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We present a reasoning system for inferring dimension information in spreadsheets.

This system can be used to check the consistency of spreadsheet formulas and thus is

able to detect errors in spreadsheets.

Our approach is based on three static analysis components. First, the spatial

structure of the spreadsheet is analyzed to infer a labeling relationship among cells.

Second, cells that are used as labels are lexically analyzed and mapped to potential

dimensions. Finally, dimension information is propagated through spreadsheet

formulas. An important aspect of the rule system defining dimension inference is that

it works bi-directionally, that is, not only ‘‘downstream’’ from referenced arguments to

the current cell, but also ‘‘upstream’’ in the reverse direction. This flexibility makes the

system robust and turns out to be particularly useful in cases when the initial dimension

information that can be inferred from headers is incomplete or ambiguous.

We have implemented a prototype system as an add-in to Excel. In an evaluation

of this implementation we were able to detect dimension errors in almost 50% of

the investigated spreadsheets, which shows (i) that the system works reliably in

practice and (ii) that dimension information can be well exploited to uncover errors

in spreadsheets.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

End users engage in a variety of programming activities,
including the creation and maintenance of spreadsheets
[1]. However, it has been shown that spreadsheets contain
many errors [2,3], and that these errors are often the cause
of substantial negative impacts on society [4].

A variety of approaches have been investigated to
prevent, detect, and remove errors from spreadsheets.
Preventive approaches to improve the quality of spread-
sheets include a variety of guidelines for spreadsheet
design [5–8,2] and techniques for the automatic genera-
tion of spreadsheets [9,10] from visual [11] or object-
oriented specification [12,13]. However, since preventive
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approaches, in principle, have to interfere with the
spreadsheet creation process that makes spreadsheets so
attractive to end users, much research has focused rather
on the detection and removal of errors.

The detection of spreadsheet errors has been mainly
approached from two different angles, auditing/testing
and automatic checking.

Although a variety of effective strategies and principles
for spreadsheet auditing have been proposed [14–16], a
major limitation of these approaches is that they cannot
provide guarantees or even measures for the (likelihood
of) spreadsheet correctness. The situation is different in
the case of testing where test-adequacy criteria can
inform the testing strategies [17]. The only systematic
testing approach for spreadsheets is the ‘‘What You See Is
What You Test’’ approach [18,19] that uses data-flow
adequacy and coverage criteria to give the user feedback
on how well tested the spreadsheet is.
etection of dimension errors in spreadsheets, Journal of
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A principal problem of the testing approach is for users
to find test cases that cover enough computations and
data flows. To support users in this effort, test-case
generation systems [20–22] can generate test cases that
improve the test coverage.

Another problem with testing approaches is that they
suffer from oracle mistakes, that is, incorrect decisions
made by users during testing [23] might introduce more
errors into spreadsheets. Some of these problems can be
alleviated by automating parts of the testing/debugging
process [24,25].

Finally, testing approaches also present a serious
motivational challenge, because they require substantial
effort on part of the user. This aspect is particularly
relevant in the case of spreadsheet users since many of
them are end users who mainly want to get their job
done; they are much less motivated than professional
software developers to spend additional time on their
spreadsheets for testing purposes.

The latter aspect makes automatic checking ap-
proaches very attractive since they promise error detec-
tion with minimal user input. Two obvious problems with
traditional type checking systems are (1) that they are
limited in the kinds of errors they find and (2) that
abstract typing concepts may be difficult to communicate
to end users. The limited scope of type checking simply
means that type systems should not intend to replace
testing, but to complement it. That this can work very well
has been demonstrated, for example, in Lawrence et al.
[26]. The usability concern has been addressed in two
different (although related) ways.

First, based on the observation that spreadsheet users
often place labels as comments into spreadsheets close to
the relevant data, we can reason about the combination
of these labels in formulas that refer to labeled data and
thus detect inconsistencies [27,28]. In a recent study on
the usability of a type system in spreadsheets we
discovered that end users can effectively use such label-
based type systems to debug a variety of errors in their
spreadsheets [29].

Second, we can employ units of measurements as a
concrete notion of types that is well known among end
users [30]. Dimensions are used to characterize different
kinds of values, much like traditional, more abstract, type
systems used in general-purpose programming languages,
but on a more fine-grained level. For example, a floating
point number, which has just one type, can nevertheless
represent different kinds of quantities, such as length or
time values, which is captured through the concept of
dimensions. For each dimension, such as length, there are
several different units of measurements, such as cm, ft, m,
or km, that describe values of that dimension at an even
finer-grained level.

The incorrect combination of values of different
dimensions has been a cause of major problems. One of
the most famous dimension errors is a lacking value
conversion in the $320 Million Mars Climate Orbiter
where one software component sent thruster data in
pounds, an English unit of measurement, whereas the
Orbiter was expecting the metric unit Newtons (N) [31].
Since one pound is equal to 4.48 N, the craft slowly drifted
Please cite this article as: C. Chambers, M. Erwig, Automatic d
Visual Language and Computing (2009), doi:10.1016/j.jvlc.200
off course. Over time the orbiter dropped 60 miles closer
to the surface of Mars and was destroyed.

As we will demonstrate in this paper, dimension errors
occur frequently in spreadsheets. Therefore, an approach
to detect such errors can be an important part of a tool
suite to improve the quality of spreadsheets. In this paper
we describe dimension inference, a method to automati-
cally find dimension errors in spreadsheets. Our work
builds on previous approaches and extends them in
several important ways. First, through incorporating
header inference [32], the presented system does not
have to rely on additional user annotations and provides
therefore a high degree of automation (‘‘one-click check-
ing’’). Second, in addition to checking whether dimensions
of values are correctly dealt with in formulas, our
approach can infer dimensions based on context provided
by formulas. This feature is particularly helpful in cases
when header inference does not provide a detailed
enough account of the dimensions for all values in the
spreadsheet. Dimension inference can then in many cases
close the gap. Finally, the presented system can auto-
matically infer conversion factors between different units
of measurement (such as meters and feet) and can enforce
the correct use of conversions in formulas.

In addition to the formal model of dimension in-
ference, we describe a practical tool that has been
implemented as an extension to Microsoft Excel. We also
present an empirical analysis of how dimension inference
works in practice. This paper is an extended version of
[33] and contains a revised and refactored rule system, a
comparison of different dimension checking systems, and
an expanded discussion of results.

The rest of this paper is structured as follows. In
Section 2 we illustrate the issues involved in dimension
checking and inference with a small example. In Section 3
we formalize spreadsheets and a model of dimensions.
The process of dimension inference is then described in
Section 4. In Section 5 we report on an evaluation of a
prototypical implementation of a tool for dimension
analysis. We discuss related work in Section 6 and give
conclusions and ideas for future work in Section 7.

