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Abstract error as soon as it is typed in, to make use of information
such as column headers the end user has entered for reasons
We have been working on a unit system for end-userother than unit inference, and to support a kind of polymor-
spreadsheets that is based on the concrete notion of unitgphism of units through generalization. Note that our notion
instead of the abstract concept of types. In previous work, of “unit” is completely application dependent and is gen-
we defined such a system formally. In this paper, we de-erally not related to the idea that units represent scales of
scribe a visual system to support the formal reasoning in measurement for certain dimensions [10].
two ways. First, it supports communicating and explaining  We explain the ideas behind our approach by an example.
the unit inference process to users. Second and more imSuppose a user has created the spreadsheet that is shown
portant, our approach allows users to change the system’sin Figure 1. From the labels, values, formulas, and their
reasoning by adding and customizing the system’s inferenceelative positions, the system can guess that, for example,
rules. the entries of columiB are apples. The system confirms
its guesses by interacting with the user, so that the user can
correctthe guesses and add additional information about the
1 Introduction units structure as well. This mechanism for getting explicit
information about units is a “gentle slope” language feature
[13, 12]: the user does not have to “declare” any unit infor-

Static _type checking helps to find programming €errors mation at all, but the more such information the user enters
early, which makes programs more reliable and predictable. e ) .
through column headers or later clarifications in correcting

However, static typing has seldom been used in end-user, ) o
. . : -~ the system’s guesses, the more the system can use this in
programming languages. A possible reason for this omis- formation to reason about errors
sion is that the introduction of a type system incurs learn- The svstem infers that the un.it for the cak is apples
ing cost: either the cost of learning about type declarations, _. Y . ppie
. . since the formula adds two numbers which are of unit ap-
or the cost of understanding a type inference system well

. Rle- The entry irD3 adds apples and oranges, which at first
enough to understand the error messages it generates. E ) o -
users are not usually interested in paying these costs glance may seem an illegal combination of units; however,
) it represents the total of all of row; which is in units of

To he_Ip prevent some kinds of spreadsheet ervors, we arq\/lay as well as in units of all the fruits. Thus, the total is in
developing an approach to reasoning about units. The work

has some similarity to type inference [11, 3] in that it rea- units of May apples or May oranges, which reduces to May

sons behind the scenes through static analysis techniquefsfu'ts’ and is legal as well. As this demonstrates, in cells

. . o . Such a33 there is a collaborative relationship between two
to find errors in combining values, but our approach is not ;. o L .

. . inds of units: apples and May. By similar reasoning, the
based on types. In particular, we are not translating abstrac otal in D5 is legal; it turns out to be the sum of all fruits in
type systems into visual languages as exercised, for exam- gar, itiu . . .

. ) : . all months, and its units reflect a collaborative relationship
ple, in [14, 18]. Rather, like other research into units and .

. . . between fruits and months.
dimensions [24, 9], the goal of our approach is to detect er- Now if the user attempts to add May apples to June or-
rors related to illegal combinations of units. However, un- . ) .
. . : anges B3+C4), the system immediately detects a unit er-
like the other works on units, we aim to detect any such AR . o
ror in this formula, because there is no match on specific
*This work was supported in part by the National Science Foundation nits (apples versus oranges), and not enough is being com-

under ITR-0082265. bined to cover all fruits in a way that also matches either
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immediate visual feedback as to the unit safety of the most
recently entered spreadsheet formulaas soon asiitis entered.
Thus, we wanted the reasoning system to wiodtemen-

£ Microsoft Excel - harvest¥alues.xls _|ol x| _taIIy. Second, the reasqning r_nechanisms _should _directly be
| Fle Edt View Insert Format Tools Data Window Help = (@ 5'| in terms of elements_ with which the_ user is work_mg,_such
A e as labels and operation names, that is, we were aimidig at

1 Fruit rectness Third, as a consequence of the third goal, the rea-
2 | Month Apple Orange Total soning mechanism should require formal notion of types

% j‘ﬂ:ﬁ; 289 ;é ;g per se other than what is expressed by units. Fourth, the rea-

(5 Total & B 89 soning mechanism should support the kind of spreadsheets
5 ~ end users really build. In particular, the approach should
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not rest on assumptions that end users will create “the right
kind” of formulas, be complete in their labeling practices,
or that their spreadsheets will be free of statically detectable
errors. This should make the reasoning syspeactical.

