
Explainable Reinforcement Learning
via Reward Decomposition

Zoe Juozapaitis1 , Anurag Koul1 , Alan Fern1 , Martin Erwig1 , Finale Doshi-Velez2
1Oregon State University

2Harvard
juozapaz@oregonstate.edu, koula@oregonstate.edu, Alan.Fern@oregonstate.edu,

Martin.Erwig@oregonstate.edu, finale@seas.harvard.edu,

Abstract

We study reward decomposition for explain-
ing the decisions of reinforcement learning (RL)
agents. The approach decomposes rewards into
sums of semantically meaningful reward types,
so that actions can be compared in terms of
trade-offs among the types. In particular, we
introduce the concept of minimum sufficient ex-
planations for compactly explaining why one
action is preferred over another in terms of the
types. Many prior RL algorithms for decom-
posed rewards produced inconsistent decom-
posed values, which can be ill-suited to expla-
nation. We exploit an off-policy variant of Q-
learning that provably converges to an optimal
policy and the correct decomposed action val-
ues. We illustrate the approach in a number of
domains, showing its utility for explanations.

1 Introduction
Many RL methods estimate Q-values in order to eval-
uate and select actions. Q-values, however, usually
do not give insight into factors contributing to action
choices. For instance, in a racing game it may not be
clear whether the agent swerved to get closer to the goal
(increasing reward), or to avoid an obstacle (avoiding a
crashing penalty). In this paper, we explore reward de-
composition for gaining such insight, where an environ-
ment’s reward is decomposed into a sum of meaningful
reward types. Many environments have natural reward
decompositions, yet they are not made explicit to RL
agents. Our key idea is to expose these decompositions
to RL agents, which can be leveraged to provide expla-
nations for decisions in terms of trade-offs among the
reward types.

Prior work has considered RL with reward decomposi-
tion, but with a focus on expediting learning, rather than
explanation. We show that this prior work has funda-
mental problems, which limits their explanation utility.
To address this, we adapt a prior off-policy multi-agent
RL algorithm, with unclear convergence guarantees, to
our decomposed reward setting. We give the first proof
that, in the table-based setting, this approach converges

to the correct decomposed Q-functions, thus, supporting
accurate explanations. We also introduce a DQN-variant
to utilize function approximation.

In addition, we propose the concept of minimal suffi-
cient explanation (MSX) for compactly explaining action
preferences via decomposed rewards. These explanations
are integrated into a domain-independent “explanation
interface”, which will be made publicly available along
with the corresponding RL algorithms. Our experiments
focus on demonstrating the interface’s potential utility
to RL practitioners via three case studies. The results
show that significant insights about an agent’s behavior
can be gained, e.g. explaining strange behavior, identi-
fying “bugs” in preferences, identifying the influence of
shaping rewards, and helping to identify issues with the
numerical optimizer.

2 Reward Decomposition

A Markov Decision Processes (MDPs) is a tuple
(S,A, T,R), where S and A are finite sets of states
and actions, T (s, a, s′) is the probability of transition-
ing to state s′ after taking action a in s, and R(s, a)
is the reward for taking a in s. A policy π(s) re-
turns an action to take in state s and the associated
Q-function, Qπ(s, a), gives the expected infinite-horizon
γ-discounted cumulative reward of taking action a in
state s and following π thereafter. Q∗(s, a) denotes
the Q-function of the optimal policy π∗, which satisfies
π∗(s) = arg maxa∈AQ

∗(s, a).
We focus on explanations for RL agents that learn Q-

functions, which allow for observing how much an agent
prefers one action over another. Raw Q-values, however,
give no insight into the positive and negative factors con-
tributing to the preferences. For example, the Dota 2 RL
domain [12] uses a reward function based on the sum
of over 10 reward types measuring quantities such as
net worth, kills, deaths, assists, last hits, etc. Explain-
ing action preferences in terms of such meaningful types
could provide significant insight. Typical RL settings,
however, do not support such explanations, since the in-
dividual reward types are mixed as a lump-sum scalar
reward. To support such explanations, we explicitly ex-
pose the types to the agent via reward decomposition.

