
Dimension Inference in Spreadsheets∗

Chris Chambers
Oregon State University

chambech@eecs.oregonstate.edu

Martin Erwig
Oregon State University

erwig@eecs.oregonstate.edu

Abstract
We present a reasoning system for inferring dimension

information in spreadsheets. This system can be used to
check the consistency of spreadsheet formulas and can be
employed to detect errors in spreadsheets.

We have prototypically implemented the system as an
add-in to Excel. In an evaluation of this implementation we
were able to detect dimension errors in almost 50% of the
investigated spreadsheets, which shows (i) that the system
works reliably in practice and (ii) that dimension informa-
tion can be well exploited to uncover errors in spreadsheets.

1. Introduction
Spreadsheets are widely used [18] end-user programs

that contain many errors [16] with a substantial negative im-
pact on society [10]. To improve the quality of spreadsheets
a variety of approaches to prevent, detect, and remove errors
from spreadsheet have been investigated. Since preventive
approaches, in principle, have to interfere with the spread-
sheet creation process that makes spreadsheets so attractive
to end users, much research has focused rather on the detec-
tion and removal of errors.

The two major approaches to detect errors are test-
ing/auditing and static (type) checking. For example, the
“What You See Is What You Test” approach [17] that uses
data-flow adequacy and coverage criteria to give the user
feedback on how well tested the spreadsheet is. Test-case
generation systems [12, 2] can support users in their test-
ing efforts. However, a problem with testing is that is suf-
fers from oracle mistakes (that is, incorrect decisions made
by users during testing) [14]. Even though some of these
problems can be alleviated by automating parts of the test-
ing/debugging process [3], testing is also problematic be-
cause it requires substantial effort on part of the user, which
poses a serious challenge since many of the spreadsheet
users are end users who mainly want to get their job done
and are much less motivated than professional software de-
velopers to spend additional time on their spreadsheets for
testing purposes.

∗This work is partially supported by the National Science Foun-
dation under the grant ITR-0325273 and by the EUSES Consortium
(http://EUSESconsortium.org).

This latter aspect makes type checking approaches at-
tractive since they promise mostly automatic error detec-
tion. Two immediate problems with type checking are that
they are limited in the kinds of errors they find and that
abstract typing concepts may be difficult to communicate
to end users. The limited scope of type checking simply
means that type systems should not intend to replace test-
ing, but to complement it. That this can work very well has
been demonstrated, for example, in [13]. The usability con-
cern has been addressed in two different (although related)
ways. First, based on the observation that spreadsheet users
often place labels as comments into spreadsheets close to
the relevant data, we can reason about the combination of
these labels in formulas that refer to labeled data and thus
detect inconsistencies [9, 6]. In a recent study on the usabil-
ity of a type system in spreadsheets we discovered that end
users can effectively use such label-based type systems to
debug a variety of errors in their spreadsheets [5]. Second,
we can employ units of measurements, or dimensions, as a
concrete notion of types that is well known among end users
[7]. Dimensions are used to characterize different kinds of
values, much like traditional, more abstract, type systems
used in general-purpose programming languages, but on a
more fine-grained level. For example, a floating point num-
ber, which has just one type, can nevertheless represent dif-
ferent kinds of quantities, such as length or time values.

In this paper we describe dimension inference, a method
to automatically find dimension errors in spreadsheets. Our
work builds on previous approaches and extends them in
several important ways. First, through incorporating header
inference [1], the presented system does not have to rely on
additional user annotations and provides therefore a high
degree of automation (“one-click checking”). Second, in
addition to checking whether dimensions of values are cor-
rectly dealt with in formulas, our approach can infer dimen-
sions based on context provided by formulas. This feature
is particularly helpful in cases when header inference does
not provide a detailed enough account of all the dimensions
for all values in the spreadsheet. Dimension inference can
then in many cases close the gap. Finally, the presented
system can automatically infer conversion factors between
different units of measurement (such as meters and feet) and
can enforce the correct use of conversions in formulas. In
addition to the formal model of dimension inference, we

1

Figure 1. Example spreadsheet

describe a practical tool that has been implemented as an
extension to Microsoft Excel. We also present an empirical
analysis of how dimension inference works in practice.