(b) Resulting values

Figure 1. A fruit production spreadsheet.

) ) 2.1 What are Units?
one month or generalizes to all months. Adding May ap-

ples to June oranges is the kind of error that arises when The unit information for the cells in a spreadsheet are

gahuserhatcmdentalrlly rtlafers to thel W:.O ngthcell In a forl'inu.lt?l' completely contained in the spreadsheet itself because units
hroug ypographical error or selecting the wrong cellwitn' 50 gefined by values. More precisely, each value in a
the mouse. spreadsheet (except blanks) defines a unit. Although all val-

In previous work [5], we developed a formal reasoning ;a5 are units, not all values are generally used as units. For
system for detecting such errors. However, the reasomngexample, in the spreadsheet from Figure 1 the Texd! is

sy;tem we develope(_j was expressed ina highly formal no'by definition a unit, but it does not have practical use as a
tation that would be inappropriate for an audience of end unit for cells in the spreadsheet

users. Further, our reasoning system did not address how The fact that one value is a unit for some cells in a
the system guesses about the labels so as to derive the h'egpreadsheet is given Hyeader definitions Intuitively, a

archies of units, how a user can correct the system \.Nhen_'theader is a label that gives a unit for a group of cells. For ex-
guesses wrong, or how such a system can communicate it e in Figure Month is a header for the cells containing
reasoning to the user. In this paper, we address these pomt%Iay andJune.

The implications of addressing these points go beyond mat- Since units are values, they can themselves have units:
ters of representation: they change_the reasoning system in flence, we can get chain,s of units calléebendent units ’
fundamental way, namely by allowing the user to CUSIOMIZe ¢, 1her since values in a spreadsheet can be classified ac-

the system’s mfere’nc_e rules themselves, not just the termst;ording to different categories at the same time, values can
used n the systems inference rules. __principally have more than one unit, which leadsaad

This approach |s,.t0 the best of our knowledge, the first units Finally, operations in a spreadsheet combine values
to support the following features: that possibly have different units. In some cases, these dif-
ferent units indicate a unit error, but in other cases the unit
information can be generalized to a common “superunit”.
Such generalizations are expressedbynits In the fol-
lowing, we will explain these different forms of units in
more detalil.

Dependent Units. In the spreadsheet from Figure 1 we
have that celB2 (containingApple) is a header for the cell

e It supports not only communicating visually with the
user about the results of static analysis, but alse-
tomizationvisually by the user of the static reasoning
system.

e Itis intended forend-usemprogrammers.



B3 (containing the numbed). On the other hand32 has it-
self cellB1 (Fruit) as a header. This hierarchical structure is
reflected in our definition of units. In this example, the unit
of the cellB3 is not justApple, but Fruit[Apple]. In general,
if a cell c has a value as a unit which itself has unit, then
C's unit is adependent unit v]. Dependent units are not
limited to two levels. For example, if we distinguished red
and green apples, a cell containi@gen would have unit
Fruit[Apple], and a cell whose header @seen would have
the dependent unitruit[Apple][Green], which is the same as
Fruit[Apple[Green]].

And Units. Cells might have more than one unit. For ex-
ample, the numbaeit in cell C3 gives a number of oranges,

but at the same time describes a number that is associated

with the month May. Cases like this are modeled veitid
units, which are similar to intersection types [17]. In our
exampleC3 has the unifruit|Orange]& Month[May].