Algorithm 1 Table-Based Decomposed Reward
RL: The pseudo-code can be instantiated for drQ, HRA,
and drSARSA by using the specified assignment to a′.

The notation Q
α←− x is shorthand for Q← (1−α)Q+αx.

ε-greedy exploration is used, but could be replaced with
other mechanisms.

s0 ← Initial State
a0 ← ε(Q0, s0)
t = 0
repeat

(st+1, ~rt)← Act(at)
at+1 ← εt(Q

t, st+1) ;; ε-greedy exploration
for all c ∈ C do

a′ ←


arg maxa

∑
cQ

t
c(s, a) drQ

arg maxaQc(s, a) HRA

at+1 drSARSA

Qt+1
c (st, at)

αt←− rt,c + γQtc(st+1, a
′)

t← t+ 1
end for

until convergence

The MDP formulation can incorporate reward decom-
position by specifying a set of reward components/types

C and defining a vector-valued reward function ~R :
S × A → R|C|, where Rc(s, a) is the reward for type
c ∈ C. The objective is still to optimize the over-
all (mixed) reward function R(s, a) =

∑
c∈C Rc(s, a).

However, the vector-valued reward allows for defining

a vector-valued Q-function ~Qπ, where Qπc (s, a) gives ac-
tion values that account for only rewards type c. These
definitions imply that the overall Q-function also decom-
posed as Qπ(s, a) =

∑
cQ

π
c (s, a). Below we describe

how to learn such decomposed Q-functions and then use
them for explanation. Note that, our notion of reward
decomposition is orthogonal and complementary to tem-
poral reward decomposition, which is commonly studied
in hierarchical reinforcement learning (e.g. [7; 15; 3; 4;
14]).

3 RL with Reward Decomposition

Recent work [16] considered reward decomposition for
speeding up RL. Earlier work also considered analogs of
reward decomposition for multi-agent RL [5; 10]. No
prior work, however, has studied reward decomposition
for our primary purpose of explanation. This perspective
illuminates certain practical and theoretical deficiencies
of prior methods. Below we describe the methods used
in our experiments and fill a significant theoretical hole
that is particularly relevant for explanation.

HRA [16]. Algorithm 1 shows that (table-based)
HRA updates each component Qc independently via
standard Q-learning updates [17]. Thus, each Qc con-
verges to the optimal Q-function with respect to re-
ward type c. HRA then uses the sum of components
QHRA(s, a) =

∑
c∈C Qc(s, a) as an estimate of the op-

timal Q-function. This heuristic showed success in two

domains, but generally overestimates the true Q-values,
and the corresponding greedy policy can perform arbi-
trarily poorly, even with infinite training. Even when
QHRA(s, a) performs well, the components Qc do not re-
flect the actual Q-function of the greedy HRA policy,
which can make explanations quite unintuitive.

drSARSA. Prior work [5] studied rewards that de-
compose across multiple agents, which is analogous to
our setting with agents corresponding to reward types.
An on-policy SARSA variant was proposed, which is
identical to standard SARSA [13], but updates each Q-
function component Qc for each experience tuple rather
than just the overall Q-function. Algorithm 1 gives a
table-based version of drSARSA using ε-greedy explo-
ration. Standard SARSA results imply convergence to
an ε-optimal policy, and each Qc converges to the correct
component Q-function of that policy [5].

Typically, policies learned via SARSA or drSARSA
are executed greedily at test time, i.e. without explo-
ration. The Q-components Qc, however, do not reflect
the value of the greedy policy, but rather the value of
the exploration policy followed during learning. As our
experiments show, this can yield explanations that vi-
olate intuition. This can’t be fixed by just decreasing
ε, since our explanations need accurate values for non-
greedy actions, which requires non-trivial exploration
during learning.

Decomposed Reward Q-Learning (drQ). Neither
drSARSA nor HRA are satisfactory approaches for ex-
planation based on reward decomposition. drSARSA is
an on-policy algorithm and thus learns the Q-function
of an exploration policy instead of the greedy policy.
Rather, HRA is an off-policy algorithm, but is unsound.
To the best of our knowledge there is no off-policy RL
algorithm for decomposed rewards that has been proven
to be convergent and sound.

