
A Type System Based on End-User Vocabulary?

Robin Abraham and Martin Erwig and Scott Andrew
School of EECS, Oregon State University

[abraharo|erwig|andrewsc]@eecs.oregonstate.edu

Abstract
In previous work we have developed a system that au-

tomatically checks for unit errors in spreadsheets. In this
paper we describe our experiences using the system in a
workshop on spreadsheet safety aimed at high school teach-
ers and students. We present the results from a think-aloud
study we conducted with five high school teachers and one
high school student as the subjects. The study is the first
ever to investigate the usability of a type system in spread-
sheets. We discovered that end users can effectively use the
system to debug a variety of errors in their spreadsheets.
This result is encouraging given that type systems are dif-
ficult even for programmers. The subjects had difficulty
debugging “non-local” unit errors. Guided by the results
of the study we devised new methods to improve the error-
location inference. We also extended the system to generate
change suggestions for cells with unit errors, which when
applied, would correct unit errors. These extensions solved
the problem that the study revealed in the original system.

1. Introduction
The benefits of types systems are well known. The fact

that type checkers can automatically detect erroneous parts
of a program makes them a helpful tool to develop correct
programs. Although the effectiveness of type checkers in
preventing errors has been previously shown for general-
purpose languages [15], the usability of type checkers for
end-user languages has not been investigated so far. In any
case, many programmers (especially beginners) find type
systems more of a hinderance than help. The main rea-
son behind this perception of type systems is the fact that
type error messages generated by compilers are hard to
understand—the cause of the type error might not be obvi-
ous from the error message, and the corrective action even
less so. This problem poses a particular challenge for type
systems for end-user languages. In our work on helping
end users develop more reliable software, we are looking at
ways to bring the power of type systems to the domain of
spreadsheets, and make the benefits accessible to end users.

We have approached the task of creating an end-user
type system for spreadsheets by employing the idea of
spreadsheet-specific type definitions, that is, the labels used
in the spreadsheet are employed as headers for the data

∗This work is partially supported by the National Science Foun-
dation under the grant ITR-0325273 and by the EUSES Consortium
(http://EUSESconsortium.org).

cells. A rule system that defines how headers can be com-
bined for formula cells allows us to then identify formulas
that are inconsistent with the header information [8]. The
perceived advantage of this approach was that it would be
easier for the users to understand the errors in the spread-
sheet if the headers they themselves had entered were used
while reporting errors. We realized early on that for the sys-
tem to be successful and usable, it should only require mini-
mal effort from the user. With this goal in mind we have de-
veloped the algorithms for header inference through spatial
analyses described in [1]. The resulting system, UCheck,
automatically detects and reports errors in spreadsheets [4].

We describe related work in the next section. In Sec-
tion 3, we describe how UCheck works using examples
from unit errors seeded in the spreadsheets used in the pre-
liminary evaluation described in Section 4. In Section 5,
we describe the enhancements done to the system so that
it can infer change suggestions for correcting unit errors.
We present conclusions and directions for future research
in Section 6.

2. Related Work
Empirical studies have demonstrated the defect-

detection capabilities of static type checking [10, 15]. Even
though the benefits of type systems are widely accepted, not
many studies have been carried out to test or compare the
usability of type systems in general-purpose programming
languages. Many researchers have looked at errors in
programs developed by novice programmers [19, 18, 7].
But the frequency and impact of type errors in novice
programs is not known.

Physical units (meters, grams, seconds, etc.) have been
used to detect unit errors in general-purpose programming
languages [11, 12], and in spreadsheets [6]. The approach
originally proposed in [8] uses headers used by end users
to label the data in their spreadsheets as implicit unit decla-
rations, and carries out consistency checking based on the
allowed combinations of units. The system described in
[5] extends the approach but requires the users to annotate
the spreadsheets cells with the unit information. To mini-
mize the effort required of the user, we have developed the
UCheck system [4] that infers the headers automatically [1]
and uses the rule system from [8] to carry out consistency
checking of spreadsheets.

The “What You See Is What You Test” (WYSIWYT)
approach presented in [17] helps users test spreadsheets.
The system uses data-flow adequacy and coverage criteria

1

to give the user feedback on how well tested the spread-
sheet is. The fault-localization mechanism in WYSIWYT
[14] uses cell shading to guide the users while they are de-
bugging faults uncovered by their test cases.