Or Units. The dual toand units areor units that cor-
respond to union types.Or units are inferred for cells
that contain operations combining cells of different, but re-
lated units. For example, celd3’'s formula is B3 + C3.
Although the units ofB3 and C3 are not identical, they
differ only in one part of theiand unit, Fruit[Apple] and
Fruit[Orange]. Moreover, these units differ only in the in-
nermost part of their dependent units. In other words,
they share a common prefix that includes the complete

path of the dependency graph except the first node. This 2.

fact makes thet operation applicable. The unit @f3 is
then given as amr unit of the units ofB3 and C3, that
iS, Fruit[Apple]& Month[May]|Fruit[Orange]& Month[May]. In
general, aror unit is valid only if it can be transformed into
a unit expression in whicbr is applied only to values (that
is, not unit expressions) that all have the same unit.

Finally, for completeness of the formal unit system we
have included a unit that is used for all values that do not
have specifically assigned any other unit and an error unit

€ that represents unit errors (as well as erroneous computa-

tions).
2.2 Well-Formed Units

We consider only a subset of all possible unit expressions

2. Every value that does not have a header is a well-
formed unit. For example, in Figure Esuit is a well-
formed unit.

. If a cell has value and headeu, thenu|v] is a well-
formed unit. For example, in Figure Bruit[Apple] is a
well-formed unit.

. Where there is no common header ancestor, it is
legal to and units. For example, in Figure 1,
Fruit|Apple]&Month[May] is a well-formed unit be-
causeApple andMay have no common ancestor.

. Where there is a common header ancestor, it is
legal to or units. For example, in Figure 1,
Fruit[Apple]|Fruit[Orange], which denotes the same unit
as Fruit[Apple|Orange], is well-formed. More pre-
cisely, we require that all the values except the most
nested ones agree. This is the reason why the unit
Fruit[Apple[Green]]|Fruit[Orange] is not well-formed.

2.3 Unit Inference

It remains to be explained how unit expressions are de-
rived for all cells of a spreadsheet. The main rules for infer-
ring units for cells are given below.

1. All cells that do not have a header, have the inkor
example, celllotal has unitl.
If cell a has a header cdtlthat contains a valueand
has a well-formed unit, thena’s unit is u[v]. More
generally, if a cell has multiple headers with valwes
and unitsu;, then its unit is given by thand unit of
all the u;[vi]. An example is the celB3 containings
whose unit isFruit[Apple] & Month[May].
If cell a’s formula is a reference to cdil thenb’s unit,
sayuy is propagated t@. For example, celh5 con-
tains a reference tb2 which has unitl. Hence,A5’s
unitis alsol. If a has itself a header definition, say,
thenu, must conform withu,, which is achieved by
defininga’s unit to beua& up.
. Each operator has its own definition of how the units
of its parameters combine.

3.

Regarding the latter point, we define a functignfor each

to be meaningful. For example, a number cannot represenbperatorw, which defines how the operation transforms the

a number of appleand oranges at the same time. Hence,
a unitApple& Orange is not valid. However, a number can
well represent either applew oranges. This is why we
consider a unit like\pple|Orange to be valid.

By defining which unit expressions are valid we can dis-
tinguish between unit-correct computations and unit-errors.
Formally, the concept of valid unit expressions is captured
well-formed units Five rules are needed to define when a
unit is well formed:

1. 1is always a well-formed unit.

units of its parameters. Note that the definitionugftakes
also into account the unit that can be derived from a possi-
ble header definition for that cell. Both sources of unit in-
formation have to be unified. This unification is particularly
helpful to retain unit information in the case of multiplica-
tion and division because these two operations have in our
current model only a weak unit support.

The definition ofu, is shown for some operations in Fig-
ure 2.uis the cell's header unitjy, ..., u, are all the units
of the parameters.