It turns out that a prior off-policy variant of Q-
learning for multi-agent RL [10] can serve our purpose
when we interpret agents as reward types. The issues of
convergence and soundness, however, have not yet been
addressed. Algorithm 1 gives this algorithm, referred to
as decomposed reward Q-learning (drQ).

Given experience tuple (s, a, ~r, s′), drQ updates each
component Qc, like HRA, but with an important dif-
ference. HRA adjusts the value of each Qc toward
rc + γmaxa′ Qc(s

′, a′), which completely ignores the in-
fluence of other components to the overall Q-function
and greedy action. Rather, drQ first computes the over-
all greedy action, i.e., a+ = arg maxa′

∑
c∈C Qc(s

′, a′),
and then updates each component Qc(s, a) toward rc +
γQc(s

′, a+). Intuitively, this leads Qc to converge toward
the value (w.r.t. c) of the overall greedy policy. Below
we show that this approach converges to both the overall
optimal policy and the correct component Q-functions.

Convergence of drQ. Let Qtc denote the learned Q-
function for component c and after t learning updates
and Qt(s, a) =

∑
c∈C Q

t
c(s, a) the overall Q-function

with πt(s) = arg maxaQ
t(s, a) the greedy policy. These

functions are random variables due to randomness in the
environment and exploration. We denote the Q-function
of the optimal policy with respect to reward type c as
Qπ
∗

c .
drQ achieves two notions of convergence: (1) conver-

gence of Qt(s, a) to Q∗(s, a), and (2) convergence of each
Qtc(s, a) to Qπ

∗

c (s, a). Condition (2) is important for ex-
planations, since it guarantees that we will converge to
accurate component Q-functions and, in turn, accurate
explanations of π∗.

Standard convergence proofs for Q-learning (e.g. [6;
1]) still apply to (1), but do not directly extend to cover
(2). The key difficulty is that standard proofs leverage
the fact that Q-learning updates correspond to determin-
istic operators that are contraction mappings. Rather,
the update of drQ does not appear to have such a map-
ping. However, we are able to show that while there
is no such mapping early in learning, such a mapping
does exist after a finite number of drQ updates. Fur-
ther, this mapping has a fixed point equal to the correct
component Q-values. Accordingly, the the component
Q-functions will converge to the correct values.

Theorem 1. If drQ is run under the standard con-
ditions for the almost sure (a.s.) convergence of Q-
learning,1 then for all c, s, and a, the random variable
Qtc(s, a) has a.s. converge to Qπ

∗

c (s, a).

Full proof available in the full paper. The theorem
implies that drQ’s overall Q-function Qt(s, a) converges
to the optimal Q-function Q∗(s, a) =

∑
c∈C Q

π∗

c (s, a)
and hence an optimal policy π∗.

Function Approximation. Our table-based analy-
sis of drQ indicates that the update rule is consistent
for decomposed rewards. To support RL environments
with enormous state-spaces we extend drQ to function
approximation. Specifically, we describe a straightfor-
ward extension of DQN [11], for deep RL, which we call
decomposed reward DQN (drDQN).

We will assume that each component Q-function is
represented by a function approximator Qc(s, a; θc),
where θ are the parameters. For example, Qc may
correspond to a neural network, possibly with the net-
works for different reward types sharing initial network
layers. Like DQN, drDQN stores two sets of param-
eters, θc the current parameters being updated, and
θ′c the “target parameters” used for future value esti-
mates. drDQN operates exactly the same as DQN, ex-
cept that each component Q-function is updated based
on the current greedy action of the target network. In
particular, each new experience tuple is added to the re-
play memory and then a mini-batch of experience tuples
{(si, ai, ~ri, s′i) : i = 1, . . . , k} is sampled from the mem-
ory. The parameters of each component θc are then up-
dated using gradient descent on the loss function shown
below:

1Specifically, we must update each state-action pair in-
finitely often, and the learning rates αt(s, a) must satisfy∑

t αt(s, a) = ∞ and
∑

t α
2
t (s, a) <∞.