2. Determining dimensions of spreadsheet formulas

Consider the spreadsheet shown in Fig. 1 that shows
the details of different phone plans and that computes the
costs for different usage profiles. The monthly totals for
each plan and a particular hours-of-use value is computed
by adding the base fee and the cost for the minutes
exceeding the free minutes. For example, for the plan
in row 5 and for the use of 25 h, the formula in cell F5 is
as follows:

B5þMAXðF2 � 60� C5;0Þ � D5

What unit of measurement, or unit for short, does the
value computed by this formula have? First, by inspecting
the labels in the spreadsheet we can try to infer what the
dimensions of the stored data values are. For example, the
value 39 in cell B5 represents a money amount, which
could be without further information given in any
currency. It makes sense for a system to assume whatever
etection of dimension errors in spreadsheets, Journal of
9.04.002
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Fig. 1. A spreadsheet for computing the costs of phone plans under different usage scenarios.
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currency is set to be the default, which we assume here to
be $. Similarly, we can conclude that C5 is a time value. In
this case there is no doubt about the unit, which is
minutes. The same applies to F2, which contains an hour
value. However, it is not clear what dimension the value in
D5 has, because ‘‘charge’’ could indicate a money amount
or an electrical charge.

Second, given the potentially incomplete information
about the dimensions of values, we can reason about the
structure of formulas to find out the dimension of the
computed value, or identify an error in case the formula
combines dimensions incorrectly. In the course of deter-
mining the dimension of a formula we can also infer
dimensions for values whose dimension could not be
determined from a label and is so far unknown, as for the
value in cell D5 for instance.

In the example, we see that C5 is subtracted from
F2 � 60. Since all additive operations require that the
arguments have the same unit of measurement, we can
conclude that F2 � 60 must be minutes, which is possible
if the constant 60 has the unit minutes/hour. In fact, only
the value 60 has this unit.1 In other words, the use of any
other factor or the omission of a factor would have meant
a fault in this formula.

The dimension behavior of MAX is the same as that of
other addition operators. Therefore, we can infer that 0
and the whole expression MAXðF2 � 60� C5;0Þ also
have the unit minutes. Here we can observe that the
ability to infer dimensions/units in arbitrary directions,
that is, for arguments from results (instead of only being
able to reason from arguments to results) is crucial for
obtaining a flexible and user-friendly reasoning system,
because requiring the user to annotate 0 with minutes and
60 with minutes/hour would mean a big impact on
usability.

The next step is to determine the unit for D5 so that the
sum with B5 is dimension correct. Since B5 is in $, the
product MAXðF2 � 60� C5;0Þ � D5 must have the same
unit. Since the MAX expression is in minutes, we can
therefore conclude that D5 must have the unit $/minute.
Finally, since B5 and the product expression have the
same unit, we can conclude that the formula is dimension
correct and has the unit of minutes.
1 Constants can have multiple dimensions or units, for example, 60

also has the unit seconds/minute.

Please cite this article as: C. Chambers, M. Erwig, Automatic d
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3. A formal model of spreadsheets and dimensions

3.1. Abstract syntax of spreadsheets

We work with the following simple model of spread-
sheets. A spreadsheet (S) is a mapping from addresses
(a 2 A) to expressions (e). We write SðaÞ to refer to the
expression stored at address a in the spreadsheet S.
Expressions can be values (v), references to other cells
(" a), or are constructed using operators. Each arithmetic
operators, such as, þ, represents a whole class of binary
operations (here additive operations, such as � or MAX) as
well as corresponding aggregation operations (here:
SUM). In addition, we have a dimension-consuming
aggregation (count) and a conditional operator.

eH ¼ vj " ajeþ eje � ejcountðe; . . . ; eÞjifðe; e; eÞ

3.2. Representation of dimensions

A dimension (d) is given by a set of dimension
components (c). Each component is given by a base (b),
a conversion factor (f ), and an integer exponent (n).
Essentially, a dimension is a partial mapping from base
dimensions to pairs ðn; f Þ. For the purpose of dimension
inference, a dimension component can also be a dimen-
sion variable (d). If a dimension contains only one
component, it is called a singleton dimension, whereas a
dimension that contains two or more components is
called a composite dimension. The identity dimension f g is
used for dimensionless values

dH ¼ fc; . . . ; cg

cH ¼ bn
f jd

Dimensions that only differ in conversion factors describe
a similar quantity, and for different factors there often
exist different names, which are called units of measure-

ment.
For each base dimension we identify a default unit

with factor 1. For example, the default for length is meter
(m), that is, m ¼ length1

1, which also means that cm ¼
length1

0:01 and ft ¼ length1
0:3048. In general, the following

relationship holds (where x is a dimensionless number
and b is an arbitrary base):

xbn
f ¼ xfbn

1

etection of dimension errors in spreadsheets, Journal of
9.04.002
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We may also omit conversion factors and exponents of 1
for brevity, that is, we write more shortly bn for bn

1, bf for
b1

f , and simply b for b1
1.

In general, the choice of dimensions is arbitrary and
depends on the application. For the task of analyzing
dimensions in arbitrary spreadsheets, we have chosen the
seven SI units and some further units that we have found
in the EUSES spreadsheet corpus [34]. The quantities and
their default units are shown in Table 1.

Examples of composite dimensions are speed, mea-
sured in m/s, that is flength; time�1

g, or force, measured in
kg m=s2, which is fmass; length; time�2

g.
The relationship between basic and derived dimen-

sions and units is illustrated with several examples in
Table 2. Default units are set in boldface.

A conversion factor can be either a real number (r) or a
conversion variable (f), which serves as a placeholder to
be used during dimension inference

fH ¼ rjf

Examples of conversion factors can be found in the
spreadsheet shown in Fig. 1, namely min ¼ time60 and
h ¼ time3600. We can also illustrate the effect of conver-
sion variables using that example. The label ‘‘Base Fee’’ in
cell B4 can be mapped to a dimension moneyf, but it is
not clear in which currency. If B4 were added in some
formula to a value that is known to be of unit $ ¼ money1

or cent ¼ money0:01, the requirement of both arguments
of addition to be of the same dimension would cause the
Table 1
Base dimensions with default units.

Quantity Default unit

Length Meter (m)

Mass Kilogram (kg)

Time Second (s)

Electric current Ampere (A)

Temperature Kelvin (K)

Amount of substance Mole (mol)

Luminous intensity Candela (cd)

Money Dollar ($)

Angle Degree (deg)

Table 2
Basic and derived dimensions and corresponding units.

Dimension Units

Basic Length m; cm; km; ft; . . .

Time s;min;h; . . .

Mass kg;pounds; . . .

. . . . . .

Derived Speed m

s
,

km

h
; . . .

Force kg m

s2
¼ Newton, dyne; . . .

Pressure kg

ms2
¼ Pascal;psi; atm; . . .

. . . . . .

Please cite this article as: C. Chambers, M. Erwig, Automatic d
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unification of both dimensions and create the substitution
ff/1g or ff/0:01g, respectively, and thus B4 would also
receive the unit $ or cent, respectively.