The approach presented in [5] also uses header informa-
tion for consistency checking of spreadsheets. Checking of
spreadsheet formulas based on the actual physical or mone-
tary units has been presented in [6]. Both these approaches
require the user to annotate the spreadsheet cells with ex-
tra information to aid the consistency checker. This activity
could be very time consuming and error prone in the case
of large spreadsheets. UCheck, on the other hand, infers
the header information automatically and carries out unit
checking without the need for any extra effort from the user.

In other previous work, we have developed a type
checker for spreadsheets [3]. In addition to type checking
the spreadsheet formulas and the arguments along the lines
of more traditional approaches to type checking, our sys-
tem also exploits information about the spatial arrangement
of cells for consistency checking.

3. Unit Errors in Spreadsheets
From our observations of users in real life we have found

that users enter headers within their spreadsheets to label the
data. For example, in the spreadsheet shown in Figure 1, the
header Adrian in B2 indicates that the data in column B is
somehow related to “Adrian”, which is in turn a “District”
(as indicated by the header District in B1). Headers serve
as documentation to help the user remember what the data
means.

In the context of the spreadsheet1 shown in Figure 1, the
number 20 in cell B3 is not simply an integer. The row
(Senior, 2004) and column (Adrian) headers tell us that the
cell contains the number of students registered in the se-
nior class of 2004 in the Adrian school district. We call
headers in their function as labels units. We also see that
Senior, 2004 in A3 has Class as its header, and Adrian in B2

has District as its header. These header dependencies give
rise to what we call dependent units, which in this case are
Class[Senior, 2004] and District[Adrian]. Since both the row
and column headers apply at the same time, we combine
the inferred dependent units using the and operator (&) to
give the and unit District[Adrian]&Class[Senior, 2004] for the
number 20 in B3. This inferred unit is treated as an implicit
type declaration for the cell B3. The units for the other cells
that contain data values can be inferred along similar lines.

The units obtained for the data cells are then used to infer
the units for the formula cells depending on the operations
in the formulas. For example, cell B9 contains the formula
SUM(B3,B5,B7). Its unit is inferred as a combination of the
units of the cells participating in the operation. All three
cells have District[Adrian] as a common factor from the
column-level header. The components from the row-level

1This spreadsheet was used in the second task of the study described
later in this paper.

Figure 1. Unit errors in the enrollment spread-
sheet as reported by UCheck.

headers are Class[Senior, 2004] for B3, Class[Senior, 2003]
for B5, and Class[Senior, 2002] for B7. Since the val-
ues in the three cells are added together, we combine
the units using the or operator (|) to give the or unit
Class[Senior, 2004]|Class[Senior, 2003]|Class[Senior, 2002].
The common component can be factored out to yield the
unit

Class[Senior, 2004|Senior, 2003|Senior, 2002].
For the sake of brevity, we shorten Class to C, Distrcit to D,
Senior to S, and Junior to J in the discussions about units
from here on. The inferred row-level component of the unit
can be combined with the column-level component using
the & operator to give

D[Adrian]&C[S, 2004|S, 2003|S, 2002]
as the the unit for B9.

Unit expressions can be transformed according to the
laws detailed in [8]. We can then identify a class of unit ex-
pressions that are considered to be well formed. Cell formu-
las whose derived unit expressions cannot be transformed
into well-formed units are considered erroneous, and the
system reports unit errors for such cells. In the current ver-
sion of the system, cells that have unit errors are shaded or-
ange. Such errors are called primary unit errors. The cells
that have formulas that reference cells with unit errors are
shaded yellow. Such errors are called propagation unit er-
rors. This fault-localization feedback is aimed at directing
the user’s attention to the cells that have primary unit errors
since correcting these also removes the propagation unit er-
rors (at least in cases they do not contain their own unit
errors).

We now go over the errors we seeded in the spreadsheet
for the think-aloud study and discuss why they are unit er-
rors and the feedback from the system (as shown in Figure
1). The spreadsheet has the number of students enrolled in
the senior and junior classes in 6 school districts of Oregon
collected over a 3-year period (the numbers are fictitious).
Row 9 has the total number of seniors over the 3-year period
and row 10 has the total number of juniors over the 3-year
period. Column H has the total number of students over all
the school districts.

1. The formula in cell B5 is a reference to cell C4. This
situation might arise if the user accidentally clicked a
cell or if the user wanted the values in the cells to be the
same. The reference in B5 leads to a unit error because
the cell has the unit D[Adrian]&C[S,2003] by virtue of
its position and the unit D[Amity]&C[J,2004] by virtue
of the reference. After running UCheck, the cell B5 is
shaded orange because the cell has a unit error, and the
cells H5 and B9 are shaded yellow since their formulas
have references to B5. H9 is shaded yellow because its
formula has a reference to B9.