W (Uug,... ) = (ugl...|up)&u 3 Visually Customizing Inference Rules
Meount (U U1, ... Un) = (U1]...|un)&U
M. (u,ug, ..., Un) = [(ug,...,Un)&U Consider the system'’s inferences for the spreadsheet of
Figure 1. The system’s inference rules at this point are those
U ifu A LAY) £iiu=1 given in Figures 2 and 3. These figures do not give a way
Lug,...,un) = {1 otherwise for the system to infer headers, so the system cannot yet do

so. This means all values have uhjtand thus there are no
Figure 2. Unit transformations. unit errors.
To get the use of units into this picture, the system needs
some way to get beyond this point. Thus, we provide a very
A proper treatment of multiplication and division by simple unit inference rule based on spatial reasoning:
the reasoning system requires the concept of dimensions

[24, 9]. Extending our unit system by dimensions would Base Layout RuleA cell's headers are the nearest
complicate it considerably; in particular, end users would cell to the left whose formula is a constant string
probably be confused if required to cope with both unit and the nearest cell above whose formulais a con-

and dimension error messages. However, the extensions  Stantstring.
described in this paper make it possible for users to sup-
plement the system’s knowledge with additional inference
rules that could handle such cases.

For example, celB3’s headers ara3 (May) andB2 (Apple),
andB4’s headers ar@4 (June) andB2 (Apple). Not all units

. . . . will come out so well using this rule, however. For example,
By applying operations we can obtain arbitrarily com-

plex unit expressions that do not always meet the conditions"’1CC0rdIng (0 ItA4's (June's) header isa3 (May). The user

. ) ) will help solve this kind of problem.
for well-formed units. We need equations on unit expres- .
. L ) . It should be noted that a much more sophisticated Base
sions that allow us to simplify complex unit expressions.

T L . Layout Rule, or even a group of sophisticated Base Lay-

Whenever simplification to a well-formed unit is possible, . . .
. s .o e 7 out Rules based upon spatial reasoning, improved over time
it can be concluded that the operation is applied in a “unit- o : , .

n . . . .. by noticing the particular user’s habits, and so on, would be
correct” way. Otherwise, a unit error is detected. Simpli- . : ) )
. . . - possible. The choice of Base Layout Rules is up to the envi-
fication rules for doing so include rules for commutativ- ; .
) o i ronment’s designer. Thus, our Base Layout Rule should be
ity, generalization, factoring, and so on. The complete set

. S - ) -~ viewed as simply a prototype we have devised to help show
of equations is given in Figure 3. They define a semantic o :
: . how customization can proceed, not as a recommendation
equality of units.

for any particular base rule.
Because of the Base Layout Rule, the system immedi-

Urillz =y U& Uy (commutativity) ately detects some unit errors. For example, Belhas an
Us|uz =u Uz|us o error because its formula and spatial position leads to a unit
(U1&U2)& Ug =y U1& (Up& U3) (associativity) Fruit[Apple]& Month[May]|Fruit[Apple]& May[June], which is
(Uz|u2)|ug =y ua|(uz|us) equal toFruit[Apple]& (Month[May]|May[June]) due to the
u& (Upfuz) =y (U&u1)|(U&Uz)  (distributivity) distributivity law. However, this unit is not well-formed be-
u&u =y u (idempotency) causeMonth[May| and May[June] do not share a common
uu=yu prefix and therefore cannot be simplified further.
1&u=4u (unit) When the system detects unit errors such as the one just
ufu]|ufuz] =y uug|ug] (factorization) described forBs, it displays_ an indicafor of a unit error,
ufug|...|u =g u = (%) (generalization) currently planned as che_mglng the cell's bagkground to red.
(Un[Uz])[Ua] =u Us[uz[Us]] (linearization) The user is able to obtain a visual explanation of the prob-

lem using the visual representation of the derivation pro-
Figure 3. Unit equality. cess. (We will briefly d(_ascribe this representation in Section
4.) From the explanation, the user can see that the system
The condition(+) for generalization is that ther unit has not figur.ed out all the he_aders correctly. The user can
expression consists exactly of all units ..., un that have then customize the system’s inference process to solve this