Our approach to represent conversions between dif-
ferent units within a dimension by a simple factor is not
general enough to cover some conversions, such as
degrees Fahrenheit to degrees Celsius. Nevertheless, we
have chosen this simple model because it keeps the
unification of dimensions feasible and works in most
cases. This restriction is not too severe since in the
spreadsheet repository that we have tested our prototype
implementation on only 2 of 487 spreadsheets contained
dimensions that could not be converted using the
presented model.
3.3. Dimension-aware semantics

The rationale for introducing dimensions into compu-
tations is that they effectively restrict the meaningful
computations in the sense of typing annotations. Con-
sider, for example, the following operational semantics
definition for the addition operation [35]:

e1�!v1 e2�!v2

e1 þ e2�!v1 þ v2

We can refine the semantics definition by considering
values that are annotated with dimensions. In that case,
the rule becomes the following:

e1�!v1 : d e2�!v2 : d

e1 þ e2�!v1 þ v2 : d

The effect of the dimension annotation is that values that
are annotated with different dimensions are considered to
be incompatible. By requiring that both arguments of the
addition operation evaluate to values that are annotated
by the same dimensions d, this definition effectively
leaves the addition of expressions that evaluate to values
with different dimensions undefined.

Multiplication transforms the dimensions of values
according to the function t, which is defined as follows.
First, dtd0 is undefined if d and d0 contain two dimension
components with the same base b but different conver-
sion factors, that is, if bn

f 2 d ^ bm
f 0 2 d0 ^ faf 0. Otherwise,

we have the following definition:

dtd0 ¼ fbnþm
f j bn

f 2 d ^ bm
f 2 d0g [ dnd0

We use the symmetric difference of sets, dnd0, which is
defined as all the dimension components that are a
variable or have a base that is in either d or d0, but not in
both.

The dimension-aware semantics for multiplication is
then given by the following rule, which enforces the use of
proper conversion factors in multiplications. For example,
to calculate the distance a plane travels in 5 s when its
speed is 950 km=h, one has to use a conversion factor with
dimension h=s in the multiplication, otherwise t is
undefined, and the rule cannot be applied

e1�!v1 : d1 e2�!v2 : d1 d1td2 ¼ d

e1 � e2�!v1 � v2 : d
etection of dimension errors in spreadsheets, Journal of
9.04.002
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Table 3
Valid dimension exponent ranges.

b RðbÞ

Length �3; . . . ;3

Electric current �2; . . . ;1

Time �3; . . . ;2

All others �1; . . . ;1

C. Chambers, M. Erwig / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 5
This definition prevents the multiplication of two values
that have dimensions with the same base dimension but
different factors. For example, when determining the area
of a square it does not make sense to multiply one side
length, denoted by meters, with the other side length
denoted by centimeters. What is the meaning of
5 m� 7 cm ¼ 35 cm�m? While this technically is not
an illegal operation, it seems more reasonable and
practical to try and catch these situations. Therefore, a
conversion factor has to be applied to one of the two
dimensions being multiplied.

In the example above we have 5 s multiplied with
950 km=h. With no conversion factors the result would be
4750 s� km=h, which does not provide the desired
information. Since dimension inference requires the
resulting dimension to have only one dimension of each
base type, this would be an error. However, if the
conversion factor 1=3600 h=s is included in the multi-
plication, the resulting value and dimension is 1:3194 km,
which is certainly a valid dimension and provides a useful
value. The one problem with requiring a conversion factor
is that it can reduce flexibility in certain instances. For
example, the conversion factor h=s could be applied in a
later formula. In general, though, it makes more sense to
try and catch this where it occurs.

The shown rules are a bit over-simplified because they
ignore the notion of dimension validity discussed in the
next section. The purpose of the rules was to show that
incorporating a dimension concept into the semantics
yields a more precise notion of what correct computations
are, which forms the basis for an approach to identify
errors based on dimension analysis.
3.4. Dimension validity

The dimension system defines an n-dimensional space,
and values having a certain dimension can be regarded as
points in this space. The traditional handling of dimen-
sional values requires arguments of addition to have the
same dimension, but places no constraints on the
argument (or the result) dimension for multiplication.
However, in practice dimensions cannot be multiplied
arbitrarily. For example, no reasonable value can have the
dimension kg3. Ruling out such unreasonable dimensions
can strengthen dimensional analysis by effectively placing
a validity constraint on the multiplication of dimensional
values, that is, the result dimension of a multiplication
must be a valid dimension.

An interesting scientific (or even philosophical) ques-
tion is this. What, in principle, is a valid dimension? Since
we are not aware of any general rules that could be used to
determine the validity of dimensions, we have taken a
pragmatic approach and have gathered dimensions that
have been reported and documented [36]. The set of the
thus obtained dimensions is taken as a definition of the
predicate VðdÞ that yields true if and only if d is a valid
dimension. This predicate can be defined as a test of the
exponents of all base dimensions occurring in d with two
exceptions. The allowed exponent ranges are defined by
function R shown in Table 3.
Please cite this article as: C. Chambers, M. Erwig, Automatic d
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The exceptions to this table are the valid dimensions
(1) farads and (2) Siemens, captured by the following
predicate:

EðdÞ ¼ ðd ¼ kg�1 m�2 s4 A2
Þ _ (1)

ðd ¼ kg�1 m�2 s3 A2
Þ (2)

With the definitions for R and E we can define the
dimension validity predicate as follows:

VðdÞ ¼ ð8bn
f 2 d : n 2RðbÞÞ _ EðdÞ

This predicate is still only a crude approximation since it
considers quite a few non-existing dimensions as valid, for
example, kg m. Ultimately, the best approach to realize V
might be to simply store a table of all valid dimensions.

4. Dimension analysis

Dimension analysis of a spreadsheet happens in four
phases that exploit different aspects of the information
presented in the spreadsheet:
1.
ete
9.0
Header inference.

2.
 Label analysis.

3.
 Dimension inference.

4.
 Dimension instantiation.
Header inference identifies spatial relationships between
labels and values/formulas in the spreadsheet. Label
analysis derives basic information about units and
dimensions from the textual content of labels employed
in the spreadsheet. Dimension inference derives the
dimensions for formulas using a formal rule system that
encodes the laws of proper dimension handling by
operations. Dimension inference has two main purposes:
(1) it propagates dimension inference across the spread-
sheet and (2) it identifies cases of computations that are
dimension incorrect. Finally, dimension instantiation
substitutes concrete units for dimension variables. This
step applies only in those cases when the third step
produces underspecified units that contain dimension
variables. In the following we will describe these four
steps in some detail.