2. The formula SUM(C2,C4,C6,C8) in C10 includes a ref-
erence to C2. Cells C4, C6, and C8 have D[Amity] as
the unit from the column headers whereas C2 has D

as its unit. Therefore the unit for the formula in C10

cannot be simplified to a well-formed unit, and the cell
is shaded orange as shown in Figure 1. H10 is shaded
yellow since its formula contains a reference to C10.

3. The formulas in cells B9, C9, D9, F9, and G9 have ref-
erences to cells B5, C5, D5, F5, G5, respectively, and
have C[S,2003] as part of their units.2 E9, on the other
hand, has C[J,2003] as part of its unit since it has a ref-
erence to E6 (instead of E5). The formulas in cells B9

through G9 are all unit correct individually, but when
their values are combined by the formula SUM(B9:G9)

in H9, the resulting unit cannot be simplified to a well-
formed unit since the unit of E9 has a component that
does not match those from the other cells. Similarly,
B10, C10 (once the reference to C2 has been removed),
D10, E10, and G10 refer to cells in the same column
and rows 4, 6, and 8. The formula in F10 does not have
a reference to F4. The units of the cells B10 through
G10 are all valid individually, but result in a unit error
when combined by the formula in H10 since the unit
of F10 does not agree with those from the other cells.
In Figure 1, both H9 and H10 are shaded yellow since
at this point they also have the effect of the unit er-
rors propagated from B5 and C10, respectively. Once
those errors have been corrected, the system will shade
H9 and H10 orange since they now have primary unit
errors only.

UCheck’s label-based type system works on a finer level
of granularity than types like Integer and String in tradi-
tional programming languages. UCheck uses the metaphors
from the user’s domain by employing the header informa-
tion from the spreadsheet the user is working on.

4. Preliminary Evaluation
As part of the outreach component of the EUSES col-

laboration, courses in spreadsheet safety targeted at high
school teachers and students have been conducted [9]. A
pilot session was conducted with two high school students.
They were given a 20 minute introduction to the UCheck

2For example, the formula in B9 is Sum(B3,B5,B7).

system. After the introductory presentation, the participants
were asked to identify and remove unit errors from a spread-
sheet seeded with 8 unit errors. It was observed that the two
participants successfully removed all 8 unit errors in under
five minutes. During the task, it was also observed that the
participants debugged the spreadsheet left-to-right and top-
to-bottom. This strategy might have served them well since
the spreadsheet was well designed according to Teo and Tan
[20], because input/data cells are to the left and upper part
of the spreadsheet and formula cells are to the right and
bottom part of the spreadsheet. We also observed that the
students were not really using the written spreadsheet spec-
ification to help them correct the unit errors. They were
simply looking at the cells shaded orange by UCheck, com-
paring their formulas with the formulas of the neighboring
cells, and then changing the formulas of the orange cells.
This observation prompted us to design one of the tasks for
the later think-aloud study such that this strategy would not
work. We were hoping that would give us better insight
into other debugging strategies end users might come up
with, especially in those cases where neighboring cells are
not available for help/reference.

We also conducted a course spread out over 4 weeks,
with 3-hour sessions on 3 days, each week, that dealt with
spreadsheet safety and the use of spreadsheets in Mathemat-
ics education. In this context, the participants were given a
brief introduction to the WYSIWYT testing methodology
and UCheck.

During the sessions with UCheck, the subjects expressed
their appreciation for its automatic error-checking capabil-
ities. The subjects also found the fault-localization feature
of UCheck a big time saver. When asked about their un-
derstanding of units, one of the teachers pointed out that
UCheck is more related to the idea of sets (for example, the
set of fruits with the set of apples and the set of oranges
as subsets) rather than to the physical concept of units (for
example, m/s2 as the unit for speed). This comment was
interesting since it illustrates how the teacher was trying to
understand UCheck within the framework of Mathematical
concepts he was familiar with. During our discussions with
the teachers, it became clear that they had a pretty good un-
derstanding of how UCheck uses headers for carrying out
consistency checking in spite of the fact that the underlying
formal system was never discussed. In some situations, the
teachers were also able to identify false positives reported
by UCheck as due to insufficient header information.

The workshops showed that high school teachers found
UCheck easy enough to understand so that they could use
it effectively. Moreover, the teachers were able to develop
lesson plans and use those to guide high school students on
how to create safe spreadsheets.

To obtain a better picture of the usability of UCheck, we
carried out a think-aloud study, which we will describe in
the remainder of this section.

Figure 2. Grade sheet with unit errors.