The rest of this paper is structured as follows. In Section
2 we illustrate the issues involved in dimension checking
and inference with a small example. In Section 3 we formal-
ize spreadsheets and a model of dimensions. We introduce
in Section 4 a characterization of valid dimensions that is
expected to be useful in practice to detect more errors. The
process of dimension inference is then described in Section
5. In Section 6 we report on an evaluation of a prototyp-
ical implementation of a tool for dimension analysis. We
discuss related work in Section 7 and give conclusions and
ideas for future work in Section 8.

2. An Example
Figure 1 shows a spreadsheet for computing costs of dif-

ferent phone plans for different companies and different us-
age profiles. The monthly totals for each plan and a partic-
ular hours-of-use value is computed by adding the base fee
and the cost for the minutes exceeding the free minutes. For
example, for the plan in row 5 and for the use of 25 hours,
the formula in cell F5 is as follows.

B5+MAX(F2*60-C5,0)*D5

By inspecting the labels in the spreadsheet we can see that
the value in cell B5, 39, represents a money amount, which
could be without further information given in any currency.
It makes sense for a system to assume whatever currency is
set to be the default, which we assume here to be $. Simi-
larly, we can conclude that C5 is a time value. In this case
there is no doubt about the unit, which is minutes. The same
applies to F2, which contains an hour value. However, it is
not clear at all what dimension the value in D5 has.

Given (partial) information about the dimensions of val-
ues we can reason about formulas to find out the dimen-
sion of the computed value, or identify an error in case the
formula combines dimensions incorrectly. In the course of

determining the dimension of a formula we can also infer
dimensions for values whose dimension could not be deter-
mined from a label/header and is so far unknown. In the
example, we see that C5 is subtracted from F2*60. Since
all additive operations require that the arguments have the
same dimension, we can conclude that F2*60 must be min-
utes, which is possible if the constant 60 has the dimension
minutes/hour. In fact, only the value 60 has this dimension.1

In other words, any other factor (or no factor at all) would
have caused a mistake in this formula.

Since the dimension behavior of MAX is the same as
that of other addition operators, we can infer that 0 and the
whole expression MAX(F2*60-C5,0) also have the dimen-
sion minutes. Here we can observe that the ability to in-
fer dimensions in arbitrary directions, that is, for arguments
from results (instead of only being able to reason from ar-
guments to results) is crucial for obtaining a flexible and
user-friendly reasoning system, because requiring the user
to annotate 0 with minutes and 60 with minutes/hour would
mean a big impact on usability.

The final two steps are to figure out the correct dimen-
sion for D5 so that the sum with B5 is dimension correct.
Since B5 is in $, the product MAX(F2*60-C5,0)*D5 must
have the same dimension. Since the MAX expression is in
minutes, we can therefore conclude that D5 must have the
dimension $/minute.

3. Spreadsheets and Dimensions
We work with the following simple model of spread-

sheets. A spreadsheet (S) is a mapping from addresses
(a ∈ A) to expressions (e). We write S(a) to refer to the
expression stored at address a in the spreadsheet S. Ex-
pressions can be values (v) or references to other cells (↑a),
or are constructed using arithmetic (+ or ∗), aggregating
(count), or conditional operators.

e ::= v | ↑a | e+ e | e∗ e | count(e, . . . ,e) | if(e,e,e)
1Constants can have multiple dimensions, for example, 60 also has the

dimension seconds/minute.

2

Here + and ∗ represent, respectively, a whole class of ad-
ditive operators (including − and MAX) and multiplicative
operators (including /).

A dimension (d) is given by a set of dimension compo-
nents (c). Each component is given by a base (b), a conver-
sion factor (f), and an integer exponent (n). (We can view
a dimension as a partial mapping from base dimensions to
pairs (n, f).) For the purpose of dimension inference, a di-
mension component can also be a dimension variable (δ). If
a dimension contains only one component, it is called a sin-
gleton dimension, whereas a dimension that contains more
than one component is called a composite dimension. The
identity dimension {} is used for dimensionless values.

d ::= {c, . . . ,c}
c ::= bn

f | δ

For each base dimension we identify a default unit with fac-
tor 1. For example, the default for length is meter (m), that
is, m = length1

1, which also means that cm = length1
0.01 and

ft = length1
0.3. In general, the following relationship holds

(where x is a dimensionless number and b is an arbitrary
base).

xbn
f = x f bn

1

We may also omit conversion factors and exponents of 1 for
brevity, that is, we write more shortly bn for bn

1, b f for b1
f ,

and simply b for b1
1.

