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Abstract

We have been working on a unit system for end-user
spreadsheets that is based on the concrete notion of units
instead of the abstract concept of types. In previous work,
we defined such a system formally. In this paper, we de-
scribe a visual system to support the formal reasoning in
two ways. First, it supports communicating and explaining
the unit inference process to users. Second and more im-
portant, our approach allows users to change the system’s
reasoning by adding and customizing the system’s inference
rules.

1 Introduction

Static type checking helps to find programming errors
early, which makes programs more reliable and predictable.
However, static typing has seldom been used in end-user
programming languages. A possible reason for this omis-
sion is that the introduction of a type system incurs learn-
ing cost: either the cost of learning about type declarations,
or the cost of understanding a type inference system well
enough to understand the error messages it generates. End
users are not usually interested in paying these costs.

To help prevent some kinds of spreadsheet errors, we are
developing an approach to reasoning about units. The work
has some similarity to type inference [11, 3] in that it rea-
sons behind the scenes through static analysis techniques
to find errors in combining values, but our approach is not
based on types. In particular, we are not translating abstract
type systems into visual languages as exercised, for exam-
ple, in [14, 18]. Rather, like other research into units and
dimensions [24, 9], the goal of our approach is to detect er-
rors related to illegal combinations of units. However, un-
like the other works on units, we aim to detect any such

∗This work was supported in part by the National Science Foundation
under ITR-0082265.

error as soon as it is typed in, to make use of information
such as column headers the end user has entered for reasons
other than unit inference, and to support a kind of polymor-
phism of units through generalization. Note that our notion
of “unit” is completely application dependent and is gen-
erally not related to the idea that units represent scales of
measurement for certain dimensions [10].

We explain the ideas behind our approach by an example.
Suppose a user has created the spreadsheet that is shown
in Figure 1. From the labels, values, formulas, and their
relative positions, the system can guess that, for example,
the entries of columnB are apples. The system confirms
its guesses by interacting with the user, so that the user can
correct the guesses and add additional information about the
units structure as well. This mechanism for getting explicit
information about units is a “gentle slope” language feature
[13, 12]: the user does not have to “declare” any unit infor-
mation at all, but the more such information the user enters
through column headers or later clarifications in correcting
the system’s guesses, the more the system can use this in-
formation to reason about errors.

The system infers that the unit for the cellB5 is apples
since the formula adds two numbers which are of unit ap-
ple. The entry inD3 adds apples and oranges, which at first
glance may seem an illegal combination of units; however,
it represents the total of all of row3, which is in units of
May as well as in units of all the fruits. Thus, the total is in
units of May apples or May oranges, which reduces to May
fruits, and is legal as well. As this demonstrates, in cells
such asB3 there is a collaborative relationship between two
kinds of units: apples and May. By similar reasoning, the
total inD5 is legal; it turns out to be the sum of all fruits in
all months, and its units reflect a collaborative relationship
between fruits and months.

Now if the user attempts to add May apples to June or-
anges (B3+C4), the system immediately detects a unit er-
ror in this formula, because there is no match on specific
units (apples versus oranges), and not enough is being com-
bined to cover all fruits in a way that also matches either
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(a) Formulas

(b) Resulting values

Figure 1. A fruit production spreadsheet.

one month or generalizes to all months. Adding May ap-
ples to June oranges is the kind of error that arises when
a user accidentally refers to the wrong cell in a formula,
through typographical error or selecting the wrong cell with
the mouse.

In previous work [5], we developed a formal reasoning
system for detecting such errors. However, the reasoning
system we developed was expressed in a highly formal no-
tation that would be inappropriate for an audience of end
users. Further, our reasoning system did not address how
the system guesses about the labels so as to derive the hier-
archies of units, how a user can correct the system when it
guesses wrong, or how such a system can communicate its
reasoning to the user. In this paper, we address these points.
The implications of addressing these points go beyond mat-
ters of representation: they change the reasoning system in a
fundamental way, namely by allowing the user to customize
the system’s inference rules themselves, not just the terms
used in the system’s inference rules.