4.1. Participants

Five teachers (we refer to them as Subject A through
Subject E), from among the ten who were in our course on
spreadsheet safety, participated in the think-aloud study. We
also used a high school student working with us under the
Saturday Academy Program as another subject (Subject F).
All the subjects had been introduced to UCheck prior to the
study. The study was designed to gauge their understanding
of UCheck, and how effective they would be in debugging
unit errors.

Subjects A through E had little or no prior programming
experience. Subject F was familiar with two programming
languages he has used for class projects at high school level.
Subjects B and C had never used spreadsheets before our
course on spreadsheet safety. All the others had some ex-
posure to spreadsheets (mostly ones they had developed for
their own use) prior to the study.

4.2. Procedure

At the start of the think-aloud session, the subjects were
given a tutorial on UCheck followed by an exercise on how
to think aloud. The subjects were then asked to debug unit
errors in two spreadsheets.

In the first task, the subjects were asked to debug unit
errors seeded in the grade sheet shown in Figure 2. Even
though this spreadsheet has more cells than the one used
in the second task, the errors were more straightforward to
debug. Therefore, this task can be considered the easier of
the two tasks. The grade sheet was seeded with 4 different
kinds of unit errors. These errors led to invalid units being
inferred in 8 other cells. On running UCheck on the spread-
sheet, the subjects would initially see the fault localization
feedback shown in Figure 2.

In the second task, the subjects were asked to debug unit
errors in the spreadsheet shown in Figure 1. The spread-

sheet was seeded with 4 errors. The fault localization feed-
back presented to the subjects after the first run of UCheck
is shown in Figure 1. These errors led to invalid units be-
ing inferred in 4 other cells. Only six errors are displayed
because cells H9 and H10 each contain two errors. They
are shaded yellow in the figure since they have propagation
errors from B5 and C10, respectively, in addition to the pri-
mary errors we seeded in the cells themselves.

In addition to the audio recording of the think-aloud ses-
sions, we also captured video data of the participants’ on-
screen interactions. Both data sources were used for further
analysis.

At the end of the two tasks, the subjects were asked to
fill out a post-test questionnaire aimed at finding out more
about their experiences debugging the spreadsheets using
UCheck. The questionnaire also sought feedback on as-
pects of the system that the subjects would like changed.
To gauge the subjects’ understanding of the different kinds
of unit errors, we asked the subjects to describe in their own
words the different types of errors that UCheck would help
them detect.

4.3. Research Questions

The think-aloud study was aimed at answering the fol-
lowing research questions.

RQ1: Do end users understand the concept of units well
enough to be able to correct the unit errors reported by
UCheck? Do they introduce new errors while debugging
unit errors?
UCheck automatically detects unit errors within the spread-
sheet and shades the cells that have unit errors. The changes
to the cell formulas to correct the unit errors have to be fig-
ured out by the user. This effort requires at least a basic un-
derstanding of units and their causes. Furthermore, RQ1 is
important because the system might report unit errors incor-
rectly in the following cases. For example, UCheck relies
on automatic header inference to assign units to the core
cells [4, 1]. The spatial analysis algorithms of the header
inference system work well in practice. Even so, they are
not infallible, that is, the system might report unit errors in-
correctly if the headers have been inferred incorrectly. It is
therefore important for the user to have a reasonably clear
understanding of the requirements of the spreadsheet and
the limitations of unit checking so that they can override the
system when it is working incorrectly rather than blindly
making changes to the spreadsheet formulas.

RQ2: Does the fault-localization mechanism of UCheck
help the end users employ debugging efforts effectively?
When the user runs UCheck on a spreadsheet, cells that
have unit errors are shaded orange, and cells that refer to
other cells that have unit errors are shaded yellow. The feed-
back is aimed at directing the user’s attention to the cells
that are shaded orange. We were curious if the users would
find this feature useful and limit their debugging efforts to
the cells that are the sites of unit errors.

RQ3: What debugging strategies do end users adopt?
We were also interested in any common strategies or tech-
niques adopted by users while debugging unit errors in
spreadsheets since such patterns of behavior would help us
refine the system. Improvements or modifications to the
system could be targeted at supporting preferred strategies
of the users.

4.4. Observations

While debugging the unit errors pointed to by UCheck,
all the subjects traversed the spreadsheets top-to-bottom.
Two of the subjects verbalized their traversal strategies
while getting started with the first task at F8.