In general, the choice of dimensions is arbitrary and de-
pends on the application. For the task of analyzing dimen-
sions in arbitrary spreadsheets, we have chosen the seven
SI units and some further units that we have found in the
EUSES spreadsheet corpus [11]. The quantities and their
default units are shown in Table 1.

Table 1. Base dimensions with default units

Quantity Default Unit
length meter (m)
mass kilogram (kg)
time second (s)

electric current ampere (A)
temperature kelvin (K)

amount of substance mole (mol)
luminous intensity candela (cd)

money dollar ($)
angle degree (deg)

Examples of composite dimensions are speed, measured
in m/s, which is {length, time−1}, or force, measured in
kgm/s2, which is {mass, length, time−2}.

A conversion factor can be either a real number (r) or a
conversion variable (φ), which serves as a placeholder to be
used during dimension inference.

f ::= r | φ

We have seen examples of conversion factors in Figure 1,
namely min = time60 and hr = time3600. We can also illus-
trate the effect of conversion variables using that example.
The label “Base Fee” in cell B4 can be mapped to a di-
mension money

φ
, but it is not clear in which currency. If

B4 were added in some formula to a value that is known to
be of dimension $ = money1 or cent = money0.01, the re-
quirement of both arguments of addition to be of the same
dimension would cause the unification of both dimensions
and create the substitution {φ 7→ 1} or {φ 7→ 0.01}, respec-
tively, and thus B4 would also receive the dimension $ or
cent, respectively.

Representing conversion by just a factor is not general
enough to cover some conversions, such as degrees Fahren-
heit to degrees Celsius. Nevertheless, we have chosen this
simple model because it keeps the unification of dimensions
feasible and works in most cases. This restriction is not
too severe since in the spreadsheet repository that we have
tested our prototype implementation on only 2 out of 487
spreadsheets contained dimensions that could not be con-
verted using the presented model.

The use of dimensions in computations effectively re-
stricts the allowed computations in the sense of typing an-
notations. Consider the following definition of the seman-
tics for addition.

e1 −→ v1 e2 −→ v2

e1 + e2 −→ v1 + v2

When the semantics is based on values that are annotated
with dimensions, the rule becomes the following.

e1 −→ v1 : d e2 −→ v2 : d
e1 + e2 −→ v1 + v2 : d

This definition leaves the addition of expressions that eval-
uate to values with different dimensions undefined.

Multiplication transforms the dimensions of values ac-
cording to the function ./, which is defined as follows. First,
d ./ d′ is undefined if d and d′ contain two dimension com-
ponents with the same base b but different conversion fac-
tors, that is, bn

f ∈ d∧bm
f ′ ∈ d′∧ f 6= f ′. Otherwise, we have

d ./ d′ = {bn+m
f | bn

f ∈ d∧bm
f ∈ d′}∪d4d′

where the symmetric difference, d4d′, is defined as all the
dimension components that are a variable or have a base
that is in either d or d′, but not in both.

The dimension-aware semantics for multiplication is
then given by the following rule, which enforces the use of
proper conversion factors in multiplications. For example,
to calculate the distance a plane travels in 5 seconds when
its speed is 950 km/hr, one has to use a conversion factor
with dimension hr/s in the multiplication, otherwise ./ is

3

undefined, and the rule cannot be applied.

e1 −→ v1 : d1 e2 −→ v2 : d1 d1 ./ d2 = d
e1 ∗ e2 −→ v1 ∗ v2 : d

The shown rules are a bit over-simplified because they ig-
nore the notion of dimension validity discussed in the next
section. The purpose of the rules was to show that in-
corporating a dimension concept into the semantics yields
a more precise notion of what correct computations are,
which forms the basis for an approach to identify errors
based on dimension analysis.

4. Dimension Validity
Dimensions span a space, and values having a certain

dimension can be regarded as points in this space. The
traditional handling of dimensional values requires argu-
ments of addition to have the same dimension, but places
no constraints on the argument (or the result) dimension
for multiplication. However, in practice dimensions can-
not be multiplied arbitrarily. For example, no reasonable
value can have the dimension kg3. Ruling out such unrea-
sonable dimensions can strengthen dimensional analysis by
effectively placing a validity constraint on the multiplica-
tion of dimensional values, that is, the result dimension of a
multiplication must be a valid dimension.