This approach is, to the best of our knowledge, the first
to support the following features:

• It supports not only communicating visually with the
user about the results of static analysis, but alsocus-
tomizationvisually by the user of the static reasoning
system.

• It is intended forend-userprogrammers.

2 Background: Reasoning about Units

In this section, we summarize the reasoning system we
previously devised for units. More details, in particular, the
formal definitions, can be found in [5].

The design of the unit system was driven by four goals
that acknowledge research findings about how end users
tend to work: First, the reasoning mechanism should give
immediate visual feedback as to the unit safety of the most
recently entered spreadsheet formula as soon as it is entered.
Thus, we wanted the reasoning system to workincremen-
tally. Second, the reasoning mechanisms should directly be
in terms of elements with which the user is working, such
as labels and operation names, that is, we were aiming atdi-
rectness. Third, as a consequence of the third goal, the rea-
soning mechanism should requireno formal notion of types
per se other than what is expressed by units. Fourth, the rea-
soning mechanism should support the kind of spreadsheets
end users really build. In particular, the approach should
not rest on assumptions that end users will create “the right
kind” of formulas, be complete in their labeling practices,
or that their spreadsheets will be free of statically detectable
errors. This should make the reasoning systempractical.

2.1 What are Units?

The unit information for the cells in a spreadsheet are
completely contained in the spreadsheet itself because units
are defined by values. More precisely, each value in a
spreadsheet (except blanks) defines a unit. Although all val-
ues are units, not all values are generally used as units. For
example, in the spreadsheet from Figure 1 the textTotal is
by definition a unit, but it does not have practical use as a
unit for cells in the spreadsheet.

The fact that one value is a unit for some cells in a
spreadsheet is given byheader definitions. Intuitively, a
header is a label that gives a unit for a group of cells. For ex-
ample, in Figure 1Month is a header for the cells containing
May andJune.

Since units are values, they can themselves have units;
hence, we can get chains of units calleddependent units.
Further, since values in a spreadsheet can be classified ac-
cording to different categories at the same time, values can
principally have more than one unit, which leads toand
units. Finally, operations in a spreadsheet combine values
that possibly have different units. In some cases, these dif-
ferent units indicate a unit error, but in other cases the unit
information can be generalized to a common “superunit”.
Such generalizations are expressed byor units. In the fol-
lowing, we will explain these different forms of units in
more detail.

Dependent Units. In the spreadsheet from Figure 1 we
have that cellB2 (containingApple) is a header for the cell
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B3 (containing the number8). On the other hand,B2 has it-
self cellB1 (Fruit) as a header. This hierarchical structure is
reflected in our definition of units. In this example, the unit
of the cellB3 is not justApple, butFruit[Apple]. In general,
if a cell c has a valuev as a unit which itself has unitu, then
c’s unit is adependent unit u[v]. Dependent units are not
limited to two levels. For example, if we distinguished red
and green apples, a cell containingGreen would have unit
Fruit[Apple], and a cell whose header isGreen would have
the dependent unitFruit[Apple][Green], which is the same as
Fruit[Apple[Green]].

And Units. Cells might have more than one unit. For ex-
ample, the number11 in cell C3 gives a number of oranges,
but at the same time describes a number that is associated
with the month May. Cases like this are modeled withand
units, which are similar to intersection types [17]. In our
example,C3 has the unitFruit[Orange]&Month[May].

Or Units. The dual toand units areor units that cor-
respond to union types.Or units are inferred for cells
that contain operations combining cells of different, but re-
lated units. For example, cellD3’s formula is B3 + C3.
Although the units ofB3 and C3 are not identical, they
differ only in one part of theirand unit, Fruit[Apple] and
Fruit[Orange]. Moreover, these units differ only in the in-
nermost part of their dependent units. In other words,
they share a common prefix that includes the complete
path of the dependency graph except the first node. This
fact makes the+ operation applicable. The unit ofD3 is
then given as anor unit of the units ofB3 and C3, that
is, Fruit[Apple]&Month[May]|Fruit[Orange]&Month[May]. In
general, anor unit is valid only if it can be transformed into
a unit expression in whichor is applied only to values (that
is, not unit expressions) that all have the same unit.