L(θc) =

k∑
i=1

(yc,i −Qc(si, ai; θc))2

yc,i =

{
rc, for terminal s′i
rc + γQc(s

′

i, a
+
i ; θ′c), for non-terminal s′i

a+i = arg max
a′

∑
c∈C

Qc(s
′
i, a
′, θ′c)

Periodically, the target parameters are replaced with
the current learning parameters.

We use this same framework to get function-
approximation versions of drSARSA and HRA. We refer
to this (Deep) version of drSARSA as drDSARSA. The
only change from drDQN is to redefine the above loss so
that a+i is equal to an action sampled from the ε-greedy
policy for s′i. This attempts to simulate the behavior
of drSARSA within the memory buffer setting of DQN.
In our experience, this approach works as well or better
than a traditional SARSA implementation that would
update only along the current trajectory. HRA is imple-
mented by defining a+i for each component c such that
a+i = arg maxa′ Qc(s

′
i, a
′, θ′c).

4 Decomposition for Explanation

Given the learned decomposed Q-function components
Qc, we now consider how to use them for effective ex-
planations. In particular, we focus on pairwise action
explanations where the goal is to explain why one action
is preferred to another in a particular state.

Reward Difference Explanations. To gain insight
into why an agent prefers action a1 over a2 in state s,
i.e. Q(s, a1) > Q(s, a2), we define the reward difference
explanation (RDX) as the difference of the decomposed

Q-vectors ∆(s, a1, a2) = ~Q(s, a1) − ~Q(s, a2). Each com-
ponent ∆c(s, a1, a2) of the RDX is a positive or negative
reasons for the preference depending on whether a1 has
an advantage (disadvantage) over a2 with respect to re-
ward type c. An RDX can be visualized as a bar chart
with one bar for each reason (e.g. see Figure 4).

Minimal Sufficient Explanations. The RDX gives
insight into action preferences, but can overwhelm a hu-
man when there are many reward types (and hence rea-
sons). To help identify a small set of the most important
reasons we introduce the minimal sufficient explanation
(MSX). An MSX for a1 and a2 in state s is a tuple(
MSX+,MSX−

)
, where MSX+ and MSX− are sets of

“critical” positive and negative reasons, respectively, for
the preference. Ideally, an MSX will be more compact
than the full RDX, while still serving as a valid certificate
for the preference ordering.

More formally, let the disadvantage of a1 over a2 be
d =

∑
c I
[
∆c(s, a1, a2) < 0

]
· |∆c(s, a1, a2)|, (where I

is the identity function) that is, the total magnitude of
reasons that prefer a2. The positive MSX component
is the smallest set of positive reasons required for a1 to

outweigh d, i.e.,

MSX+ = arg min
M∈2C

|M | s.t.
∑
c∈M

∆c(s, a1, a2) > d.

This definition selects the smallest cardinality set of rea-
sons whose sum overcomes the disadvantage. There may
be multiple such sets M , and we break ties by preferring
larger sums

∑
c∈M ∆c(s, a1, a2). An MSX+ can be effi-

ciently computed by greedily adding positive reasons to
the set from largest to smallest until exceeding the dis-
advantage. If there are ties among positive reasons, then
MSX+ may not be unique, with the number of choices
being exponential in the MSX size in the worst (patho-
logical) case. We break ties based on lexicographic or-
dering.

The role of MSX− is to answer the followup question
“What are the critical disadvantages of a1 relative to a2
that make all reasons in MSX+ necessary?”. Define the
just-insufficient advantage as

v =
∑

c∈MSX+

∆c(s, a1, a2)− min
c∈MSX+

∆c(s, a1, a2),

which sums all reasons in MSX+ except the smallest.
The minimal set of negative reasons with total magni-
tude greater than v shows that all reasons in MSX+ are
necessary, yielding our definition:

MSX− = arg min
M∈2C

|M | s.t.
∑
c∈M
−∆c(s, a1, a2) > v,

which may not be unique. Preference is given to larger
disadvantages, then lexicographic ordering.

When all reasons are needed to capture the preference,
the MSX offers no compression advantage compared to
the RDX. At the other extreme, when all reasons are
positive in the RDX, MSX+ and MSX− will be empty,
indicating that the agent believes that a1 dominates a2
in all respects.