“I guess I’ll start with F8 since it is the highest
cell and work my way down.” (Subject F)

“... an orange one here. I’m just going to start
here because that is the first one.” (Subject D)

The user would have to correct the cells that are shaded or-
ange to make the shading go away—cells shaded yellow
might lose their shading once the corresponding source of
error has been corrected. Cells H9 and H10 in the enrollment
spreadsheet (shown in Figure 1) are initially shaded yellow
because of the propagated errors. Once the sources of those
errors have been corrected, the system identifies the primary
unit errors in these cells and shades them orange. Therefore,
only in such cases a cell’s shading might go from yellow to
orange. We looked at ways to analyze the unit error in a cell
to determine if it is the result of propagation errors only or
the combination of primary and propagation errors. Such
analyses would allow us to shade all cells with primary unit
error orange, even in those cases in which the cells have
propagation errors as well. We found out that it is not trivial
to determine this difference by the available unit informa-
tion. We were concerned that this non-monotonic behavior
of the fault-localization mechanism might seem counter in-
tuitive to the subjects when they correct the errors in a cell
that was shaded orange and the total number of cells shaded
orange remains the same or goes up. However, none of the
subjects remarked about this effect.

We noticed the following strategies in how the subjects
sought feedback from the system about effectiveness of
the changes they had made to the cells marked orange by
UCheck.

1. Stepwise debugging approach: The subject inspects
(just) one cell shaded orange, makes a change to the
formula and then clicks the “Units” button to seek con-
firmation the error has been corrected before moving
on to the next cell with primary unit error.

2. Batch debugging approach: The subject goes through
two or more (or potentially all) of the cells that have
been shaded orange, makes changes to the formu-
las, and then clicks the “Units” button to check if

the changes done have corrected the unit errors in the
spreadsheet.

Subjects B, C, D, and F followed the stepwise debugging
approach for both the tasks, whereas Subject A used the
batch debugging approach for both the tasks. Subject E
switched between the two approaches. During the first task
he used stepwise debugging and then used batch debugging
for the second task. When asked about it, none of the sub-
jects had any explanation for why they adopted a particular
approach over the other in the given situation. However,
during the first task Subject C said:

“Now I think I understand why we’d want to click
Units each time. Some of these other ones might
go away.” (Subject C)

We do not see any advantage of one approach over the other
in the case of the tasks used in this study since the formu-
las are not particularly complex. In the case of spreadsheets
with more complex formulas that might cause the user to
introduce more errors while editing formulas, the stepwise
debugging approach might work better since it yields im-
mediate rewards and helps the user make steady progress.

We can see from the videos of the sessions and the
transcripts that the fault-localization mechanism of UCheck
guided the subjects’ debugging efforts. Three out of the
six subjects reviewed the formulas in the cells shaded yel-
low during the tutorial. None of the subjects spent any
time reviewing the error messages or formulas in the yel-
low cells while working on the tasks. The video data tell
us that the fault-localization mechanism helped the subjects
focus their attention on cells with primary unit errors and
not waste their time and effort inspecting other cells. This
observation would take on greater significance in the case of
larger spreadsheets. Moreover, studies using subjects work-
ing with other programming environments have shown that
programmers spent an average of 35% of their time nav-
igating between dependencies, and an average of 46% of
their time inspecting task-irrelevant code [13]. The fault
localization in UCheck helps to avoid these problems to
a large degree. The feedback we gathered using the post-
session questionnaire also indicates that the subjects found
the fault-localization mechanism of UCheck very helpful.
Five out of the six subjects rated the fault localization of
UCheck as the most useful feature.

“Coding by orange and yellow helps me find mis-
takes quickly and lets me check that my edits are
correct.” (Subject D)

We observed the following strategies adopted by the sub-
jects in correcting the formulas within the cells with unit
errors.

Subjects A, B, C, and F used the cells in the neighbor-
hood of the orange cell as examples to guide the changes
they made to the formula in the orange cells.

“... which is an assumption I should check by
scrolling down to correct cells ... ” (Subject A)

“... before I do that, I’m sure that’s probably right,
I’m just going to look up here, at another cell up
above ... and I looked above it to double check ...”
(Subject C)

Subject D inspected the cells in the neighborhood of orange
cells and also looked at the UCheck error message that pops
up when the user places the mouse cursor over the shaded
cells. The subject would then come up with a prediction
of what the correct formula in the cell should be and write
it down before clicking on the cell to inspect the formula
within the cell and compare with the predicted formula. The
subject basically changed the formula in the cell to the pre-
dicted formula to correct the errors.

“I think I am going to look at different student
average just to see ... so I am thinking whatever
this one is, this orange one, should be an aver-
age something3-16 ... so this should say AVER-

AGE(C19:F19) and if it doesn’t say that, I’m go-
ing to say this is bad. It says AVERAGE(C18:F19),
and that’s the error. So I am going to change that,
C18 to C19, which should be right.”