It is an interesting scientific (or even philosophical) ques-
tion what, in principle, is a valid dimension. Since we are
not aware of any general rules that could be used to de-
termine the validity of dimensions, we have taken a prag-
matic approach and have gathered dimensions that have
been reported and documented [15]. The set of the thus
obtained dimensions is taken as a definition of the predicate
V (d) that yields true if and only if d is a valid dimension.
This predicate can be defined as a test of the exponents of

b R (b)
length -3 .. 3

electric current -2 .. 1
time -3 .. 2

all others -1 .. 1

all base dimensions occurring
in d with three exceptions. The
allowed exponent ranges are
defined by the table shown to
the right.

The exceptions to this table are the valid dimensions (1)
farads and (2) Siemens, captured by the following predicate.

E(d) = d = kg−1m−2s4A2 ∨ (1)

d = kg−1m−2s3A2 (2)

With the definitions for R and E we can define the dimen-
sion validity predicate as follows.

V (d) = (∀bn
f ∈ d.n ∈ R (b))∨E(d)

This predicate is still only a crude approximation since it
considers quite a few non-existing dimensions as valid, for
example, kg m. Ultimately, the best approach to realize V
might be to simply store a table of all valid dimensions.

5. Dimension Analysis
The dimension analysis of a spreadsheet goes through

the following four distinct steps. The last step applies only
in those cases when the third step produces underspecified
dimensions, that is, when it results in inferred dimensions
that contain dimension variables.

1. Header inference
2. Label analysis
3. Dimension inference
4. Dimension instantiation

In the following we will describe these four steps in some
detail.

5.1 Header Inference
Header inference analyzes the structure of a spreadsheet

and returns a set of headers for each cell. A header is
simply the address of another cell. Therefore, header in-
ference produces a binary relation H ⊆ A× A such that
(a,a′) ∈ H says that a′ is a header of a. In general, one
cell can be a header for many cells, and any particular
cell can have zero, one, or more headers. For example, in
Figure 1 B4 is a header for B5, B6, B7, and B8, that is,
H−1(B4) = {B5,B6,B7,B8}, and A5 and B4 are headers
of B5, that is, H(B5) = {A5,B4}. Header inference essen-
tially works by analyzing the spatial relationships between
different kinds of formulas. It can also take into account
layout information. Techniques for header inference have
been described in detail elsewhere [1, 4]. In the context of
this paper we simply reuse those techniques.

5.2 Label Analysis
In the second phase of dimension analysis we try to de-

rive a dimension for each label contained in a cell that has
been identified as a header by header inference. This pro-
cess works by (a) splitting labels into separate words, (b) re-
moving word inflections, (c) mapping word stems to dimen-
sions, and (d) combining dimensions into one dimension.
For example, cell C4 in Figure 1 is a header cell and there-
fore subject to label analysis. Its value can be split into the
two words “Free” and “Minutes”, and the plural of “Min-
utes” can be removed. The resulting “Minute” can then be
mapped to the dimension min. In contrast, “Free” cannot
be mapped into any dimension and will thus be mapped to
{}. Finally, the combination of both dimensions yields min.
If no part of a header label can be mapped to a dimension
other than {}, the label is mapped to a dimension variable δ,
which indicates that the dimension is at this time unknown.

5.3 Dimension Inference
The third step of dimension analysis is dimension infer-

ence, which inspects each cell containing a formula and de-
rives for it a dimension using a system of rules given in

4

ADDR
H(a) = {a1,a2} S(a1)⇒ d1 S(a2)⇒ d2 d ∈ d1⊗d2 V (d)

S,H ` a : d

H(a) = {a} S(a)⇒ d

S,H ` a : d

H(a) = ∅
S,H ` a : δ

VAL
S,H ` a : d

S,H ` (a,v) : d

REF
S,H ` (a,S(a′)) : d S,H ` a : d

S,H ` (a,↑a′) : d
ADD
S,H ` (a,e1) : {bn

f1
}∪d S,H ` (a,e2) : {bn

f2
}∪d c1 = f1/ f c2 = f2/ f S,H ` a : {bn

f }∪d

S,H ` (a,c1 ∗ e1 + c2 ∗ e2) : {bn
f }∪d

MULT
S,H ` (a,e1) : d1 S,H ` (a,e2) : d2 d = d1 ./ d2 V (d) S,H ` a : d

S,H ` (a,e1 ∗ e2) : d

COUNT
S,H ` (a,ei) : d S,H ` a : {}
S,H ` (a,count(e1, . . . ,en)) : {}

IF
S,H ` (a,e2) : d S,H ` (a,e3) : d S,H ` a : d

S,H ` (a, if(e1,e2,e3)) : d

Figure 2. Dimension inference rules

Figure 2. Whenever the rule application fails, the formula
for which no dimension could be inferred has been identi-
fied as erroneous. Moreover, derived dimensions that are
not valid also indicate formula errors. Since the derived di-
mension can be the identity dimension {}, the system sim-
ply ignores (areas of) spreadsheets that do not involve any
headers or identified dimensions, that is, dimension analy-
sis works smoothly on any kind of spreadsheet and is not
disruptive in cases it does not apply.