Related Work. Prior work [8] developed a similar
notion to MSX.2 However, their formulation is stricter
and will produce larger explanations. Part of the dif-
ference is that they do not present the negative reasons
to the user. Instead the approach makes the pessimistic
choice of assuming any reason not included in the MSX
has the minimum possible value. Rather, our MSX def-
inition aims to explain the agent in terms of the infor-
mation it actually predicted for negative reasons, since
that is ultimately what the preferences are based on.

5 Experimental Case Studies
Our explanation interface is fully compatible with the
standard OpenAI Gym [2] environment API. The en-
vironment interface is extended to provide decomposed
reward information through an auxillary channel, which

2The work did not use reward decomposition. They use
an alternate metric concerning the predicted values of “tem-
plates” of states. Regardless, the general approach taken is
qualitatively similar.

Figure 1: Picture illustrating the cliffworld environment.
Cliffs are -10 points, empty treasure chest is 1, monster
is -2, gold is 10, and filled treasure chest is 15.

can be ignored by non-decomposed RL agents. The
explanation interface allows users to load one or more
trained decomposition-based agents along with a saved
state trajectory, usually produced by one of the agents.
The user can then navigate along the trajectory, to vi-
sualize the states and action choices of each agent. At
each state, the user can visualize the agents’ overall and
decomposed Q-values along with the RDX and MSX for
a selected pair of actions.

Below we describe two case studies using the interface.
The primary goal is to demonstrate the interface’s utility
to RL experts, which is arguably the first population to
be practically impacted. In addition, to provide a quan-
titative evaluation of the explanations produced by the
trained RL agents, the first environment is selected to be
small enough to solve for the ground truth decomposed
Q-values and in turn the corresponding ground truth
explanations. In all cases, neural networks are trained
using the Adam [9] optimizer with an initial learning
rate(lr) of 0.01 and a discount factor (λ) of 0.99. ε-
exploration is used with ε decaying from 0.9 to 0.1 and
thereby kept constant. The code and explanation inter-
face will be made publicly available.

5.1 CliffWorld

Cliffworld is a grid-world where cells can contain cliffs,
monsters, gold bars, and treasure. Figure 1 shows an
illustrated map of the domain.

Episodes end when encountering a cliff, monster, or
treasure. The decomposed reward vector at each step
with reward types [cliff, gold, monster, treasure] reflect-
ing the current cell’s contents: cliff (-10), monster (-20),
gold bars (+10), upper treasure (+1), lower treasure
(+15). The four actions N, E, W, S move the agent
in the corresponding direction or have no effect at grid
boundaries. We show results for a deterministic version
of the environment, noting that the stochastic version
with standard grid-world “movement noise” yielded sim-
ilar results. The optimal policy is to go around and along

Figure 2: (Top) Deviation from ground-truth decom-
posed Q-values; (Bottom) Learning curves averaged over
5 runs.

a cliff range to reach the lower treasure while avoiding
the monster cell.

We train a policy for each algorithm: drDQN, drD-
SARSA, and HRA. In all cases, we use a linear network
for each reward type, each having four outputs giving the
Q-value estimate for each action and the input being a
one-hot encoding of the agent position in the grid.

Learning Performance. The bottom graph in Fig-
ure 2 shows the average of 5 runs of the learning algo-
rithm with each point giving the results of 10 test games
after training for the specified number of episodes. We
see that drDQN and drDSARSA learn the optimal policy
(verified via the ground truth). HRA fails in this domain
due to its unsound training strategy as discussed further
below.

Quantitative Explanation Accuracy. The top
graph in Figure 2 evaluates how well the learned de-
composed Q-values reflect the actual value of the cur-
rent greedy policy as learning progresses (increasing
episodes). To do this, we extract the policy at each
point in learning and perform an exact decomposed Q-
iteration (using the exact known model) to get ground-
truth component Q-functions and then measure the av-
erage absolute deviation from the learned component
Q-functions. drDQN and drDSARSA converge to have
nearly zero deviation, while HRA exhibits a large devi-
ation. Thus, HRA is unable to learn values that reflect
it’s actual policy, which means explanations can be mis-
leading.