4.1. Header inference

Header inference analyzes the structure of a spread-
sheet and returns a set of headers for each cell. A header is
simply the address of another cell. Therefore, header
inference produces a binary relation H � A� A such that
ða; a0Þ 2 H says that a0 is a header of a. In general, one cell
ction of dimension errors in spreadsheets, Journal of
4.002
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can be a header for many cells, and any particular cell can
have zero, one, or more headers. For example, in Fig. 1, B4 is a
header for B5, B6, B7, and B8, that is, H�1

ðB4Þ ¼
fB5;B6;B7;B8g, and A5 and B4 are headers of B5, that is,
HðB5Þ ¼ fA5;B4g. Header inference essentially works by
analyzing the spatial relationships between different kinds
of formulas, and it can also take into account layout
information. Techniques for header inference have been
described in detail elsewhere [32,37]. In the context of this
paper we simply reuse those techniques.
4.2. Label analysis

In the second phase of dimension analysis we try to
derive a dimension for each label contained in a cell that
has been identified as a header by header inference. This
process works by (a) splitting labels into separate words,
(b) removing word inflections, (c) mapping word stems to
dimensions, and (d) combining dimensions into one
dimension. For example, cell C4 shown in Fig. 1 is a
header cell and therefore subject to label analysis. Its
value can be split into the two words ‘‘Free’’ and
‘‘Minutes’’, and the plural of ‘‘Minutes’’ can be removed.
The resulting ‘‘Minute’’ can then be mapped to the
dimension min. In contrast, ‘‘Free’’ cannot be mapped
into any dimension and will thus be mapped to f g. Finally,
the combination of both dimensions yields min.

An example of a label that produces a complex
dimension is ‘‘Miles per Gallon’’ or ‘‘MPG’’ or ‘‘Miles/
Gallon’’. Label analysis uses the divide symbol to infer that
Fig. 2. Dimension in

Please cite this article as: C. Chambers, M. Erwig, Automatic d
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gallons will have an exponent of �1. Another example is
‘‘Hourly Pay Rate’’ or ‘‘Dollars per Hour’’, which will
be deconstructed into parts and reassembled into the
unit $=h. Names for derived units are dealt with in
principally the same way. For example, the label ‘‘Newton’’
would be identified as a unit and mapped to the
dimension kg m s�2.

If no part of a header label can be mapped to a
dimension other than f g, the label is mapped to a
dimension variable d, which indicates that the dimension
is at this time unknown.
4.3. Dimension inference

The third step of dimension analysis is dimension
inference, which inspects each cell containing a formula
and derives for it a dimension using the system of rules
given in Fig. 2. Whenever the rule application fails, the
formula for which no dimension could be inferred has been
identified as erroneous. Moreover, derived dimensions that
are not valid according to the predicate V defined in
Section 3.4 also indicate formula errors. Since the derived
dimension can be the identity dimension f g, the system
simply ignores (areas of) spreadsheets that do not involve
any headers or identified dimensions, that is, dimension
analysis works smoothly on any kind of spreadsheet and is
not disruptive in cases where it does not apply.

The relationship between formulas and dimensions is
formalized through the following four judgments that tie
together dimensions derived from headers/labels, known
ference rules.

etection of dimension errors in spreadsheets, Journal of
9.04.002
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dimensions for conversion factors, and dimension trans-
formations in expressions.

Value dimensions. The judgment v) d says the value v,
if used as a label or factor, describes the dimension d. This
judgment combines the result of the label analysis process,
which provides judgments, such as Money) $, and prior
knowledge of conversion factors, such as the following:

60) min=h

60) s=min

100) cm=m

..

.

Note that the judgment v) d is not a function, that is, one
value can generally indicate different dimensions. This
flexibility allows dimension inference to select the correct
interpretation based on the context, that is, based on usage
in formulas.

Location dimensions. The judgment S;H ‘ a : d says that
in the spreadsheet S and given the header structure H, the
location given by address a has dimension d. This judgment
combines the result of label analysis and header analysis
into a judgment about the expected dimensions for cell
locations. For example, in Fig. 1 we have S;H ‘ C5 : min.

Expression dimensions. The judgment S;H ‘ e : d says
that in the spreadsheet S and given the header structure H,
the expression e has dimension d. This judgment uses
specific rules for expressions to determine the expected
dimension, and is based on the standard rules for
dimensions. For example, addition requires both expres-
sions to have the same base dimension.

Cell dimensions. The judgment S;H ‘ ða; eÞ : d says the
cell ða; eÞ in the spreadsheet S has the dimension d under
the given header relationship H. For example, if S

represents the spreadsheet shown in Fig. 1 and H is the
corresponding header relationship, then we obtain
S;H ‘ ðF5;B5þMAXðF2 � 60� C5;0Þ � D5Þ : $. How this
result is obtained was explained informally in Section 2.
The rules given in Fig. 2 formalize this process, and we will
illustrate the formal derivation of this result in Section 4.5.

Since a cell can have more than one header2 we have to
define how to deal with the cases when both headers are
identified as dimensions. Do we just take one dimension?
If so, which one do we choose? Or shall we combine the
dimensions somehow? As with the mapping of values to
dimensions, the correct interpretation depends in many
cases on the context, so that for the purpose of dimension
inference it is best to principally allow all possibilities. We
can realize this approach through the definition of a
function that generates all possible dimensions that can
be obtained from the combination of two3 dimensions.

d� d0 ¼ fd; d0; dtd0; dtd̄0; d̄td0g
2 In practice, a cell has almost always at most two headers (row and

column). This fact depends, however, on the method that is used for

header inference.
3 Since we are working with a header inference that produces at

most two headers for any cell, the restriction to considering only two

dimensions is appropriate. It would not be difficult to extend the

definition to an arbitrary number of headers.

Please cite this article as: C. Chambers, M. Erwig, Automatic d
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Here the operation d̄ computes the inverse of a dimension,
which is obtained by negating all exponents in all
components

d̄ ¼ fb�n
f j bn

f 2 dg

Now we can provide the rules that define the dimension
inference. Fig. 2 shows the three rules for the location
judgment covering the cases when a cell has two, one, or
zero headers, and a rule for each possible expression to
define the cell judgment. Note that a rule like ADD actually
represents a whole class of rules covering the dimension
inference for all ‘‘additive’’ operations (including MAX and
SUM). Moreover, combinations of rules like ADD and COUNT

yield rules for correspondingly derived operations like AVG.
We can observe the following four principal kinds of

dimension rules:
1.
ete
9.0
Dimension generators (VAL and ADD).

2.
 Dimension preservers (ADD, REF, and IF).

3.
 Dimension composers (MULT).

4.
 Dimension consumers (COUNT).
Consistency checks are contained in some form or another
in all rules but REF. The most restrictive rules are IF and COUNT

since they require arguments to have the same dimensions.
A little less restrictive is the rule ADD that requires its
arguments to have the same base, but allows for differences
in the conversion factors as long as the arguments are
scaled accordingly. Effectively, all conversions between
dimensions happen within the rule ADD. Rule MULT is least
restrictive since it allows the multiplication of any
quantities as long as the result is a valid dimension.

