store unbound choices and the configuration type of
shared variables e. The configuration type A of an expression de-
scribes the dimensions we have to configure in order to generate a
variant. We represent the configuration type by a set of dimension
and tag specifications, that is, A = {d|,...,d,} where each d; is of
the form D;{t!, ... ,tfl’,). Expressions with configuration type {} are
fully configured. Note that this flat set representation requires that
expressions are dimension linear (all contained dimension declara-
tions use different names, see Section .2). This is not a serious
limitation since we can always rename dimension declarations (see
also [2]]). We write A@® A’ for the union of the configurations A and
A’ that is defined only if A and A’ are disjoint. (We also occasion-
ally omit the set brackets from singleton sets and write d © A.)

Unbound choices are represented in the environment I" by the
name of the choice’s dimension and the number of its alternatives,
written as D : n, and configuration assumptions for shared variables
are written as v : A.

I' == g |I,D:n|T,v:A

The typing judgment I' - e : A captures two important properties
about choice calculus expressions.

e An expression e is well formed [0] if it does not contain un-
bound choices, and all choices have the correct number of
alternatives. This is the case if @ e : A.

e An expression e is fully configured (or plain [6]) if e does
not contain any dimension declarations for which a selection
decision remains to be made. This is the case if [ Fe: {}.

Of course, we can take these two properties together and say that
an expression is well formed and fully configured if @ F e : {}.

In Figure [3] we present a set of rules that define the typing judg-
ment in a conservative way, which makes specific assumptions and
also imposes various restrictions on choice calculus expressions.
We will discuss the implications of these decisions, and potential
generalizations, alongside the explanation of the rules.

The OBy rule collects the configuration requirements of all sub-
expressions and combines them into one requirement for the whole
expression. Since A and A’ must be disjoint, the type system as-
sumes dimension linearity.

The rules for sharing and variable reference SHARE and REF are
straightforward and similar to those in lambda calculus.

The CHOICE rule requires a corresponding dimension entry in
the environment, which is later discharged by the Dim rule. Note
that all alternatives must have the same requirements, this means
we cannot type dependent dimensions (see Section [£.4). When the
requirements of all alternatives are the same, any nested dimensions
can always be factored out of the choice [6]. This restriction is
necessary to support the flat structure of configuration types.

Finally, the SELECT rule removes a configuration obligation from
the configuration type. For dimension-linear expressions, each se-
lect operation will remove one dimension declaration, so a well-
formed expression e with @ I e : A, requires exactly |A| selections
to obtain a plain, fully configured expression.

The dimension linearity restriction can be lifted if we employ
a more structured form of configurations types, where a tag in a
dimension can lead to further required configuration.

A == {} Fully Configured
| D{=A,....,t = AYDA Required Decision

We abbreviate t = {} as simply 7. Additionally, we associate a
selection assumption i with dimensions in the environment I".

I' == @ | I,D:(ni) | ,v:A
With these provisions, the CHOICE rule can be extended as follows.

D:(ni)el I'kei:A

i
CHOICE
I'D{ey,...,en): A

That is, the type of a choice is the type of the alternative that is
assumed to be selected. The Dim rule is extended to introduce se-
lection assumptions and build the corresponding required decision.

I,D:(n1)Fe:A I,D:(nn)ke:A,

. . DIM
I'tdim D(ty,...,tn)ine:D{t; = Aq,...,tn = Ap)

Finally, the SELECT rule replaces a required decision with the type
of the selected alternative.
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I'tselect D.t frome: A,

Figure 5: Configuration typing rules.

F"E:A@D(tl =Aq,.. 0 :>An>®A/
I'+select D.t frome: ADA; DA

=t
SELECT

If we assume that the first matching required decision is eliminated,
this type system corresponds to the linear selection semantics.

6. MODULARITY

When considering nested software product lines, and hence soft-
ware product lines as components of bigger product lines, the clas-
sical questions of information hiding and robustness with regard to
evolution arise. From this point of view, it is important that the type
of an expression is a proper abstraction of the expression which
does not reveal too many (fragile) details of its structure.

In this light, the OBJ typing rule from Figure[3]is dangerous since
it merges the configuration options of its subexpressions. Changing
these subexpressions changes the type of the compound expression.
In the linear semantics, the structure of a compound expression is
also relevant for the semantics of the selection operation.

To address this problem, we present an alternative version of
the choice calculus, the modular choice calculus (MCC), which is
more restrictive with regard to nesting dimension declarations, but
is more suitable for modular software product line components.

Figure [6] shows the syntax and typing rules for MCC (only the
parts that differ from Figures ] and 3 are given). The main differ-
ence in syntax is that multiple dimensions can be declared at once.
The reason for this change is that, in MCC, the following two ex-
pressions have two very different meanings.

€AB =dimA<...>,B<...> in...
ea, =dimA(...)indimB(...)in ...

The expression e4p declares a product line with two configuration
options, whereas e4,, declares a product line with a single config-
uration option which, when selected, yields a product line with a
single configuration option. Similar to the lambda calculus, nested
product lines as in the former case must be configured one by one,
starting from the outermost. This is why it is crucial that one can
declare multiple dimension options at once, as in e4 g, because such
product lines can be partially configured in arbitrary order.