Subject E inspected the cell values to determine errors
within the cells that were shaded orange. This strategy was
effective especially in cases in which the cause for the unit
errors was not readily obvious as in H9 and H10 from the
enrollment sheet.

“Adding down we get 110, 114, and 315, ... ok,
so there’s an error somewhere in the adding down
or adding across range.”

After cross checking the totals in H3, H5, and H7 the subject
realized that the error could be in row 9.

“Well, actually these totals are right. So it should
be a horizontal error.”

4.5. Discussion

We seeded a total of 8 unit errors in the two spreadsheets.
Subjects D and E corrected all the errors in the spreadsheet,
and Subjects A, B, and C corrected all the errors except
those in cells H9 and H10 in the enrollment spreadsheet. On
being told “The error might not necessarily be in the cell
that it is being reported in”, these three subjects were able
to locate and correct the remaining errors as well. Subject
F changed the formulas in H9 and H10 such that the unit er-
rors in those cells were corrected but the “errors” originally
seeded in E9 and F10 remained uncorrected.4

3The subject was trying to figure out the column the cell belongs to.
4As discussed earlier in the paper, the formulas in cells E9 and F10 by

themselves are unit correct.

When debugging cells marked as sites of unit errors, five
out of six subjects used the neighboring cells that were free
from unit errors as examples to guide their debugging ef-
forts. This kind of behavior (“reuse of uses”) has been pre-
viously documented in other environments [16]. This ap-
proach is more common when the users do not really un-
derstand the requirements of the spreadsheets they are de-
bugging. Note that the subjects who relied on this technique
exclusively (A, B, C, and F) failed to correct the unit errors
reported in H9 and H10 without help since the formulas in
these cells agree with those in the neighboring cells.

In the case of cells H9 and H10, the cells in their spa-
tial proximity (the immediate neighborhood) are not in their
conceptual proximity (similarity with respect to the under-
lying model of the spreadsheet application). The subjects
try to derive conceptual proximity from spatial proximity,
and this approach fails in the presence of non-trivial spatial
patterns the user is unaware of.

4.6. Results

RQ1: All participants in the think-aloud study were suc-
cessful at debugging the unit errors in the spreadsheets ex-
cept in the cases in which the system reported the errors
away from the site of the errors. The subjects did not in-
troduce any new errors while debugging their spreadsheets.
The teachers also created their own spreadsheets, seeded
with unit errors, and prepared lesson plans to teach their
class about unit checking with UCheck. These two aspects
indicate that the users developed a working knowledge of
units from the tutorials and introductory sessions. Another
important observation was that the users could use the sys-
tem without any knowledge of the underlying formal rule
system for unit inference.

RQ2: On analyzing the video data collected during the
think-aloud study, we observed that the debugging efforts of
the participants was guided by the fault localization mech-
anism of the system. During the pre-session tutorial three
out of the six subjects inspected the cells shaded yellow, but
all six subjects only inspected the cells shaded orange while
performing the study tasks. Since we told the subjects that
the cells were seeded only with unit errors, the subjects in-
dicated they were done debugging the spreadsheets when
no cells were shaded orange by the system.

RQ3: The think-aloud sessions showed us that the
subjects navigate the spreadsheets left-to-right and top-to-
bottom. The subjects also used cells in the spatial vicinity
of the erroneous cell as examples before making changes
to their formula. Four subjects consistently followed the
stepwise debugging approach, which gave them immediate
feedback about their progress. One subject used the batch
debugging approach and made corrections to formulas of all
the cells marked orange before invoking the unit checker to
seek confirmation that the changes made were indeed cor-
rect. One subject switched between the two strategies.

From the participants’ comments in the post-session

C[J,2004]

C[J,2003]

C[J,2002]

D[Adr] D[Ami] D[Bak]D[Bea]D[Ben]D[Cas]

Figure 3. Unit space for missing reference.

C[S,2004]
C[S,2003]
C[J,2003]

D[Adr] D[Ami] D[Bak]D[Bea]D[Ben]D[Cas]

C[S,2002]

Figure 4. Unit space for incorrect reference.

questionnaire, we see that they found UCheck useful. The
participants’ success at debugging the unit errors show that
the system was easy to use.