Dimension inference is defined through the following
three judgments that tie together dimensions inferred from
headers/labels, known dimensions for conversion factors,
and dimension transformations in expressions.

Value dimensions. The judgment v⇒ d says the value
v, if used as a label or factor, describes the dimension d.
This judgment combines the result of the label analysis pro-
cess and prior knowledge of conversion factors, such as
60 ⇒ min/hr, 60 ⇒ s/min, or 100 ⇒ cm/m. Note that
the judgment v⇒ d is not a function, that is, one value can
generally indicate different dimensions. This flexibility al-
lows dimension inference to select the correct interpretation
based on the context, that is, based on usage in formulas.

Location dimensions. The judgment S,H ` a : d says the
location given by address a has dimension d. This judgment
combines the result of label analysis and header analysis
into a judgment about the expected dimensions for cell lo-
cations. For example, in Figure 1 we have S,H ` C5 : min.

Cell dimensions. The judgment S,H ` (a,e) : d says
the cell (a,e) in the spreadsheet S has the dimension d
under the given header relationship H. For example, if
S represents the spreadsheet shown in Figure 1 and H
is the corresponding header relationship, then we obtain
S,H ` (F5,B5+MAX(F2*60-C5,0)*D5) : $. How this re-
sult is obtained was explained informally in Section 2. The

rules given in Figure 2 formalize this process.
Since a cell can have more than one header2 we have to

define how to deal with the cases when both headers are
identified as dimensions. Do we just take one dimension?
If so, which one do we choose? Or shall we combine the
dimensions somehow? As with the mapping of values to di-
mensions, the correct interpretation depends in many cases
on the context, so that for the purpose of dimension infer-
ence it is best to principally allow all possibilities. We can
realize this approach through the definition of a function
that generates all possible dimensions that can be obtained
from the combination of two3 dimensions.

d⊗d′ = {d,d′,d ./ d′,d ./ d̄′, d̄ ./ d′}

Here the operation d̄ computes the inverse of a dimension,
which is obtained by negating all exponents in all compo-
nents.

d̄ = {b−n
f | b

n
f ∈ d}

Now we can provide the rules that define the dimension
inference. Figure 2 shows the three rules for the location
judgment covering the cases when a cell has two, one, or
zero headers, and a rule for each possible expression to de-
fine the cell judgment. Note that a rule like ADD actually
represents a whole class of rules covering the dimension
inference for all “additive” operations (including -, MAX,
SUM, etc.). Moreover, combinations of rules like ADD and
COUNT yield rules for correspondingly derived operations
like AVG.

2In practice, a cell has almost always at most two headers (row and
column). This fact depends, however, on the method that is used for header
inference.

3Since we are working with a header inference that produces at most
two headers for any cell, the restriction to considering only two dimen-
sions is appropriate. It would not be difficult to extend the definition to an
arbitrary number of headers.

5

We can observe the following four principal kinds of di-
mension rules.

1. Dimension generators (VAL and ADD)
2. Dimension preservers (ADD, REF, and IF)
3. Dimension composers (MULT)
4. Dimension consumers (COUNT)

Consistency checks are contained in some form or another
in all rules but REF. The most restrictive rules are IF and
COUNT since they require arguments to have the same di-
mensions. A little less restrictive is the rule ADD that re-
quires its arguments to have the same base, but allows for
differences in the conversion factors as long as the argu-
ments are scaled accordingly. Effectively, all conversions
between dimensions happen within the rule ADD. Rule
MULT is least restrictive since it allows the multiplication
of any quantities as long as the result is a valid dimension.

5.4 Dimension Instantiation
An inferred dimension might contain dimension vari-

ables and/or conversion-factor variables. The occurrence
of variables happens whenever the spreadsheet doesn’t pro-
vide enough information to precisely narrow down the di-
mensions. In these cases we have to find substitutions for
the variables to obtain proper dimensions. In fact, a dimen-
sion involving variables describes a whole class of possible
dimensions. For example, lengthφ can be m, cm, or any
other length dimension that can be obtained by substituting
values for φ. Similarly, the dimension {m,δ} can be in-
stantiated to velocity or acceleration using the substitution
{δ 7→ s−1} or {δ 7→ s−2}, respectively.