MCC is also similar to the lambda calculus with regard to its
operational semantics. In both calculi, introduction and elimination
forms must be directly adjacent (possibly after some reduction) to
trigger a contraction rule. In contrast, in the calculus described
in the previous sections, the introduction and elimination forms for
variability can have “remote” effects; they are propagated along the
syntax tree. In terms of the discussion in Section[3.2] the modular
variant only allows local resolution and indirect contribution.

While we don’t show the semantics of the calculus here this de-
sign decision is reflected in the type system in Figure |6l As re-
flected in the OBJ and CHOICE rules, a compound term must consist
of fully configured subterms. The SELECT rule allows partial con-
figuration of a product line; each select eliminates the correspond-
ing dimension from the type. Not shown is the special case when
the last dimension is eliminated from the configuration type, in

which case, the resulting configuration type would be {}. The close
form serves to confirm that a product line has been fully configured.

Pragmatically, the main difference between the non-modular ver-
sion of the calculus and MCC can be observed in an expression that
contains subexpressions that are not fully configured. In MCC, the
nested dimensions must be explicitly mapped to dimensions at the
top level. For example, in the following expression, the nested di-
mension B is mapped to the top-level dimension A.

dim A{a,b) in

share v = (dim B{c,d) in ...) in
A(select B.c from v, select B.d from v)

In the non-modular calculus, open configuration options of nested
expressions are directly selectable from the top level. By requiring
this explicit mapping we provide an abstraction boundary that pre-
vents the propagation of evolutionary changes in a subexpression
to the compound expression.

7. RELATED WORK

The C Preprocessor (CPP) [8]] is a widely used annotative varia-
tion tool that also provides syntactic support for selection. A loose
correspondence between concepts in the choice calculus and CPP
is summarized in the following table.

Choice Calculus  C Preprocessor

a<ey,...,ep> Plain text

Tags: t,u Macros: T, U

dim D(t,u) N/A

D{ey,er) #if T /e /#elif U/ep /#endif
select D.t #define T 1

Unlike CPP, the choice calculus respects the AST of the underlying
artifact. This is also a feature of other structured annotative varia-
tion tools, such as CIDE [[11]. A configuration is identified in the
choice calculus by a particular selection of tags, and in CPP, by a
particular definition of the macros named in conditional compila-
tion directives. Dimensions impose a structure on the configuration
space that is not present in CPP, and choices ensure that this struc-
ture is respected at each variation point. External representations
like feature models [10] and the Linux Kconfig tool [[17] can fulfill
a similar role as dimensions, but the consistent usage of macros in
CPP is not enforced, which leads to bugs in practice [[18].

Both the choice calculus and CPP support external configuration.
In CPP, this corresponds to setting macros at the command line or
in a Makefile. Like our new select construct, the CPP #define di-
rective provides syntactic support for configuration from within the
language itself. However, #define is much more complicated than
select since (1) macros can be conditionally defined, (2) macros can
be defined in terms of other macros, and (3) the value of a macro
can change over the course of a program. This complexity makes
it difficult to reason about variability in CPP-annotated code [12]].
The extension we propose to the choice calculus provides a sim-
pler, more structured view of configuration. This is reflected in the
relatively simple type systems described in Sections[3]and [6]
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Figure 6: Syntax and typing rules for modular choice calculus.

Some software product line systems provide language support
for configuring individual products, such as the feature algebra sup-
ported by the AHEAD tool suite [1]. However, this language is
purely external, and therefore more closely related to Make and
KConfig than to the select construct described here.

While rare in implementation-level languages, internal language
support for selection has been explored at the modeling level.
Reiser has extended feature models with configuration links that
support the reuse and (partial) configuration of feature models [[16].
A configuration link maps a decision in the source feature model to
a set of decisions in the target feature model, by way of a set of
rules. This can be used to simulate the modeling of nested product
lines, as described in Section[3.21 Similarly, Haber et al. present a
meta model for describing variability in hierarchical, component-
based systems, that contains constructs for locally configuring the
variability in components [9]].

More research has been done on external configuration at the
level of feature models. For example, Czarnecki et al. enumerate
the ways variation can be reduced in cardinality-based feature mod-
els [4]. This effectively yields a catalog of potential configuration
operations, of which our select construct is just a single instance.
Subsequently, Classen et al. have provided a formal semantics for
the staged configuration of feature models [3].

8.  CONCLUSIONS

We have presented an extension of the choice calculus with a
selection operation. This has raised a number of design questions
regarding the semantics of selection itself and potential configu-
ration and modularity type systems for the choice calculus. The
different potential semantics of selection can be primarily distin-
guished in two dimensions: (a) the scope of the sharing construct
(static vs. dynamic) and (b) the reach of the selection operation (lin-
ear vs. comprehensive dimension elimination). Moreover, we have
seen that the structure of the type system has a significant impact on
the expressiveness of the choice calculus. While dimension linear-
ity is a non-critical restriction, a flat model of configuration types
precludes dependent dimensions.

We know from the vast literature on the lambda calculus that
there are different semantics and type systems for different pur-
poses and with different strengths and weaknesses. For the choice
calculus we obtain a similar picture. In future work we will con-
tinue investigating more expressive type systems and their interac-
tion with the different semantics.
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