u as a header. Note that & distributes oyebut not vice ~ Problem by adding new rules.
versa, and that althoughis the unit for &, it leads to a

non-valid unit when combined with 3.1 Entering a New Rule by Demonstration
We will explain some of the inference rules and equality ) ) )
rules in the next section. New rules are entered using a visual by-demonstration

approach. We selected a visual by-demonstration approach



to expressing rules because the Kidsim/Cocoa/Stagecast [ortance arrows mark constants. These can be formatting
6] and the AgentSheets [21, 7] projects have contributedsymbols like the black underline or particular cell values
empirical evidence that this approach can be used by at leaslike the blank cell in Figure 4. All other parts are inter-
two populations of end users, namely children and teachergreted as variables. These variables can be partitioned into
(for example, [19, 20, 22]). groups of either one or more cells. In particular, all cells
For example, suppose the user’s viewing of the expla- that are (transitively) adjacent and that are not separated by
nation shows the system’s use of the Base Layout Rule inconstants comprise one group. Now if the partition obtained
inferring headers. The user sees that this is a problem, andn the described way consists of one single variable and one

adds a new rule, shown in Figure 4. group of variables, the system generates the visual form of
a header definition with the one variable as the header/unit

For example: for the set of variables in the group. This answers the first

question.

Month The meaning of this rule is that for all parts of the spread-

May Month: sheet that match the “if” side of the rule, a header definition

June = May according to the “then” side is created by substituting the

Total June actual variables from the spreadsheet for the variables in

o the pattern. In that process the number of variables in a
group does not matter. If the user has edited the system-

generated “then” part, for example, by deleting a variable,
these modifications are interpreted “by position”, that is,
from the header/unit definition the first/last, second/second-
but-last, and so on variable from the group is excluded. We
are currently not considering rules whose “if” part specifies
anything other than a 2-partition of a single variable and a

roup. Overlapping patterns are possible and generally lead
0 andunits of the parts that are matched multiple times.

Figure 4. A layout rule given by the user.

As in Stagecast, the rule format is the condition, an im-
plication arrow, and the result. Also as in Stagecast, the rule
is based on visual attributes. For the “if” side, the user has
shapped a picture of a portion of the spreadsheet. However
unlike in Stagecast, the system has added tiny arrows to th

V'Sut‘?ll Iplarts ?fbthte picture thslt arke |n|1|polrtatrr1]t_ other th?n :Ee This new rule becomes the first layout rule the system
spatiallayout between non-blank cells. In this example, the, ., check, before it reverts to applying the Base Layout

additional important parts are the presence of a line underRuIe. In general, as in Stagecast, a new rule always be-

Month and the presence of a blagk after Total. The u"ser Caomes the first rule the system tries to apply. As soon as the
add, delete, and/or move these “importance arrows” as de-

. ) . system finds an applicable rule, it applies it and does not
sired. _The spatial Ia_yout between nqn-blank cells is alWaysconsider other rules that possibly match. This rule applica-
taken into account in pattern matching, and thus does no

. ttion strategy ensures that the unit simplification process is
need importance arrows.

g . . deterministict
Thus, the “if” side of the picture says that when there is a st

vertical list with a line under one of the words, the list starts Note that the “then” side of a rule is a logical relation-
at the underlined word and ends at a blank. The “then” sideShlp’ not a spatial layout. The demonsrational rule-based

. . languages Stagecast and AgentSheets express only spatial
of the picture starts as an automatically generated sugges- guag g g P y Sp

. . . relationships in their rule syntax (although it is possible to

tion by the system, but the user can manlpulgtg It as neede%xpress state information as well through additional vari-

Inthe presented example, the system has orlglnallymcludedables)_ A discussion of how logical relationships are ex-

Total, but the user has deleted it resulting in the “then” part pressed follows next.