4.4. Dimension instantiation

An inferred dimension might contain dimension vari-
ables and/or conversion-factor variables. The occurrence
of variables happens whenever the spreadsheet does not
provide enough information to precisely narrow down the
dimensions. In these cases we have to find substitutions
for the variables to obtain proper dimensions. In fact, a
dimension involving variables describes a whole class of
possible dimensions. For example, lengthf can be m, cm,
or any other length dimension that can be obtained by
substituting values for f. Similarly, the dimension fm; dg
can be instantiated to velocity or acceleration using the
substitution fd/s�1g or fd/s�2g, respectively.

The instantiation of dimensions can be realized by
generating substitutions for conversion-factor variables so
that default dimensions are obtained and by generating
substitutions for dimension variables that produce valid
dimensions (as defined in Section 3.4). Of those valid
dimensions we can then select the one that is most common
(as indicated by the numbers to be reported in Section 5).

4.5. Example derivation

We now will illustrate how the rule system shown
in Fig. 2 works by showing an example derivation for
cell F5 taken from Fig. 1, which contains the following
ction of dimension errors in spreadsheets, Journal of
4.002
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formula:

B5þMAXðF2 � 60� C5;0Þ � D5
Mult
S;H ‘MAXðF2 � 60� C5;0Þ : d1 S;H ‘ D5 : d2 f$g ¼ d1td2 Vð$Þ

S;H ‘MAXðF2 � 60� C5;0Þ � D5 : $
To determine the dimension of the cell, the rule CELL is
employed, which requires the inference of the dimension
for both the address, F5, and the stored formula.

Regarding the dimension of F5, we observe that header
inference yields HðF5Þ ¼ E4, and the value judgment maps
the text ‘‘Total’’ to $. In general, ‘‘Total’’ is an ambiguous
label with respect to what dimension it denotes. However,
our example is taken from the financial field, where it
makes sense to map Total to $. Therefore the application
of the header rule yields the following:

SingleHdr
HðF5Þ ¼ E4 Total) $

S;H ‘ F5 : $

The concluding judgment of the above rule instantiates
the variable d to $ in the application of the CELL rule, which
therefore takes the following form:

Cell
S;H ‘ B5þMAXðF2 � 60� C5;0Þ � D5 : $ S;H ‘ F5 : $

S;H ‘ ðF5;B5þMAXðF2 � 60� C5;0Þ � D5ÞÞ : $

So we know what dimension the cell will have to have, but
we do not know yet whether the expression in F5 is
dimension correct. Therefore, we have to apply expression
rules to establish that the formula produces indeed
a $ value, and since the outermost operation applied is
þ, we have to employ the ADD rule, which is instantiated
as follows:
Add
S;H ‘ B5 : f$g [ fg S;H ‘MAXðF2 � 60-C5;0Þ � D5 : f$g [ fg c1 ¼ f 1=f c2 ¼ f 2=f

S;H ‘ c1 � B5þ c2 �MAXðF2 � 60-C5;0Þ � D5 : f$g [ fg
We can observe that all involved factors, f , f 1, and f are
simply 1, and therefore c1 and c2 are also 1, which means
that we can simplify the rule instance for a more
convenient future handling as follows:

Add
S;H ‘ B5 : f$g [ fg S;H ‘MAXðF2 � 60� C5;0Þ � D5 : f$g [ fg

S;H ‘ B5þMAXðF2 � 60� C5;0Þ � D5 : f$g [ fg

The first premise can be derived using the REF rule. We
have to notice that references in formulas, such as B5, are
represented in the abstract syntax of the formal spread-
sheet model as " B5. Therefore, the instantiated REF rule
looks as follows:

Ref
S;H ‘ ðB5;39Þ : $

S;H ‘" B5 : $

The premise of the rule results from the lookup
SðB5Þ ¼ 39. Why is the premise of this rule true? Because
due to the VAL rule we can have S;H ‘ 39 : $, and we can
derive S;H ‘ B5 : $ using the SINGLEHDR rule

Cell
S;H ‘ 39 : $

HðB5Þ ¼ fB4g SðB4Þ ) $

S;H ‘ B5 : $
SingleHdr

S;H ‘ ðB5;39Þ : $
Please cite this article as: C. Chambers, M. Erwig, Automatic d
Visual Language and Computing (2009), doi:10.1016/j.jvlc.200
To derive the second premise of the ADD rule we
have to employ the MULT rule, which is instantiated
as follows:
In this example, D5 was not assigned a dimension through
label analysis. Therefore, the dimension is left as a variable
d2, to be possibly instantiated later. The first premise is
derived using the rule for the MAX operation, which is the
same as the ADD rule

Max
S;H ‘ F2 � 60� C5 : d1 S;H ‘ 0 : d1

S;H ‘MAXðF2 � 60� C5;0Þ : d1

The dimension of the constant 0 is left open for now, and
the derivation of the dimension for the subtraction
expression requires another instance of the ADD (here
called SUB to match the � operation)

Sub
S;H ‘ F2 � 60 : d3 S;H ‘ C5 : min c3 ¼ f 1=f c4 ¼ f 2=f

S;H ‘ c1 � F2 � 60� c2 � C5 : min

Since the dimension of C5 will be minutes, which is
derived in an analogous way to the dimension of B5 (see
above), F2 � 60 must have a dimension that can at least be
converted to minutes, using the conversion factors made
available by the rule.

In fact, we can derive d3 ¼ min for F2 � 60, as can be
seen by invoking the MULT rule again. The resulting rule
instance is driven by the fact that F2 � 60 should have
the dimension min and that F2 can be shown to be in
hours as follows:
Cell
S;H ‘ 25 : h

HðF2Þ ¼ fD2g SðD2Þ ) h

S;H ‘ F2 : h
SingleHdr

Ref
S;H ‘ ðF2;25Þ : h

S;H ‘" F2 : h

These two constraints force the invocation of the value
judgment 60)min=h, which then leads to the following
instance of the MULT rule:

Mult
S;H ‘ F2 : h S;H ‘ 60 : min=h min ¼ htmin=h VðminÞ

S;H ‘ F2 � 60 : min

Having thus established the unit min for the expression
F2 � 60� C5 (i.e., d3 ¼ min), we can instantiate the
dimension variable d1 also to min.

We are now back to the dimension of the formula
MAXðF2 � 60� C5;0Þ � D5 for which we had our first
instance of the MULT rule. With d1 ¼min, we obtain the
constraint f$g ¼mintd2 as the third premise. This
constraint can be resolved by letting d2 ¼ $=min, which
finally resolves the dimension for the cell D5. This
essentially completes the derivation process for the
formula.
etection of dimension errors in spreadsheets, Journal of
9.04.002
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A feature of the inference system that was not
exhibited by the above example is the suggestion of
conversion factors through the ADD rule. We will describe
this aspect briefly in the following.