“Without UCheck, I probably wouldn’t have no-
ticed the more unobtrusive errors in the spread-
sheets.” (Subject F)

“Useful for catching errors without having to cal-
culate5 the entire spreadsheet.” (Subject C)

5. Generating Change Suggestions
The preliminary evaluation showed that in some cases

the fault-localization mechanism and the rudimentary error
messages do not provide sufficient help to detect and debug
unit errors. We therefore tried to improve change sugges-
tions and fault-localization feedback to meet the following
requirements.

1. Shade the cells that caused the error, not the one in
which the unit error is detected.

2. The generated change suggestions should correct the
unit error where possible.

We have improved the reasoning behind the fault-
localization mechanism by exploiting two additional
sources of information.

Unit Space: From the inferred unit for a cell, UCheck
can compute the cartesian product of the components of the
unit to give what we call the unit space. For example, the
unit space for the unit in H10 in Figure 1 (after the error in
C10 has been corrected) is shown in Figure 3. (The names of
the districts have been shortened to save space.) The com-
ponents that are present in the actual unit for H10 are shaded
and the component that is missing is unshaded. We see that

5On being asked what he meant by “calculate” the subject clarified that
he was happy he did not have to step through and check the formulas man-
ually.

there is a concavity in the unit space. With this informa-
tion, UCheck now looks up the spreadsheet for a cell with
the unit D[Bend]&C[J,2004] (F4 in this case) that would fill
the concavity, and generates the error message “Including a
reference to F4 in the formula in F10 (or H10) would correct
the unit error”.

The unit space for the unit in H9 in Figure 1 is shown
in Figure 4. In this case, UCheck detects convexity and
concavity in the unit space. Removing a reference to a cell
with the unit D[Beaverton]&C[J,2003] (E6 in this case) from
the formula in cell E9 (the only option in this case) would
remove the convexity. Adding a reference to a cell with the
unit D[Beaverton]&C[S,2003] (E5) to the formula in E9 (or
H9) would remove the concavity. Both these changes are
required to correct the unit error in H9 and are reported now
by UCheck.

Usage Profile: Spreadsheet cells can be classified on the
basis of the roles they play as shown in Table 1. The role
played by a cell within the spreadsheet is one kind of usage
profile. Another kind of usage profile that is considered for
an intermediate cell or an input cell is the number of times
it is referenced by other cells. Outliers detected by analysis
of usage profiles can be indicative of errors.

formula data
referenced intermediate input

not referenced output label

Table 1. Cell roles
Spatial Neighbors: Unit space information and usage

profile help the fault-localization mechanism identify the
cells that are the cause of unit errors and also in generat-
ing change suggestions to correct the error. The formulas in
the cells that are spatial neighbors of the cell with the unit
error are another source of information that can be exploited
to generate change suggestions.

After implementing the changes described above, we
carried out an evaluation of the modified system to study
the effect of the changes. In previous work we have de-
veloped a suite of mutation operators for spreadsheets [2].
From the suite of operators, we picked the ones that cause
unit errors to seed errors in the spreadsheets used in the
study. UCheck was then run on the mutant sheets and the
change suggestions and the fault-localization feedback were
recorded. The suggested changes were then applied to the
mutant sheets and the resulting sheets were then compared
with the original sheets to check if the mutations were re-
versed by the suggested changes.

The empirical evaluation was designed to answer the fol-
lowing research questions.
RQ4: Does the system shade the cells that cause the unit
error? More specifically, the system should shade the cells
that cause the unit error orange.
RQ5: How effective are the suggested changes in correct-
ing the unit errors?

The operators used to seed unit errors are shown in Ta-
ble 2. CRE expands a contiguous range. For example,
the contiguous range A3:A7 could get changed to A2:A7 or
A3:A8. CSR, on the other hand, shrinks a contiguous range.
NRE and NRS operators expand and shrink non-contiguous
ranges respectively. CRR operator replaces a reference with
a constant. For example, it could mutate the formula A2+A3

to A2+3. The RRR operator replaces a reference within a
range with another one not already in the range. For ex-
ample, RRR could mutate the formula SUM(A1,A3,A5) to
SUM(A1,B3,A5).

As can be seen from the results of the evaluation shown
in Table 2, the generated change suggestions were able to
reverse all the seeded errors (100% for both the grade and
enrollment sheets). The fault-localization mechanism was
modified so that the cell with the change suggestion would
be shaded orange in order to direct the user’s attention to
the change suggestion. As a result, in all the cases studied,
the system shaded the cells with the unit errors orange.