Finally, for completeness of the formal unit system we
have included a unit1 that is used for all values that do not
have specifically assigned any other unit and an error unit
ε that represents unit errors (as well as erroneous computa-
tions).

2.2 Well-Formed Units

We consider only a subset of all possible unit expressions
to be meaningful. For example, a number cannot represent
a number of applesand oranges at the same time. Hence,
a unitApple&Orange is not valid. However, a number can
well represent either applesor oranges. This is why we
consider a unit likeApple|Orange to be valid.

By defining which unit expressions are valid we can dis-
tinguish between unit-correct computations and unit-errors.
Formally, the concept of valid unit expressions is captured
well-formed units. Five rules are needed to define when a
unit is well formed:

1. 1 is always a well-formed unit.

2. Every value that does not have a header is a well-
formed unit. For example, in Figure 1,Fruit is a well-
formed unit.

3. If a cell has valuev and headeru, thenu[v] is a well-
formed unit. For example, in Figure 1,Fruit[Apple] is a
well-formed unit.

4. Where there is no common header ancestor, it is
legal to and units. For example, in Figure 1,
Fruit[Apple]&Month[May] is a well-formed unit be-
causeApple andMay have no common ancestor.

5. Where there is a common header ancestor, it is
legal to or units. For example, in Figure 1,
Fruit[Apple]|Fruit[Orange], which denotes the same unit
as Fruit[Apple|Orange], is well-formed. More pre-
cisely, we require that all the values except the most
nested ones agree. This is the reason why the unit
Fruit[Apple[Green]]|Fruit[Orange] is not well-formed.

2.3 Unit Inference

It remains to be explained how unit expressions are de-
rived for all cells of a spreadsheet. The main rules for infer-
ring units for cells are given below.

1. All cells that do not have a header, have the unit1. For
example, cellTotal has unit1.

2. If cell a has a header cellb that contains a valuev and
has a well-formed unitu, thena’s unit is u[v]. More
generally, if a cell has multiple headers with valuesvi

and unitsui , then its unit is given by theand unit of
all the ui [vi ]. An example is the cellB3 containing8

whose unit isFruit[Apple]&Month[May].
3. If cell a’s formula is a reference to cellb, thenb’s unit,

sayub is propagated toa. For example, cellA5 con-
tains a reference toD2 which has unit1. Hence,A5’s
unit is also1. If a has itself a header definition, sayua,
thenua must conform withub, which is achieved by
defininga’s unit to beua&ub.

4. Each operator has its own definition of how the units
of its parameters combine.

Regarding the latter point, we define a functionµω for each
operatorω, which defines how the operation transforms the
units of its parameters. Note that the definition ofµω takes
also into account the unit that can be derived from a possi-
ble header definition for that cell. Both sources of unit in-
formation have to be unified. This unification is particularly
helpful to retain unit information in the case of multiplica-
tion and division because these two operations have in our
current model only a weak unit support.

The definition ofµω is shown for some operations in Fig-
ure 2. u is the cell’s header unit;u1, . . . ,un are all the units
of the parameters.
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µ+(u,u1, . . . ,un) = (u1| . . . |un)&u
µcount(u,u1, . . . ,un) = (u1| . . . |un)&u
µ∗(u,u1, . . . ,un) = ↓(u1, . . . ,un)&u
. . .

↓(u1, . . . ,un) =
{

ui if ui 6= 1∧∀ j 6= i : uj = 1
1 otherwise

Figure 2. Unit transformations.