The instantiation of dimensions can be realized by gen-
erating substitutions for conversion-factor variables so that
default dimensions are obtained and by generating substitu-
tions for dimension variables that produce valid dimensions
(as defined in Section 4). Of those valid dimensions we can
then select the one that is most common (as indicated by the
numbers to be reported in Section 6).

6. Evaluation
We have implemented a tool for performing automatic

dimension analysis as an add-in to Microsoft Excel. This
tool reuses the header analysis implementation [1] of the
UCheck tool [4]. In this section we describe an evaluation
of this dimension analysis system to answer the following
research questions.

RQ1: How wide-spread is the use/occurrence of dimen-
sions in spreadsheets?
Dimension inference can be an effective tool to check for-
mulas and spot errors in spreadsheet computations, but only
if those computations involve dimensions, or, to be more
precise, if the tool can identify the dimensions involved

in the computations. We expect a considerable number of
spreadsheets to contain dimensions.

RQ2: Does dimension inference run effectively on
spreadsheets involving dimensions?
For those spreadsheets that contain dimensions, we would
like to know whether or not dimension inference runs cor-
rectly, that is, whether it can infer the proper dimensions for
values and formulas and whether it can find errors based on
inconsistent dimension use in formulas.

RQ3: To what degree is dimension analysis dependent
on the underlying header inference and label analysis?
Header inference is the first step in dimension analysis. If
this step fails to work properly, dimension analysis cannot
take off. Following header inference, label inference is the
crucial link that ties header information to dimension in-
formation. In general, label analysis is complicated by the
fact that the process in inherently ambiguous. Anything that
can improve header or label analysis has potentially a great
impact on the applicability and accuracy of dimension anal-
ysis.

RQ4: Does dimension validity matter?
The concept of dimension validity was introduced to make
the inference rule MULT stronger so that more dimension
errors can be detected. If this additional test helps in prac-
tice to detect dimension errors, we can refine the definition
of V to make it even stronger.

6.1 Experiments

To answer RQ1 we have employed the EUSES spread-
sheet corpus [11], which currently contains 4498 spread-
sheets collected from various sources. Dimension analysis
is relevant only for those 1977 spreadsheets containing for-
mulas. We ran label analysis on those spreadsheets to find
which dimensions occur how often.

To investigate RQ2 and RQ3 we ran our tool on a subset
of 40 spreadsheets randomly selected from the 1977 spread-
sheets that contain formulas. We inspected all results, and in
cases the header inference or label analysis was not work-
ing, we adjusted that information “by hand” and ran only
the dimension inference part of the tool.

To investigate RQ4 we have categorized the dimension
errors that were reported according to which decision in the
inference process led to their discovery.

6.2 Results

The occurrence of dimensions in the spreadsheets from
the EUSES corpus containing formulas is detailed in Table
2, which shows the number of occurrences of dimensions in
total and in different spreadsheets. Altogether dimensions
were found in 487 spreadsheets, that is, in only 1/4th of the
spreadsheets with formulas. This number is smaller than the
total of 603 from Table 2 since several spreadsheets contain
more than one type of dimension.

6

Table 2. Occurrences of dimensions

Quantity/ Occurrences
Dimension Total In Spreadsheets

Money 390 279
Time 351 237

Length 35 26
Mass 27 20
$/hr 20 15
Area 12 8

Velocity 10 5
Temperature 10 5

kW 3 3
Mole 3 3

Luminous Intensity 3 2
Total 864 603

We found that certain headers were more prevalent than
others and had a greater impact. For example, for the quan-
tity money, the two most common results were “Dollars”
and “Money”, with 201 and 159 occurrences, respectively.
For the quantity time, the results were distributed more
evenly, with the most common, “Year”, occurring 91 times
and the least common, “Month”, occurring 28 times.

Header inference was able to infer the correct header in-
formation in 30 of the 40 cases. In the 10 other cases head-
ers were placed too distant of the data they were labeling,
in some cases having other unrelated data in between the
headers and the data. Label analysis worked correctly in
all cases. To take the limitations of header inference out of
the analysis of dimension inference, we have altered those
10 spreadsheets so that dimension inference could start with
proper header information.