Grade sheet Enrollment sheet
Total mutants 1928 2639
Unit errors 1728 2330
Unit errors corrected 1728 2330

Table 2. Change suggestion effectiveness
scores

6. Conclusions and Future Work
Our experiences from using UCheck in courses on

spreadsheet safety have shown that teachers and students
are able to follow how the system exploits header informa-
tion to carry out consistency checking. The participants of
the courses were able to come up with their own examples
of unit errors and explain why they were unit errors. They
were also able to identify false positives in their own spread-
sheets when they occur as the result of insufficient header
information.

The think-aloud study we carried out showed that the
participants were able to use the fault-localization feed-
back provided by UCheck and debug unit errors. The study
helped us to identify problems participants had while de-
bugging non-local unit errors, and led to a redesign of the
fault-localization mechanism. We also extended the unit in-
ference so that the system now generates suggested changes
to correct unit errors. The empirical evaluation of the new
system shows that it works well in practice, especially in
the case of non-local unit errors.

References
[1] R. Abraham and M. Erwig. Header and Unit Inference for

Spreadsheets Through Spatial Analyses. In IEEE Int. Symp.
on Visual Languages and Human-Centric Computing, pages
165–172, 2004.

[2] R. Abraham and M. Erwig. Mutation Testing of Spread-
sheets. 2006. Submitted for publication.

[3] R. Abraham and M. Erwig. Type Inference for Spreadsheets.
In ACM Int. Symp. on Principles and Practice of Declarative
Programming, pages 73–84, 2006.

[4] R. Abraham and M. Erwig. UCheck: A Spreadsheet Unit
Checker for End Users. Journal of Visual Languages and
Computing, 18(1):71–95, 2007.

[5] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi.
A Type System for Statically Detecting Spreadsheet Errors.
In 18th IEEE Int. Conf. on Automated Software Engineering,
pages 174–183, 2003.

[6] T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth,
and M. Felleisen. Validating the Unit Correctness of Spread-
sheet Programs. In 26th IEEE Int. Conf. on Software Engi-
neering, pages 439–448, 2004.

[7] A. Ebrahimi. Novice Programmer Errors: Language Con-
structs and Plan Composition. Int. Journal of Human-
Computer Studies, 41(4):457–480, 1994.

[8] M. Erwig and M. M. Burnett. Adding Apples and Oranges.
In 4th Int. Symp. on Practical Aspects of Declarative Lan-
guages, LNCS 2257, pages 173–191, 2002.

[9] EUSES. Education Outreach Program.
http://eusesconsortium.org/edu/

education activities.php.
[10] J. D. Gannon. An Experimental Evaluation of Data Type

Conventions. Comm. of the ACM, 20(8):584–595, 1977.
[11] L. Jiang and Z. Su. Osprey: A Practical Type System for

Validating Dimensional Unit Correctness of C Programs. In
Int. Conf. on Software Engineering, pages 262–271, 2006.

[12] A. Kennedy. Dimension Types. In 5th European Symp. on
Programming, LNCS 788, pages 348–362, 1994.

[13] A. J. Ko, H. H. Aung, and B. A. Myers. Eliciting Design
Requirements for Maintenance-Oriented IDEs: A Detailed
Study of Corrective and Perfective Maintenance Tasks. In
Int. Conf. on Software Engineering, pages 126–135, 2005.

[14] S. Prabhakarao, C. Cook, J. Ruthruff, E. Creswick, M. Main,
M. Durham, and M. Burnett. Strategies and Behaviors
of End-User Programmers with Interactive Fault Localiza-
tion. In IEEE Int. Symp. on Human-Centric Computing Lan-
guages and Environments, pages 203–210, 2003.

[15] L. Prechelt and W. F. Tichy. A Controlled Experiment to
Assess the Benefits of Procedure Argument Type Checking.
IEEE Transactions on Software Engineering, 24(4):302–
312, 1998.

[16] M. Rosson and J. M. Carroll. The Reuse of Uses in Smalltalk
Programming. ACM Trans. on Computer-Human Interac-
tion, 3(3):219–253, 1996.

[17] G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A Methodology for Testing Spreadsheets. ACM
Transactions on Software Engineering and Methodology,
pages 110–147, 2001.

[18] J. C. Spohrer and E. Soloway. Novice Mistakes: Are the
Folk Wisdoms Correct? Communications of the ACM,
29(7):624–632, 1986.

[19] J. G. Spohrer and E. Soloway. Analyzing the High Fre-
quency Bugs in Novice Programs. In First Workshop on
Empirical Studies of Programmers, pages 230–251, 1986.

[20] T. Teo and M. Tan. Quantitative and Qualitative Errors in
Spreadsheet Development. In 30th Hawaii Int. Conf. on Sys-
tem Sciences, pages 25–38, 1997.