actually shown in Figure 4. This “then” side defines a unit

hierarchy whose parent (that is, header) is the underlined 10n the other har_1d, such a fixed reduct_ion strategy might prevent in

word and whose children are every clement except the lasEoe 255  edeion 12 welormed Ul il coudbe achioer b

one. The “For example” label indicates that the reasoning definition of most other type systems, which have to report a type error in

system does not care about the actual values of the cellsgase of doubt for the sake of type soundness [11]. For our unit system,

that is, that these are just an example. In other words, theZCt e B2t o0 e andonce n  reporied ant arr hat 5.

user has deﬂ_ned a g_em_anc r_UIe' . . a unit error reported in a confluent rule system is dF:efiniter an erro,r. ‘
Two questions arise in this connection: (i) how does the

system generate a suggestion for the “then” side? and (ii)

what is the precise meaning of a generic rule? To answer

these questions, we first have to explain the meaning of the

“if” part of arule. In general, the “if” part can be considered

as a pattern that consists of constant and variable parts. Im-




3.2 Visual Representation of Logical Relation- 3.3 Non-Generic Rules
ships
The layout rules that now exist, the Base Layout Rule

Most end-user rule-based languages do not provide asupplemented by the new rule of Figure 4, are still not
way to enter strictly logical relationships in the rules. In- enough to correctly derive the header tnge, because
stead, all relationships expressed in the main portion of thethe new rule handles only vertical lists, and the Base Lay-
rule must be based on visual attributes such as topology orout Rule will decideOrange’s header isApple. The user can
spatial relationships. (One exception is FAR [1], in which solve this problem by entering a new rule to handle hori-
rules are expressed via formula subexpressions and cell refzontal lists in a manner similar to that described above. Al-
erences, in a multiparadigm spreadsheet-based approacht@rnatively, the user can provide specific information about
The reasoning system presented here specifically focuses othe Fruit hierarchy by entering a specific rule about it, as
logical relationships, but on deriving them and using them in Figure 6. The main difference between a specific rule
to detect errors, not to determine cell values or to define aand a “for example” rule is that the “for example” label is
program per se. Hence, it produces a static analysis reamissing.
soningabouta visual program (spreadsheet), not a program

itself. Fruit:
The user participates in how the reasoning can be done Fruit — Apple

by helping to define the rules followed in doing this reason- Apple | Orange | Total Orange

ing, and hence must be given access to the logical relation-

ships the system infers. Figure 6. A non-generic rule defining the fruit

One such logical relationship is the hierarchical nesting  hierarchy.
of units. Recall that in the formal notation of the underly-
ing system, nestings are displayed using open and closed
square brackets. The visual representation of these logical The left hand side of the fruit rule is not really necessary.
nesting relationships is to display them as nested lists, in or-If it were not present, all that would be left is the right hand
der to explicitly communicate the hierarchical reasoning of side, which simply defines the fruit hierarchy. However,
the system. An example of this representation is the “then” the left hand side does perform some extra safeguarding,
side of the rule in Figure 4. because if the user eventually changes the spreadsheet by
In general, there is a 1:1 mapping to a visual represen-adding another column of fruit, the fruit rule will no longer
tation from every formal symbol used by the underlying fire for any of the fruits, so that unit errors will pop up all
system; see Figure 5. It is important for every element of over the spreadsheet, providing a great deal of immediate
reasoning of the underlying system to be represented to thdeedback that the user’s last edit has caused the reasoning
user, since the user actually participates in customizing theabout units to go wrong.
system’s reasoning. Because the user can enter specific, concrete rules such
The representation elements were not chosen arbitrarily.as the fruit rule, it is possible for the system to success-
In particular, the representation of &,and parentheses is fully reason about large spreadsheets with inconsistent lay-
based upon the results of Pane and Myers’s work on lan-out conventions. Specific, concrete rules allow the user to
guage syntax elements that are problematic for end-usetet the system work around exceptions to his or her usual
programmers [15]. Specifically, they recommend that the layout conventions. As the next section will explain, they
use of these textual elements be omitted, as end users dalso allow the user to customize the system’s treatment of
not interpret them to have the intended meanings. Follow-andunits.
ing this recommendation, in our approach & is represented
by a horizontal list| as a vertical list, and parentheses by 3.4 Meters * Meters = SquareMeters
enclosing boxes. Pane and Myers themselves defined a lan-
guage called HANDS [16] that follows their earlier recom- As we previously mentioned in Section 2, our reasoning
mendations. In HANDS, & and are replaced by vertical system does not reason about dimensions, such as multiply-
and horizontal lists respectively. Moreover, nested boxesing meters times meters to get square meters. According to
are used to represent nested parentheses in a manner similaur inference rules, multiplying meters times meters will in
to our approach. result in the unitl; see the definition ofi, in Figure 22