Consider the formula, A1þ A2, with A1 having unit
meters and A2 with the unit centimeters. What happens if
we apply the ADD rule to derive the unit of the formula?
The first thing we can note is that while the base
dimension of both arguments is the same, the dimension
component of each cell contains a different factor. This
prevents the derivation of a unit for the formula—unless a
conversion factor is added. In this case the conversion
factor c2 is instantiated to 0:01=1 ¼ 0:01, which allows the
unit of the formula to be meters
Add
S;H ‘ A1 : flength1

1g [ fg S;H ‘ A2 : flength0:01
1 g [ fg c1 ¼ 1=1 c2 ¼ 0:01=1

S;H ‘ c1 � A1þ c2 � A2 : flength1
1g [ fg
This rule instance says that the formula A1þ 0:01 � A2 has
the unit meters. The fact that one of the conversion factors
had to be instantiated to a value different from 1 indicates
a conversion error. Moreover it suggests a remedy for the
error, that is, an error message presented to the user
cannot only point out the omission of a conversion factor,
but also immediately suggest a corrected formula.

5. Evaluation

We have implemented a prototype system for perform-
ing automatic dimension analysis as an add-in to Micro-
soft Excel. This tool reuses the header analysis
implementation [32] of the UCheck tool [37].

In this section we describe an evaluation of this
dimension analysis system to answer the following
research questions.

RQ1: How wide-spread is the use/occurrence of dimen-

sions in spreadsheets?
Dimension inference can be an effective tool to check

formulas and spot errors in spreadsheet computations,
but only if those computations involve dimensions, or, to
be more precise, if the tool can identify the dimensions
involved in the computations. We expect a considerable
number of spreadsheets to contain dimensions.

RQ2: Does dimension inference run effectively on spread-

sheets involving dimensions?
For those spreadsheets that contain dimensions, we

would like to know whether or not dimension inference
runs correctly, that is, whether it can infer the proper
dimensions for values and formulas and whether it can find
errors based on inconsistent dimension use in formulas.

RQ3: To what degree is dimension analysis dependent on

the underlying header inference and label analysis?
Header inference is the first step in dimension analysis.

If this step fails to work properly, dimension analysis cannot
take off. Following header inference, label inference is the
crucial link that ties header information to dimension
information. In general, label analysis is complicated by the
fact that the process in inherently ambiguous.
Please cite this article as: C. Chambers, M. Erwig, Automatic d
Visual Language and Computing (2009), doi:10.1016/j.jvlc.200
Anything that can improve header or label analysis has
potentially a great impact on the applicability and
accuracy of dimension analysis.

RQ4: Does dimension validity matter?
The concept of dimension validity was introduced to

make the inference rule MULT stronger so that more
dimension errors can be detected. If this additional test
helps in practice to detect dimension errors, we can refine
the definition of V to make it even stronger.

5.1. Experiments

To answer RQ1 we have employed the EUSES spread-
sheet corpus [34], which currently contains 4498 spread-
sheets collected from various sources. Dimension analysis
is relevant only for those 1977 spreadsheets containing
formulas. We ran label analysis on those spreadsheets to
find which dimensions occur how often and in how many
sheets.

To investigate RQ2 and RQ3 we ran our tool on a subset
of 40 spreadsheets randomly selected from the 1977
spreadsheets that contain formulas. We inspected all
results, and in cases the header inference or label analysis
was not working, we adjusted that information ‘‘by hand’’
and ran only the dimension inference part of the tool.

To investigate RQ4 we have categorized the dimension
errors that were reported according to which decision in
the inference process led to their discovery. To perform
the experiments we had to write some additional scripts
and had to perform a few minor instrumentations for the
prototype.
5.2. Results

RQ1: How wide-spread is the use/occurrence of dimen-

sions in spreadsheets?
The distribution of dimensions in the spreadsheets

from the EUSES corpus containing formulas is detailed in
Table 4, which shows the number of occurrences of
dimensions in total and in different spreadsheets.

Altogether, dimensions were found in 487 spread-
sheets, that is, in only 1/4th of the spreadsheets with
formulas. This number is smaller than the total of 603
from Table 4 since several spreadsheets contain more than
one type of dimension.

We found that certain headers were more prevalent
than others and had a greater impact. For example, for the
dimension money, the two most common results were
‘‘Dollars’’ and ‘‘Money’’, with 201 and 159 occurrences,
respectively. For the dimension time, the results were
distributed more evenly, with the most common, ‘‘Year’’,
occurring 91 times and the least common, ‘‘Month’’,
occurring 28 times.
etection of dimension errors in spreadsheets, Journal of
9.04.002
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Table 4
Occurrences of dimensions.

Quantity/ Occurrences

dimension Total In spreadsheets

Money 390 279

Time 351 237

Length 35 26

Mass 27 20

$=h 20 15

Area 12 8

Velocity 10 5

Temperature 10 5

kW 3 3

Mole 3 3

Luminous Intensity 3 2

Total 864 603
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RQ2: Does dimension inference run effectively on spread-

sheets involving dimensions?
The dimension inference component was able to detect

21 dimension errors in 17 of the 40 randomly selected
spreadsheets, that is, we were able to find dimension
errors in 42.5% of the spreadsheets that were selected for
this study. Not only does this show the effectiveness of the
inference mechanism, but it also demonstrates that
dimension inference is an effective approach to find errors
in spreadsheets.

Due to the number of spreadsheets used in this study,
we were able to inspect them manually to verify errors. By
looking at the dimensions involved in formulas we were
able to discover three false positives, caused by faulty
label analysis, and zero false negatives, which would have
been any error that was in the spreadsheet but was not
caught. Due to the specificity of dimension errors it is
possible, if time consuming, to verify that a formula does
not contain errors. The first step in this verification was to
look at the headers and the dimensions assigned to cells. If
the dimension did not match the label this would be a
case of faulty label analysis. Once the dimensions were
verified, the formulas using these cells were investigated.
In the 40 spreadsheets selected for this study there were
no cases of dimension errors in formulas that were not
caught by this approach.

The found 18 different errors had, due to copies in
several rows/columns, altogether 105 error instances.

RQ3: To what degree is dimension analysis dependent on

the underlying header inference and label analysis?
Header inference was able to infer the correct header

information in 30 of the 40 spreadsheets that were
randomly selected from the 487 candidates. In the 10
other cases headers were placed too distant of the data
they were labeling, in some cases having other unrelated
data in between the headers and the data. Label analysis
worked correctly in all cases. To take the limitations of
header inference out of the analysis of dimension
inference, we have altered those 10 spreadsheets so that
dimension inference could start with proper header
information.
Please cite this article as: C. Chambers, M. Erwig, Automatic d
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In general header inference works very well on
spreadsheets that contain a mostly tabular format. The
primary problem in most cases in header location as
headers are often placed in offsetting columns or rows to
the relevant data. One common example occurred in
budget spreadsheets where certain labels took up several
rows. The system only used the last row as the relevant
header, which in some cases caused the loss of dimension
information.

We then ran label analysis on all spreadsheets, which
was able to map 222 headers into 188 singleton and 34
composite dimensions.