A proper treatment of multiplication and division by
the reasoning system requires the concept of dimensions
[24, 9]. Extending our unit system by dimensions would
complicate it considerably; in particular, end users would
probably be confused if required to cope with both unit
and dimension error messages. However, the extensions
described in this paper make it possible for users to sup-
plement the system’s knowledge with additional inference
rules that could handle such cases.

By applying operations we can obtain arbitrarily com-
plex unit expressions that do not always meet the conditions
for well-formed units. We need equations on unit expres-
sions that allow us to simplify complex unit expressions.
Whenever simplification to a well-formed unit is possible,
it can be concluded that the operation is applied in a “unit-
correct” way. Otherwise, a unit error is detected. Simpli-
fication rules for doing so include rules for commutativ-
ity, generalization, factoring, and so on. The complete set
of equations is given in Figure 3. They define a semantic
equality of units.

u1&u2 =u u2&u1 (commutativity)
u1|u2 =u u2|u1

(u1&u2)&u3 =u u1&(u2&u3) (associativity)
(u1|u2)|u3 =u u1|(u2|u3)
u&(u1|u2) =u (u&u1)|(u&u2) (distributivity)

u&u =u u (idempotency)
u|u =u u

1&u =u u (unit)
u[u1]|u[u2] =u u[u1|u2] (factorization)

u[u1| . . . |uk] =u u ⇐ (∗) (generalization)
(u1[u2])[u3] =u u1[u2[u3]] (linearization)

Figure 3. Unit equality.

The condition(∗) for generalization is that theor unit
expression consists exactly of all unitsu1, . . . ,un that have
u as a header. Note that & distributes over|, but not vice
versa, and that although1 is the unit for &, it leads to a
non-valid unit when combined with|.

We will explain some of the inference rules and equality
rules in the next section.

3 Visually Customizing Inference Rules

Consider the system’s inferences for the spreadsheet of
Figure 1. The system’s inference rules at this point are those
given in Figures 2 and 3. These figures do not give a way
for the system to infer headers, so the system cannot yet do
so. This means all values have unit1, and thus there are no
unit errors.

To get the use of units into this picture, the system needs
some way to get beyond this point. Thus, we provide a very
simple unit inference rule based on spatial reasoning:

Base Layout Rule: A cell’s headers are the nearest
cell to the left whose formula is a constant string
and the nearest cell above whose formula is a con-
stant string.

For example, cellB3’s headers areA3 (May) andB2 (Apple),
andB4’s headers areA4 (June) andB2 (Apple). Not all units
will come out so well using this rule, however. For example,
according to it,A4’s (June’s) header isA3 (May). The user
will help solve this kind of problem.

It should be noted that a much more sophisticated Base
Layout Rule, or even a group of sophisticated Base Lay-
out Rules based upon spatial reasoning, improved over time
by noticing the particular user’s habits, and so on, would be
possible. The choice of Base Layout Rules is up to the envi-
ronment’s designer. Thus, our Base Layout Rule should be
viewed as simply a prototype we have devised to help show
how customization can proceed, not as a recommendation
for any particular base rule.

Because of the Base Layout Rule, the system immedi-
ately detects some unit errors. For example, cellB5 has an
error because its formula and spatial position leads to a unit
Fruit[Apple]&Month[May]|Fruit[Apple]&May[June], which is
equal toFruit[Apple]&(Month[May]|May[June]) due to the
distributivity law. However, this unit is not well-formed be-
causeMonth[May] andMay[June] do not share a common
prefix and therefore cannot be simplified further.

When the system detects unit errors such as the one just
described forB5, it displays an indicator of a unit error,
currently planned as changing the cell’s background to red.
The user is able to obtain a visual explanation of the prob-
lem using the visual representation of the derivation pro-
cess. (We will briefly describe this representation in Section
4.) From the explanation, the user can see that the system
has not figured out all the headers correctly. The user can
then customize the system’s inference process to solve this
problem by adding new rules.