2The rationale behind this definition is to rather accept weaker unit
transformations, here: weakening multiplications of damits to1, than
to report unit errors that could not really be remedied within the static rule
system without changing either the labels ot the header definitions of the
spreadsheet; see [5].




Concept Formal notation Formal example Visual representation | Visual example
andunit u& U’ May& Apple u U (horizontal list) May Apple
. , u . . Apple
or unit uju Apple|Orange Y (vertical list) Orange
u :U Fruit:
unit definition (assumed to be given) 1 (nested headers) Apple
Orange
Un
dependent unit u[u’] Fruit[Apple] u (nested labels) Fruit
u Apple
. . .. | May
brackets (u) Fruit& (May|June) (box around expressior|) Fruit June
one unit 1 1 (omitted)
unit error € € red cell background -

Figure 5. Visual representation of unit expressions.

However, it is possible for the user to provide specific,

the built-in rules fomandunits enables a limited treatment of

concrete rules to solve this problem. This is done using thedimensions within the unit system. This approach, however,
syntax shown in Figure 7. For the sake of concreteness,does not provide a comprehensive treatment of dimensions.

the overriding of rules involvingnd units is expressed by
applying an operation like to units (and not a unit operator
&). The meaning is that whenever multiplication is applied
to values/cells whose unit isleters, the resulting unit of
the cell containing this formula BquareMeters, that is, the
default unit transformation for is superseded.

Meters * Meters == | SquareMeters

Figure 7. A “dimension” rule.

Once theSquareMeters unit has been so defined, it can

be included in rules about hierarchical relationships such as

those expressed in the right hand side of the fruit rule.
Combining value operations with units has the nice ef-
fect that we can express unit transformati@amsl the as-
sociation of these to operations in one definition. (Using,
for example, the rul®leters Meters = SquareMeters would
convert any unit expressidvieters& Meters int0 SquareMe-

ters regardless of the operation that created it, which is prob-

ably wrong.)
This technique allows the user to solve any unit error

that the system has inferred because it did not have com

plete information. For example, it may be valid to add May

apples to June oranges, because those are the only items in
the Safeway grocery chain’s order. The user can provide a

rule such as the square meters rule that acknowlegtdes
wayltems as a valid unit.
Hence, the described form of (non-generic) overriding of

For example, if we had a formula in our spreadsheet that
divided a cell with unitSquareMeters by a cell having unit
Meters, the rule system cannot automatically infer that the
cell should be of uniMeters. To realize this behavior, the
user would have to define a further rule for division and
meters. Also, in order to deal with square inches, square
miles, and so on, the user had to enter each rule individually.
To solve the latter problem we could be tempted to al-
low generic versions of these kinds of rules #ord units,
simply by making them “for example” rules, but then we
encounter two problems. First, we would have to address
the fact that one unit lik€quareMeters consists of a con-
stant part $quare) and a variable partMeters). We could
follow a simple textual approach that matches all parts of
the left hand side of the rule in the resulting unit and con-
sider these parts as variable. However, this approach would
not scale up very well to more complex unit expressions,
in particular, for nested dimensions. Second, a completely
generic version of the dimension rule would probably be too
general because it would allow us, for instance, to multiply
apples times apples—for the cell containing such a formula
the inference system would then derive a WajiiareApple,
which does not make any sense. Hence, if we wanted to

allow “for example” rules forand units, we would need a
way of restricting the set of units to which the general rule
applies. This would amount to going from parametric poly-
morphism to a controlled form of overloading [23] or qual-
ified types [8].