Explanation Insights. We were interested in under-
standing why HRA performs so poorly and noticed that
when in cell (3,4) directly below the treasure it selects
right, hitting the wall, and remains in that cell until the
episode terminates. The correct choice is up to get the

treasure. To understand why HRA shows this behav-
ior we look at the component Q-values of all actions in
state (3,4) for each algorithm (Figure 3). The values
for drDQN and drDDSARSA are close to ground truth,
while we see HRA has much different estimates. HRA
predicts similarly for the “treasure” reward, yet believes
it will gain an additional “gold” reward for taking any of
the three non-terminal actions. This is puzzling at first,
but HRA’s Q-function for gold learns that even after go-
ing right it can then go get the gold in the cliffs as well
as also get the treasure, but if it goes up the episode is
over and it will get only the treasure. This is one exam-
ple that exhibits the inconsistency of HRA, which is only
possible to fully observe by viewing the decomposition.

5.2 Lunar Lander

Lunar Lander involves controlling a rocket during a
ground landing. The actions are to fire any of its three
engines: main, left, right engine, or no-op. The standard
implementation has the following natural reward decom-
position: 1) crashing penalty, 2) safe landing bonus
(“live”), 3) main-engine fuel cost, 4) side-engines fuel
cost, and 5) shaping reward. Episodes end with either
a safe landing (+100 reward) or crashing (-100 reward).
We slightly modified the simulator to make the com-
ponents explicit and also further decomposed the shap-
ing reward into its own natural components: 5.1) de-
stable angle of the rocket, 5.2) contact between legs and
ground, 5.3) reward for being closer to landing pad, 5.4)
penalty for high velocity.

The neural networks had 1 hidden layer of 64 ReLU
units and an output layer with one linear unit per action.
The input to the network is a state describing lander’s
current position, velocity, orientation, angular velocity,
and leg-ground contact information. During training,
drDQN and drDSARSA were able to achieve a good pol-
icy of consistently landing safely, whereas HRA’s policy
continuously degraded. The graphs are omitted due to
being qualitatively similar to Cliffworld.

Shaping Rewards Dominate. Using the interface
we were surprised to find that the the policies drDQN
and drDSARSA are almost entirely governed by the
shaping reward components. A typical example is in
Figure 4 (right), corresponding to a state near the land-
ing pad, where the agent should be mostly concerned
with the crash prevention reward. However, the MSX is
governed by the “velocity” and ”landing-pad distance”
shaping rewards. The true environmental reward hardly
has an influence on the decisions. This was generally the
case at other decision points. As an RL practitioner, it is
important to realize that the shaping reward is dominat-
ing the environment reward, since ultimately we would
like to optimize environment reward. To the best of our
knowledge, our proposed explanation approach is the only
way to make such observations.

Optimistic HRA. HRA doesn’t learn to land and
prefers to crash itself. It does that either by rising-up
and moving out of the frame or by toppling itself to fall
on the ground. Why does it do this? Figure 4 (left)

Figure 3: Reward decompositions for DQN (left) and HRA (right) at cell (3,4) in Cliffworld. SARSA is omitted but
is qualitatively identical to DQN. HRA predicts an extra “gold” reward for actions which do not lead to a terminal
state.

Figure 4: (top) MSX (fire-main-engine vs. noop) for
drDQN in Lunar Lander near landing site. The shap-
ing rewards dominate decisions. (bottom) RDX (noop
vs. fire-main-engine) for HRA in Lunar Lander before a
crash. The RDX shows that noop is preferred to avoid
penalties such as fuel cost.

gives insight into why HRA exhibits this behavior. In
this case, HRA prefers to do a noop rather than fire
an engine, despite that leading to a crash. The RDX
shows that it prefers noop to avoid penalties for fuel-
cost, high-velocity, and de-stabilization of the lander. In
other words, HRA decides to end its life quickly to avoid

the penalties. This again is a result of HRA’s unsound
independent optimization of each component.