RQ4: Does dimension validity matter?
Of the 18 correctly identified dimension errors, 2 were

invalid dimensions ($2 in both cases), 1 was detected in an
if formula, and the remaining 15 errors were all due to
violations of the rule ADD. Some examples of these include
direct formula errors, such as adding the dimensions $ and
h, and others involve conflicts with headers, such as the
header expecting the result to be $ with the result
containing the dimension m.

In general it is hard to determine if the values caused
by these errors are incorrect for two primary reasons.
First, while the system treats headers as an absolute, one
could easily envision a user inputting a header containing
a dimension, when in fact one should not be applied. If the
headers are assumed to be correct.
5.3. Discussion

We were initially surprised by the overall low
occurrence rate of dimensions in spreadsheets, but we
later found by inspecting spreadsheets containing for-
mulas that had no dimension that this result is largely due
to the kind of spreadsheets that are collected in the
repository. For example, among the 1977 spreadsheets
with formulas are over 700 grading spreadsheets, which
have no dimensions at all.

Label analysis and dimension inference worked very
reliably. The weakest link in the chain of steps for
dimension analysis was clearly the header inference,
which is not too surprising since labeling practices vary
widely across spreadsheets.

On the other hand, label analysis can also fail. In fact,
the false positives were all caused by label analysis, which
in some cases inferred dimension too aggressively. This
can happen whenever labels are used to distinguish
between different kinds of numbers and are not intended
to define the dimension of the numbers. For example, in a
table that sums up the number of hourly and day passes,
the addition formula would fail because the numbers of
different units are added without the use of a conversion
factor.

The fact that dimension errors were found in almost
half of the selected spreadsheets shows that dimension
analysis is an effective tool for uncovering errors in
spreadsheets. Even though we found two instances of an
error that was due to the concept of invalid dimensions,
the number of spreadsheets studied was too small to draw
conclusions about the importance of this concept/feature.
etection of dimension errors in spreadsheets, Journal of
9.04.002
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6. Related work

We have already discussed several approaches to
reduce the occurrence of errors in spreadsheets in Section
1. In this section we compare our approach in some more
detail with related work that is concerned with label- or
annotation-based error checking in spreadsheets. To
compare how the different approaches work we use the
spreadsheet shown in Fig. 3 that computes for different
cars miles-per-gallon numbers and from that their
potential range.

There are four errors in this spreadsheet, two caused by
incorrect formulas and two caused through the propaga-
tion of erroneous dimensions. The first formula error can
be found in cell D4, where instead of dividing B4 by C4,
the two cells are being added together. Since B4 has the
unit Miles and C4 has the unit Gallons, this addition is not
dimension correct. The second formula error is located in
F3 where the cells E3, with the unit Gallons, and the cell
C3, also with the unit Gallons, are being multiplied.
Normally, this multiplication would not result in an error;
however, the header for this cell, F2, has the unit Miles,
which requires all the cells in this column to result in the
dimension Miles.

The two propagation errors are caused through the use
of cells that have errors. The first is located in cell F4
where D4, which contains an error, is multiplied with E4.
The second propagation error is located in F5, which is
using the MAX function of column F. MAX requires that all
the cells have the same dimension; however, due to the
incorrect multiplication in cell F3, this is not the case.

Most closely related to our work is the XeLda system
[30] that is designed to check a spreadsheet for units of
measurement, such as meters, grams, and seconds. XeLda
requires the user to annotate the units for all of the cells in
a spreadsheet. Note that this not only includes data cells,
but also all formula cells. For example, a user could
annotate Fig. 3 by specifying that the cells B2, B3, and B4
are (Miles, 1), which is the XeLda notation for a dimension
that has one component, Miles, whose exponent is 1.
Fig. 3. System compa

Fig. 4. XeLda

Please cite this article as: C. Chambers, M. Erwig, Automatic d
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The cells C2, C3, and C4 would have to be annotated by the
unit (Gallons, 1), and the cells D2, D3, and D4 would be
annotated with the unit (Miles, 1) (Gallons, �1), repre-
senting Miles per Gallon, and so on. While analyzing a
spreadsheet XeLda checks the annotated units against the
results of formulas to insure correctness. For example, if
the unit (Meters, 1) is multiplied with another unit of
(Seconds, 1), the result will be (Meters, 1) (Seconds, 1). The
unit determined with the formula is then compared to the
annotated unit to determine any inconsistencies, which
are shaded yellow and contain error messages. Fig. 4
shows the feedback produced by XeLda when run on the
sheet in Fig. 3 after it has been annotated.

The advantage of the XeLda approach is that it works
well independently of the spreadsheet layout, whereas
our approach depends on header and label analysis. On
the other hand, XeLda’s disadvantage is the huge amount
of extra work required by the user whereas our approach
is fully automatic. Moreover, XeLda cannot infer conver-
sion factors.

UCheck [37] was designed to check for units in a
spreadsheet, and as such it does not handle dimensions.
UCheck works by inferring headers for all the cells in a
spreadsheet, based on the structure and content of the
spreadsheet. Once these headers are inferred, the system
derives units for the cells and checks for unit errors. In the
given example, UCheck can find only the error in the
aggregation formula in F5 that is caused by inconsistent
units derived for the argument cells. (The error message is
also misleading in this case.) The results for UCheck are
shown in Fig. 5.

While UCheck works completely automatically, some
other related approaches require the user to annotate the
spreadsheet with label information [27,28]. The same
advantages and disadvantages that we have mentioned for
XeLda apply here as well.

SLATE [38] separates the unit from the object of
measurement and defines semantics for spreadsheets so
that the unit and the object of measurement are considered.
In SLATE, every expression has three attributes: a value, a
rison example.

results.

etection of dimension errors in spreadsheets, Journal of
9.04.002
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Fig. 5. UCheck results.

Fig. 6. SLATE results.

Fig. 7. Dimension inference results.
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unit, and a label. The value is what is contained in a cell.
Units, such as meters, kilograms, and seconds, capture
information about the scale at which the measurement
was taken and the dimensions of the measurement. The
final attribute, labels, defines characteristics of the objects
of measurement. For example, a cell referring to 25
pounds of apples might read ‘‘25 lbs. (apples)’’. Like XeLda,
this system requires the user to annotate the spreadsheet
before the analysis can begin. This annotation involves
adding the units and labels to all cells containing no
references to other cells. The system then analyzes the
cells with formulas containing references and determines
the unit and label for these cells. The annotations and
results from this system are shown in Fig. 6.

This system does not explicitly show errors, but by
investigating the system-generated labels the user can see
which cells may have problems. For example, the system-
generated annotation for cell C4 is (Miles, Gallons, BMW).
Compared to the rest of the cells in this column, this
annotation appears out of place. This annotation should
cause the user to inspect the formula and see that instead
of doing a division, the cell is performing an addition. The
other errors in this spreadsheet have similar annotation
problems.
Please cite this article as: C. Chambers, M. Erwig, Automatic d
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As a comparison, Fig. 7 shows the results of dimension
inference on the spreadsheet in Fig. 3. Dimension
inference is able to highlight the errors in the spreadsheet
and does so without requiring any annotation of the
spreadsheet.