Dimension inference was then successfully run on all
spreadsheets and was able to map 222 headers into 188
singleton and 34 composite dimensions. The tool detected
21 dimension errors in 17 of the 40 spreadsheets. To ver-
ify these errors, the spreadsheets were manually inspected,
leading to the discovery of three false positives (caused by
the label analysis) and zero false negatives. Of the 18 cor-
rectly identified dimension errors, 2 were invalid dimen-
sions ($2 in both cases), and 1 error was detected in an if
formula, and the remaining 15 errors were all due to viola-
tions of the rule ADD. The found 18 different errors had,
due to copies in several rows/columns, altogether 105 error
instances.

6.3 Discussion

We were initially surprised by the overall low occurrence
rate of dimensions in spreadsheets, but we later found by
inspecting spreadsheets containing formulas that had no di-
mension that this result is largely due to the kind of spread-
sheets that are collected in the repository. For example,

among the 1977 spreadsheets with formulas are over 700
grading spreadsheets, which have no dimensions at all.

Label analysis and dimension inference worked very re-
liably. The weakest link in the chain of steps for dimen-
sion analysis was clearly the header inference, which is not
too surprising since labeling practices vary widely across
spreadsheets.

The fact that dimension errors were found in almost half
of the selected spreadsheets shows that dimension analysis
is an effective tool for uncovering errors in spreadsheets.
Even though we found two instances of an error that was
due to the concept of invalid dimensions, the number of
spreadsheets studied was too small to draw conclusions
about the importance of this concept/feature.

7. Related Work
Most closely related to our work is the Xelda system [7]

that is designed to check a spreadsheet for units of measure-
ment, such as meters, grams, and seconds. Xelda requires
the user to annotate the units for all of the cells in a spread-
sheet. Note that this does not only include data cells, but
also all formula cells. While analyzing a spreadsheet Xelda
checks the annotated units against the results of formulas to
insure correctness. The advantage of the Xelda approach is
that it works well independently of the spreadsheet layout,
whereas our approach depends on header and label analysis.
On the other hand, Xelda’s disadvantage is the huge amount
of extra work required by the user whereas our approach is
fully automatic. Moreover, Xelda cannot infer conversion
factors.

UCheck [4] was designed to check for units in a spread-
sheet, and as such it does not handle dimensions. UCheck
works by inferring headers for all the cells in a spreadsheet,
based on the structure and content of the spreadsheet. Once
these headers are inferred, the system derives units for the
cells and checks for unit errors.

While UCheck works completely automatically, some
other related approaches require the user to annotate the
spreadsheet with label information [9, 6]. The same advan-
tages and disadvantages that we have mentioned for Xelda
apply here as well.

SLATE [8] separates the unit from the object of measure-
ment and defines semantics for spreadsheets so that the unit
and the object of measurement are considered. In SLATE,
every expression has three attributes: a value, a unit, and a
label. The value is what is contained in a cell. Units, such as
meters, kilograms, and seconds, capture information about
the scale at which the measurement was taken and the di-
mensions of the measurement. The final attribute, labels,
defines characteristics of the objects of measurement. For
example, a cell referring to 25 pounds of apples might read
“25 lbs. (apples)”. Like Xelda, this system requires the user
to annotate the spreadsheet before the analysis can begin.

7

This annotation involves adding the units and labels to all
cells containing no references to other cells. The system
then analyzes the cells with formulas containing references
and determines the unit and label for these cells.

8. Conclusions and Future Work
We have introduced a system for inferring and check-

ing dimensions in spreadsheets. By interpreting headers as
dimensions and relating those to formulas, the system can
identify errors in formulas. This system differs from previ-
ous approaches in the following ways.

• No user annotation required. The system can infer la-
bels for cells automatically and use them to determine
what the dimension is.
• Dimension inference. The system even works well in

situations when only partial label/dimension informa-
tion is given since constraints can also be propagated
upstream of computations. This aspect contributes to
flexibility and robustness.
• Conversion factors allow different units of measure-

ment. Some formulas in a spreadsheet require con-
version of quantities whenever non-compatible dimen-
sions, such as meters and feet, are involved in additive
operations. The described rule system handles such
conversions smoothly.
• Dimension instantiation. As a consequence of dimen-

sion inference there are situations in which dimension
variables remain unsolved at the end of the analysis.
These “dimension templates” can be instantiated to the
most likely dimensions expected.