3.1 Entering a New Rule by Demonstration

New rules are entered using a visual by-demonstration
approach. We selected a visual by-demonstration approach
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to expressing rules because the Kidsim/Cocoa/Stagecast [2,
6] and the AgentSheets [21, 7] projects have contributed
empirical evidence that this approach can be used by at least
two populations of end users, namely children and teachers
(for example, [19, 20, 22]).

For example, suppose the user’s viewing of the expla-
nation shows the system’s use of the Base Layout Rule in
inferring headers. The user sees that this is a problem, and
adds a new rule, shown in Figure 4.

For example:

Month

May

June

Total

=⇒
Month:

May

June

Figure 4. A layout rule given by the user.

As in Stagecast, the rule format is the condition, an im-
plication arrow, and the result. Also as in Stagecast, the rule
is based on visual attributes. For the “if” side, the user has
snapped a picture of a portion of the spreadsheet. However,
unlike in Stagecast, the system has added tiny arrows to the
visual parts of the picture that are important other than the
spatial layout between non-blank cells. In this example, the
additional important parts are the presence of a line under
Month and the presence of a blank after Total. The user can
add, delete, and/or move these “importance arrows” as de-
sired. The spatial layout between non-blank cells is always
taken into account in pattern matching, and thus does not
need importance arrows.

Thus, the “if” side of the picture says that when there is a
vertical list with a line under one of the words, the list starts
at the underlined word and ends at a blank. The “then” side
of the picture starts as an automatically generated sugges-
tion by the system, but the user can manipulate it as needed.
In the presented example, the system has originally included
Total, but the user has deleted it resulting in the “then” part
actually shown in Figure 4. This “then” side defines a unit
hierarchy whose parent (that is, header) is the underlined
word and whose children are every element except the last
one. The “For example” label indicates that the reasoning
system does not care about the actual values of the cells,
that is, that these are just an example. In other words, the
user has defined a generic rule.

Two questions arise in this connection: (i) how does the
system generate a suggestion for the “then” side? and (ii)
what is the precise meaning of a generic rule? To answer
these questions, we first have to explain the meaning of the
“if” part of a rule. In general, the “if” part can be considered
as a pattern that consists of constant and variable parts. Im-

portance arrows mark constants. These can be formatting
symbols like the black underline or particular cell values
like the blank cell in Figure 4. All other parts are inter-
preted as variables. These variables can be partitioned into
groups of either one or more cells. In particular, all cells
that are (transitively) adjacent and that are not separated by
constants comprise one group. Now if the partition obtained
in the described way consists of one single variable and one
group of variables, the system generates the visual form of
a header definition with the one variable as the header/unit
for the set of variables in the group. This answers the first
question.

The meaning of this rule is that for all parts of the spread-
sheet that match the “if” side of the rule, a header definition
according to the “then” side is created by substituting the
actual variables from the spreadsheet for the variables in
the pattern. In that process the number of variables in a
group does not matter. If the user has edited the system-
generated “then” part, for example, by deleting a variable,
these modifications are interpreted “by position”, that is,
from the header/unit definition the first/last, second/second-
but-last, and so on variable from the group is excluded. We
are currently not considering rules whose “if” part specifies
anything other than a 2-partition of a single variable and a
group. Overlapping patterns are possible and generally lead
to andunits of the parts that are matched multiple times.

This new rule becomes the first layout rule the system
will check, before it reverts to applying the Base Layout
Rule. In general, as in Stagecast, a new rule always be-
comes the first rule the system tries to apply. As soon as the
system finds an applicable rule, it applies it and does not
consider other rules that possibly match. This rule applica-
tion strategy ensures that the unit simplification process is
deterministic.1

Note that the “then” side of a rule is a logical relation-
ship, not a spatial layout. The demonstrational rule-based
languages Stagecast and AgentSheets express only spatial
relationships in their rule syntax (although it is possible to
express state information as well through additional vari-
ables). A discussion of how logical relationships are ex-
pressed follows next.