3.5 Rules About Rules in a very rough prototype form. Specifically, we have im-
plemented a research prototype of the reasoning system us-
The unit approach for spreadsheets leads to each spreadng Haskell. Our prototype includes the inference rules, but
sheet having its own customized unit system, because theloes not yet automatically generate the visual mechanisms
units are built from the values contained in the spreadsheetshown in this paper.
Moreover, the user can dynamically redefine the unit sys- One particularly important aspect of the visual interface
tem by adding rules or unit definitions. Rules or definitions is the explanation of unit errors. In addition to the “formula
that can be added are: view” and “values view” of a spreadsheet as, for example,
L . , provided by Excel, we also offer the user a “units view”.
1. Gener'|c hierarchy ruIesThe§e are the “for example_ In the units view, a user sees the values in grey print, and
rules like the one shown |n.F|gure 4. These rules define superimposed on them in regular print are the units. (The
a gen_eral mechanism to infer headers and depende%ded grey values are just for context). The erroneous ones
units n a spreadsheet. They do not reaII_y mod|fy_the have a red background. Then the user can ask for an ex-
reasoning system_, but they feed the spatial and V'Sualplanation. There is a static and a dynamic representation
chara}c.terlstllcs to_ 't . of the explanations. The static one gives a story board, and
2. SpeC|f|c; un!t definitionsThese are rules like thg Oone  the dynamic one animates it by transitioning from frame to
shown in Figure 6. These rules extend the unit hier- 456 through the story board. The static one looks just like
archy (once); they can be considered special cases Ofe ryjes we showed in this paper, only with the examples
generic hierarchy rules, in that both are similar to def- 54,411y in the paper filled in. The system’s inference rules
initions of implicit type definition schemas. also have a visual representation using the same syntax as

3. Concrete unit transformationsThese are definitions i, the paper, so they can be handled in this explanation in
of new units and how they are related to specific oper- hao same way the user ones are.

ations like the one shown in Figure 7. These rules ac-
tually modify the unit reasoning system because they
override unit transformations for operations applied on
cells with particular units.

5 Conclusion

We have presented a visual approach to reasoning about
A user can change or delete the rules he or she has addegnits in spreadsheets. The approach is a “gentle slope” ap-
to a unit system of a spreadsheet, but it is not possible toproach in the sense that the user does not have to learn any-
delete or Change built-in rules like the ones shown in Figure th|ng new to start using |t, but the more information he or
3. However, by adding concrete unit transformations the she chooses to provide to the system, the more helpful the
behavior of the core reasoning system can be modified. Insystem can be in reasoning about whether the spreadsheet’s
particular, since new rules are considered first, before thegifferent units are being combined correctly.
system-provided ones, users have a lot of power in the ways | particular, we have shown how the user can customize
they can affect the reasoning system. the reasoning system by visual rules. The user can employ

The described unit system actually defines a three-levelryles to provide explicit information about particular unit

reasoning system about spreadsheets. At level one, th@jerarchies, to modify the inference behavior of the system
built-in rules and the Base Layout Rule provide a generaljn general, and to define unit transformation to cope with
framework for reasoning about spreadsheets. Level two iSthose special cases the system is not able to handle appro-
provided by the values and their spatial arrangement of eachpyriately.
spreadsheet. Together with level one, it provides a rudi-  Altogether, the user has a three-level unit inference sys-

mentary unit checking system that is already partially cus- tem available that can reason about units in spreadsheets
tomized for the application at hand. Finally, level three is wjth any desired degree of precision.

given by the user-defined rules. This level can be used to
customize the unit inference system further to any desired
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