Error Boosting Optimizer. Looking at the de-
composed Q-values for HRA we also see surprisingly
huge positive Q-value estimates for reward types that
give only negative rewards (for example the velocity
penalty). We would expect the predicted Q-values for
these penalty reward types to always be negative. We
investigated this anomaly and found that during gradi-
ent optimization, Adam, via its adaptive learning rate,
can lead to small positive values early on in learning.
Since these values are used in the target values during
learning updates, the error can get amplified. This il-
lustrates how the use of decomposition allowed for the
identification of a relatively serious error. It is unclear
how this component-level sign inconsistency would be no-
ticed without learning decomposed Q-values.

6 Summary
In many environments, the reward function has a natu-
ral decomposition into meaningful components, but this
structure is typically ignored in RL. This paper intro-
duced an approach for leveraging such decompositions
to help explain the action preferences of RL agents. We
gave the first proof of a convergent off-policy RL al-
gorithm for this setting, which overcomes deficiencies
in prior approaches for learning from decomposed re-
wards. We provided case studies in two environments to
illustrate the potential of our visual explanations in the
hands of an RL practitioner. This allowed for spotting
certain “bugs” in the agent’s action values and even help
identify a more fundamental issue related to the interac-
tion of the gradient optimizer and the RL loop. In im-
portant concurrent work, we are also conducting a large
scale study involving non-expert end-users to evaluate
the utility for that very different, but also important,
population.

Acknowledgments
This work is partially supported by the National Sci-
ence Foundation under the grant CCF-1717300 and by
DARPA under the grant N66001-17-2-4030.

References
[1] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-

Dynamic Programming. Athena Scientific, 1996.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[3] Thomas G Dietterich. Hierarchical reinforcement
learning with the maxq value function decompo-
sition. Journal of Artificial Intelligence Research,
13:227–303, 2000.

[4] Rodrigo Toro Icarte, Toryn Klassen, Richard Valen-
zano, and Sheila McIlraith. Using reward machines
for high-level task specification and decomposition
in reinforcement learning. In International Confer-
ence on Machine Learning, pages 2112–2121, 2018.

[5] Stuart J. Russell and Andrew Zimdars. Q-
decomposition for reinforcement learning agents.
volume 2, pages 656–663, 01 2003.

[6] Tommi Jaakkola, Michael I Jordan, and Satinder P
Singh. Convergence of stochastic iterative dynamic
programming algorithms. In Advances in neural in-
formation processing systems, pages 703–710, 1994.

[7] Jonas Karlsson. Task decomposition in reinforce-
ment learning. In Proceedings of the AAAI Spring
Symposium on Goal-Driven Learning, Stanford,
CA, 1994.

[8] Omar Khan, Pascal Poupart, and James Black.
Minimal sufficient explanations for factored markov
decision processes. In International Conference on
Automated Planning and Scheduling, 2009.

[9] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[10] Jelle R Kok and Nikos Vlassis. Sparse cooperative
q-learning. In Proceedings of the twenty-first inter-
national conference on Machine learning, page 61.
ACM, 2004.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. Human-level con-
trol through deep reinforcement learning. Nature,
518(7540):529, 2015.

[12] OpenAI. Openai five.
https://blog.openai.com/openai-five/, 2018.

[13] Gavin A Rummery and Mahesan Niranjan. On-line
Q-learning using connectionist systems, volume 37.
University of Cambridge, Department of Engineer-
ing Cambridge, England, 1994.

[14] Tianmin Shu, Caiming Xiong, and Richard Socher.
Hierarchical and interpretable skill acquisition in
multi-task reinforcement learning. In International
Conference on Learning Representations, 2018.

[15] Chen K Tham and Richard W Prager. A modular
q-learning architecture for manipulator task decom-
position. In Machine Learning Proceedings 1994,
pages 309–317. Elsevier, 1994.

[16] Harm van Seijen, Mehdi Fatemi, Joshua Romoff,
Romain Laroche, Tavian Barnes, and Jeffrey Tsang.
Hybrid reward architecture for reinforcement learn-
ing. CoRR, abs/1706.04208, 2017.

[17] Christopher JCH Watkins and Peter Dayan. Q-
learning. Machine learning, 8(3-4):279–292, 1992.