1On the other hand, such a fixed reduction strategy might prevent in
some cases a reduction to a well-formed unit, which could be achieved by
applying rules in a different order. However, this behavior agrees with the
definition of most other type systems, which have to report a type error in
case of doubt for the sake of type soundness [11]. For our unit system,
knowledge about the confluence [4] of the current rule system could yield
additional information about the confidence in a reported unit error, that is,
a unit error reported in a confluent rule system is definitely an error.
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3.2 Visual Representation of Logical Relation-
ships

Most end-user rule-based languages do not provide a
way to enter strictly logical relationships in the rules. In-
stead, all relationships expressed in the main portion of the
rule must be based on visual attributes such as topology or
spatial relationships. (One exception is FAR [1], in which
rules are expressed via formula subexpressions and cell ref-
erences, in a multiparadigm spreadsheet-based approach.)
The reasoning system presented here specifically focuses on
logical relationships, but on deriving them and using them
to detect errors, not to determine cell values or to define a
program per se. Hence, it produces a static analysis rea-
soningabouta visual program (spreadsheet), not a program
itself.

The user participates in how the reasoning can be done
by helping to define the rules followed in doing this reason-
ing, and hence must be given access to the logical relation-
ships the system infers.

One such logical relationship is the hierarchical nesting
of units. Recall that in the formal notation of the underly-
ing system, nestings are displayed using open and closed
square brackets. The visual representation of these logical
nesting relationships is to display them as nested lists, in or-
der to explicitly communicate the hierarchical reasoning of
the system. An example of this representation is the “then”
side of the rule in Figure 4.

In general, there is a 1:1 mapping to a visual represen-
tation from every formal symbol used by the underlying
system; see Figure 5. It is important for every element of
reasoning of the underlying system to be represented to the
user, since the user actually participates in customizing the
system’s reasoning.

The representation elements were not chosen arbitrarily.
In particular, the representation of &,|, and parentheses is
based upon the results of Pane and Myers’s work on lan-
guage syntax elements that are problematic for end-user
programmers [15]. Specifically, they recommend that the
use of these textual elements be omitted, as end users do
not interpret them to have the intended meanings. Follow-
ing this recommendation, in our approach & is represented
by a horizontal list,| as a vertical list, and parentheses by
enclosing boxes. Pane and Myers themselves defined a lan-
guage called HANDS [16] that follows their earlier recom-
mendations. In HANDS, & and| are replaced by vertical
and horizontal lists respectively. Moreover, nested boxes
are used to represent nested parentheses in a manner similar
to our approach.

3.3 Non-Generic Rules

The layout rules that now exist, the Base Layout Rule
supplemented by the new rule of Figure 4, are still not
enough to correctly derive the header forOrange, because
the new rule handles only vertical lists, and the Base Lay-
out Rule will decideOrange’s header isApple. The user can
solve this problem by entering a new rule to handle hori-
zontal lists in a manner similar to that described above. Al-
ternatively, the user can provide specific information about
the Fruit hierarchy by entering a specific rule about it, as
in Figure 6. The main difference between a specific rule
and a “for example” rule is that the “for example” label is
missing.

Fruit

Apple Orange Total
=⇒

Fruit:
Apple

Orange

Figure 6. A non-generic rule defining the fruit
hierarchy.

The left hand side of the fruit rule is not really necessary.
If it were not present, all that would be left is the right hand
side, which simply defines the fruit hierarchy. However,
the left hand side does perform some extra safeguarding,
because if the user eventually changes the spreadsheet by
adding another column of fruit, the fruit rule will no longer
fire for any of the fruits, so that unit errors will pop up all
over the spreadsheet, providing a great deal of immediate
feedback that the user’s last edit has caused the reasoning
about units to go wrong.