The evaluation has demonstrated that the system works well
in practice and can detect errors in many cases. The evalu-
ation has also revealed two promising directions for future
research. First, we could improve the system with a more
accurate header inference. Second, a combination of dimen-
sion inference with the purely label-based approaches as
pursued by UCheck [4] or the system described in [6] could
strengthen the reasoning of the system. To some degree this
was already tried in the SLATE approach [8]. However,
SLATE only transforms labels and dimensions and does not
identify errors. Moreover, the fact that SLATE is a stand-
alone spreadsheet system and cannot be integrated into Ex-
cel renders the approach currently impractical.

References
[1] R. Abraham and M. Erwig. Header and Unit Inference for

Spreadsheets Through Spatial Analyses. In IEEE Int. Symp.
on Visual Languages and Human-Centric Computing, pages
165–172, 2004.

[2] R. Abraham and M. Erwig. AutoTest: A Tool for Automatic
Test Case Generation in Spreadsheets. In IEEE Int. Symp.
on Visual Languages and Human-Centric Computing, pages
43–50, 2006.

[3] R. Abraham and M. Erwig. GoalDebug: A Spreadsheet De-
bugger for End Users. In 29th IEEE Int. Conf. on Software
Engineering, pages 251–260, 2007.

[4] R. Abraham and M. Erwig. UCheck: A Spreadsheet Unit
Checker for End Users. Journal of Visual Languages and
Computing, 18(1):71–95, 2007.

[5] R. Abraham, M. Erwig, and S. Andrew. A Type System
Based on End-User Vocabulary. In IEEE Int. Symp. on Vi-
sual Languages and Human-Centric Computing, pages 215–
222, 2007.

[6] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi.
A Type System for Statically Detecting Spreadsheet Errors.
In 18th IEEE Int. Conf. on Automated Software Engineering,
pages 174–183, 2003.

[7] T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth,
and M. Felleisen. Validating the Unit Correctness of Spread-
sheet Programs. In 26th IEEE Int. Conf. on Software Engi-
neering, pages 439–448, 2004.

[8] M. J. Coblenz, A. J. Ko, and B. A. Myers. Using Objects of
Measurement to Detect Spreadsheet Errors. In IEEE Symp.
on Visual Languages and Human-Centric Computing, pages
314–316, 2005.

[9] M. Erwig and M. M. Burnett. Adding Apples and Oranges.
In 4th Int. Symp. on Practical Aspects of Declarative Lan-
guages, LNCS 2257, pages 173–191, 2002.

[10] EuSpRIG. European Spreadsheet Risks Interest Group.
http://www.eusprig.org/.

[11] M. Fisher and G. Rothermel. The EUSES Spreadsheet
Corpus: A Shared Resource for Supporting Experimenta-
tion with Spreadsheet Dependability Mechanism. In 1st
Workshop on End-User Software Engineering, pages 47–51,
2005.

[12] M. Fisher II, M. Cao, G. Rothermel, C. Cook, and M. M.
Burnett. Automated Test Case Generation for Spreadsheets.
In 24th IEEE Int. Conf. on Software Engineering, pages
141–151, 2002.

[13] J. Lawrence, R. Abraham, M. M. Burnett, and M. Erwig.
Sharing Reasoning about Faults in Spreadsheets: An Em-
pirical Study. In IEEE Int. Symp. on Visual Languages and
Human-Centric Computing, pages 35–42, 2006.

[14] A. Phalgune, C. Kissinger, M. Burnett, C. Cook, L. Beck-
with, and J. Ruthruff. Garbage In, Garbage Out? An Empir-
ical Look at Oracle Mistakes by End-User Programmers. In
IEEE Int. Symp. on Visual Languages and Human-Centric
Computing, pages 45–52, 2005.

[15] R. Rowlett. A Dictionary of Units of Measurement,
July 2005. http://www.unc.edu/~rowlett/units/

index.html.
[16] K. Rajalingham, D. Chadwick, B. Knight, and D. Edwards.

Quality Control in Spreadsheets: A Software Engineering-
Based Approach to Spreadsheet Development. In 33rd
Hawaii Int. Conf. on System Sciences, pages 1–9, 2000.

[17] G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A Methodology for Testing Spreadsheets. ACM
Transactions on Software Engineering and Methodology,
pages 110–147, 2001.

[18] C. Scaffidi, M. Shaw, and B. Myers. Estimating the Num-
bers of End Users and End User Programmers. In IEEE
Symp. on Visual Languages and Human-Centric Computing,
pages 207–214, 2005.

8