The two most closely related systems with regard to
dimension checking are probably XeLda and the presented
dimension inference. They both seem to do the best job of
recognizing dimension errors. However, both of these
systems handle dimensions differently and because of this
have different strengths and weaknesses.

XeLda requires that users annotate all the cells
in a sheet before the analysis will work properly.
This can be time consuming for the user and represents
the major weakness of the system. It is hard to make
sure that the user will correctly annotate the cells. If this is
not done, it is not possible for the system to check for
errors.

On the other hand, if the annotation is done correctly,
the system will know the units for all of the cells. This
enables it to be confident of the results. The strength of
XeLda also shows one weakness of dimension inference.
Automatically determining the dimensions in a spread-
sheet depends on proper header information and also on a
etection of dimension errors in spreadsheets, Journal of
9.04.002
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mapping of the header labels to dimensions, which can be
ambiguous, as we have mentioned in Section 5.3.

One of the strengths of dimension inference is the fact
that users do not have to specifically enter the dimensions
for any of the cells. As long as the headers are fairly clear
and contain dimensions, checking a spreadsheet is as easy
as clicking a button. As our experiments have shown
dimension inference can find errors and does a good job of
checking spreadsheets when the headers are in order.
7. Conclusions and future work

We have introduced a system for inferring and
checking dimensions in spreadsheets. By interpreting
headers as dimensions and relating those to formulas,
the system can identify errors in formulas, because
dimensions place constraints on how operations can act
on values. Our system differs from previous approaches in
the following ways:
�

P
V

No user annotation required. The system can infer labels
for cells automatically and use them to determine what
the expected dimension of a cell is. This aspect greatly
enhances the usability of the system since it minimizes
the amount of work a user has to do in order to use the
system.

�
 Dimension inference. The system even works well in

situations when only partial dimension information is
available since dimension constraints can also be
propagated upstream of computations through the
defined dimension inference rules. This aspect con-
tributes to the flexibility and robustness of the
presented system.

�
 Conversion factors allow different units of measurement.

Some formulas in a spreadsheet require conversion of
quantities whenever non-compatible dimensions, such
as meters and feet, are involved in additive operations.
The described rule system can identify required
conversion factors.

�
 Dimension instantiation. As a consequence of dimension

inference there are situations in which dimension
variables remain unsolved at the end of the analysis.
These ‘‘dimension templates’’ can be instantiated to
the most likely dimensions expected.
The presented evaluation has demonstrated that our
system works well in practice and can detect errors in
many cases. The evaluation has also revealed three
promising directions for future research.

First, we could improve the system with a more
accurate header inference. One way to do this would be
to use header patterns, which categorize the different ways
that headers are used in spreadsheets. This information
can be used to increase the ability to recognize headers.
For example, if a spreadsheet can be identified as having a
certain header pattern, then the headers will be set up in a
certain way. This may reduce the work it takes to correctly
identify headers and it can also be used to better resolve
ambiguous cases.
lease cite this article as: C. Chambers, M. Erwig, Automatic d
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Second, a combination of dimension inference with the
purely label-based approaches as pursued by UCheck [37]
or the system described in Ahmad et al. [28] could
strengthen the reasoning of the system. To some degree
this was already tried in the SLATE approach [38].
However, SLATE only transforms labels and dimensions
and does not identify errors. Moreover, the fact that SLATE
is a stand-alone spreadsheet system and cannot be
integrated into Excel renders the approach currently
impractical.

One way to combine these two methods is to try and
gather both label and dimension information about a cell.
In many spreadsheets containing dimensions only one
axis contains any relevant dimension information. The
other axis typically contains labels, which provides
structural information that can be exploited by the
reasoning system behind UCheck.

To explain this idea in more detail, we will again use
the example from Fig. 3. This spreadsheet contains several
dimensions on the horizontal axis (Row 1), but dimen-
sionless labels on the vertical axis (Column A). In this
particular example, we will focus on the formula E2*D2,
which is located in cell F2. Assume now that the formula
is changed to E3*D2, that is, mistakenly referencing E3
instead of E2. Dimension inference would have no
problem with this formula, because the result is still valid
and matches the rest of the dimensions in the column.

To try and catch this error we can assign the labels
from Column A to specific rows. For example, the cells in
Row 2 would have the label ‘‘VW Bug’’. With this
information assigned, the system can then check to
ensure that formulas are also label correct. The formula
E3*D2 is multiplying a cell, E3, with the unit Gallons and
the label ‘‘Camry’’ with the cell D2, which has the unit
Miles/Gallon and the label ‘‘VW Bug’’. The system would
be able to catch this label inconsistency and report it to
the user.

Third, the system may be able to be combined with
manual dimension checking techniques, to get the best
possible results. In many cases there is not enough
dimension information to determine if a function is
actually correct. For example, any multiplication resulting
in a valid dimension is accepted. However, this does not
insure that the formula is actually correct. If the header of
the resulting formula does not contain any dimension
information, nothing can be done to validate the result. By
pointing out these problem areas the system could help
the user determine where to add dimension information
to labels.
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Appendix

Below is a list of the 40 spreadsheets that were
randomly selected from those 487 spreadsheets of the
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EUSES spreadsheet corpus [34] that had formulas and
dimensions in them.

cs101/posey_Q1.xls
cs101/ACT3_sec23_smith.xls
database/cost_spreadsheet.xls
financial/2001financialstatements.xls

financial/financialanalysis.xls

financial/ratioanal.xls

financial/English%20financial%252#A7F43.xls

financial/FIN%20YEAR%201%20APRI#A7B18.xls

financial/financial_table_overview.xls
finanical/gaap_q4_03.xls
financial/INCOMESTMT.xls

financial/Q3_Final.xls
financial/summ0602.xls

financial/XI-Sample-Budget-Fina#A7BA6.xls

financial/am_skandia_fin_supple#A80EE.xls
financial/5_year_summary3.xls
financial/90001.xls

financial/FinStmtEx.xls

financial/NOTES2-00xls1.xls

financial/Stats%202001_results.xls
financial/quaterlyreport.xls

financial/3yrsegment_table.xls
finanial/Financial%20Compariso#A7ED8.xls

filby/ACTENER.xls

filby/PLANK.xls

filby/TOUGHEX.xls

forms3/treasury.reichwja.xl97

inventory/a2-33.xls

inventroy/InvCtrlForm.xls

inventory/dairywateruse1.xls

inventory/pigskin.xls

homework/chart.xls

homework/compost homework.xls

homework/expenses_ans.xls
homework/DfGH35Clnf.xls

homework/HMWK92903.xls

homework/HW01.D.xls

homework/hw8.xls

homework.hw08a.xls

homework/Evns4-5.xls
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