Because the user can enter specific, concrete rules such
as the fruit rule, it is possible for the system to success-
fully reason about large spreadsheets with inconsistent lay-
out conventions. Specific, concrete rules allow the user to
let the system work around exceptions to his or her usual
layout conventions. As the next section will explain, they
also allow the user to customize the system’s treatment of
andunits.

3.4 Meters * Meters = SquareMeters

As we previously mentioned in Section 2, our reasoning
system does not reason about dimensions, such as multiply-
ing meters times meters to get square meters. According to
our inference rules, multiplying meters times meters will in
result in the unit1; see the definition ofµ∗ in Figure 2.2

2The rationale behind this definition is to rather accept weaker unit
transformations, here: weakening multiplications of non-1 units to1, than
to report unit errors that could not really be remedied within the static rule
system without changing either the labels ot the header definitions of the
spreadsheet; see [5].
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Concept Formal notation Formal example Visual representation Visual example

andunit u&u′ May&Apple u u′ (horizontal list) May Apple

or unit u|u′ Apple|Orange
u
u′ (vertical list)

Apple

Orange

unit definition (assumed to be given)

u :
u1
...
un

(nested headers)
Fruit:

Apple
Orange

dependent unit u[u′] Fruit[Apple] u
u′ (nested labels)

Fruit
Apple

brackets (u) Fruit& (May|June) u (box around expression) Fruit
May

June

one unit 1 1 (omitted)

unit error ε ε red cell background B3+C4

Figure 5. Visual representation of unit expressions.

However, it is possible for the user to provide specific,
concrete rules to solve this problem. This is done using the
syntax shown in Figure 7. For the sake of concreteness,
the overriding of rules involvingand units is expressed by
applying an operation like∗ to units (and not a unit operator
&). The meaning is that whenever multiplication is applied
to values/cells whose unit isMeters, the resulting unit of
the cell containing this formula isSquareMeters, that is, the
default unit transformation for∗ is superseded.

Meters ∗ Meters =⇒ SquareMeters

Figure 7. A “dimension” rule.

Once theSquareMeters unit has been so defined, it can
be included in rules about hierarchical relationships such as
those expressed in the right hand side of the fruit rule.

Combining value operations with units has the nice ef-
fect that we can express unit transformationsand the as-
sociation of these to operations in one definition. (Using,
for example, the ruleMeters Meters ⇒ SquareMeters would
convert any unit expressionMeters&Meters into SquareMe-

ters regardless of the operation that created it, which is prob-
ably wrong.)

This technique allows the user to solve any unit error
that the system has inferred because it did not have com-
plete information. For example, it may be valid to add May
apples to June oranges, because those are the only items in
the Safeway grocery chain’s order. The user can provide a
rule such as the square meters rule that acknowledgesSafe-

wayItems as a valid unit.
Hence, the described form of (non-generic) overriding of

the built-in rules forandunits enables a limited treatment of
dimensions within the unit system. This approach, however,
does not provide a comprehensive treatment of dimensions.
For example, if we had a formula in our spreadsheet that
divided a cell with unitSquareMeters by a cell having unit
Meters, the rule system cannot automatically infer that the
cell should be of unitMeters. To realize this behavior, the
user would have to define a further rule for division and
meters. Also, in order to deal with square inches, square
miles, and so on, the user had to enter each rule individually.

To solve the latter problem we could be tempted to al-
low generic versions of these kinds of rules forand units,
simply by making them “for example” rules, but then we
encounter two problems. First, we would have to address
the fact that one unit likeSquareMeters consists of a con-
stant part (Square) and a variable part (Meters). We could
follow a simple textual approach that matches all parts of
the left hand side of the rule in the resulting unit and con-
sider these parts as variable. However, this approach would
not scale up very well to more complex unit expressions,
in particular, for nested dimensions. Second, a completely
generic version of the dimension rule would probably be too
general because it would allow us, for instance, to multiply
apples times apples—for the cell containing such a formula
the inference system would then derive a unitSquareApple,
which does not make any sense. Hence, if we wanted to
allow “for example” rules forand units, we would need a
way of restricting the set of units to which the general rule
applies. This would amount to going from parametric poly-
morphism to a controlled form of overloading [23] or qual-
ified types [8].
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3.5 Rules About Rules

The unit approach for spreadsheets leads to each spread-
sheet having its own customized unit system, because the
units are built from the values contained in the spreadsheet.
Moreover, the user can dynamically redefine the unit sys-
tem by adding rules or unit definitions. Rules or definitions
that can be added are:

1. Generic hierarchy rules. These are the “for example”
rules like the one shown in Figure 4. These rules define
a general mechanism to infer headers and dependent
units in a spreadsheet. They do not really modify the
reasoning system, but they feed the spatial and visual
characteristics to it.

2. Specific unit definitions. These are rules like the one
shown in Figure 6. These rules extend the unit hier-
archy (once); they can be considered special cases of
generic hierarchy rules, in that both are similar to def-
initions of implicit type definition schemas.

3. Concrete unit transformations. These are definitions
of new units and how they are related to specific oper-
ations like the one shown in Figure 7. These rules ac-
tually modify the unit reasoning system because they
override unit transformations for operations applied on
cells with particular units.

A user can change or delete the rules he or she has added
to a unit system of a spreadsheet, but it is not possible to
delete or change built-in rules like the ones shown in Figure
3. However, by adding concrete unit transformations the
behavior of the core reasoning system can be modified. In
particular, since new rules are considered first, before the
system-provided ones, users have a lot of power in the ways
they can affect the reasoning system.

The described unit system actually defines a three-level
reasoning system about spreadsheets. At level one, the
built-in rules and the Base Layout Rule provide a general
framework for reasoning about spreadsheets. Level two is
provided by the values and their spatial arrangement of each
spreadsheet. Together with level one, it provides a rudi-
mentary unit checking system that is already partially cus-
tomized for the application at hand. Finally, level three is
given by the user-defined rules. This level can be used to
customize the unit inference system further to any desired
level of precision.

4 Current Status and Future Work

We have devised our representation with the end user in
mind and have drawn from others’ empirical work in choos-
ing the syntax. Still, there is no substitute for empirical
work on the end product with real people, and that is an im-
portant next step for us. Also, the implementation is still

in a very rough prototype form. Specifically, we have im-
plemented a research prototype of the reasoning system us-
ing Haskell. Our prototype includes the inference rules, but
does not yet automatically generate the visual mechanisms
shown in this paper.

One particularly important aspect of the visual interface
is the explanation of unit errors. In addition to the “formula
view” and “values view” of a spreadsheet as, for example,
provided by Excel, we also offer the user a “units view”.
In the units view, a user sees the values in grey print, and
superimposed on them in regular print are the units. (The
faded grey values are just for context). The erroneous ones
have a red background. Then the user can ask for an ex-
planation. There is a static and a dynamic representation
of the explanations. The static one gives a story board, and
the dynamic one animates it by transitioning from frame to
frame through the story board. The static one looks just like
the rules we showed in this paper, only with the examples
actually in the paper filled in. The system’s inference rules
also have a visual representation using the same syntax as
in the paper, so they can be handled in this explanation in
the same way the user ones are.

5 Conclusion

We have presented a visual approach to reasoning about
units in spreadsheets. The approach is a “gentle slope” ap-
proach in the sense that the user does not have to learn any-
thing new to start using it, but the more information he or
she chooses to provide to the system, the more helpful the
system can be in reasoning about whether the spreadsheet’s
different units are being combined correctly.

In particular, we have shown how the user can customize
the reasoning system by visual rules. The user can employ
rules to provide explicit information about particular unit
hierarchies, to modify the inference behavior of the system
in general, and to define unit transformation to cope with
those special cases the system is not able to handle appro-
priately.

Altogether, the user has a three-level unit inference sys-
tem available that can reason about units in spreadsheets
with any desired degree of precision.
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