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Abstract
With an ever-growing amount of collected data, the impor-
tance of visualization as an analysis component is grow-
ing in concert. The creation of good visualizations often
doesn’t happen in one step but is rather an iterative and
exploratory process. However, this process is currently not
well supported in most of the available visualization tools
and systems. Visualization authors are forced to commit
prematurely to particular design aspects of their creations,
and when exploring potential variant visualizations, they
are forced to adopt ad hoc techniques such as copying code
snippets or keeping a collection of separate files.

We propose variational visualizations as a model support-
ing open-ended exploration of the design space of informa-
tion visualization. Together with that model, we present a
prototype implementation in the form of a domain-specific
language embedded in Purescript.

CCS Concepts • Software and its engineering → Do-
main specific languages; • Human-centered comput-
ing→ Visualization theory, concepts and paradigms;
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1 Introduction
Visualization has emerged as as a core component of mod-
ern data analysis. Data collection continues to grow expo-
nentially [13], and with it the number of tools and systems
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for creating data-driven graphics and visualizations has in-
creased accordingly. Many of these tools only support the cre-
ation of individual visualization artifacts with little attention
paid to the exploratory nature of visual data analysis [10, 18].
The ggplot21 system is one exception. In part because it

is embedded in the R language2 and can interact with the
corresponding ecosystem of statistical software packages, gg-
plot2 allows users to define their own workflow. By defining
functions that generate visualizations, one can parameterize
visualizations in order to easily apply them to different data
or to explore different features and aesthetic options.

However, even this parameterization still fails to directly
support one major component of exploratory analysis by
forcing users to make decisions about their visualizations
before they are ready to do so. Oftentimes, an analyst may
not wish to fully commit to a particular arrangement of
visualizations or particular aesthetic properties until after
having seen some preliminary results.
For example, suppose we are analyzing a set of data for

sales across three regions and each of the regions is com-
prised of a number of sub-regions. Our goal is to analyze
which portions of our sales are coming from which regions
in order to make some marketing decisions. However, we are
not yet sure, first of all, whether we are interested in the ex-
tra details contained in the sub-region data. Moreover, there
are a handful of questions regarding spacing and coloring of
the visualization marks that we have yet to decide upon.
While an R programmer and ggplot2 user would find a

way to parameterize the color and space information, there
is no obvious way to support data that takes one of several
different shapes. For instance, if we want to show subregion
information for one particular region, but not for the rest, and
adjust the colors accordingly, doing so requires committing
to some details in the code generating the visualization.
Ideally, we could delay making those decisions about

which regions to show detailed information for, how to color
them, and how to lay them out, until we have seen some
preliminary versions. Seeing such a chart could quickly tell
us how cluttered the visualization would be with all the de-
tails shown or whether subregions with sequential colors are
easier to visually parse than regions with divergent colors.

For example, given a function piechart which takes some
data as input and generates a pie chart, we could generate a
1ggplot2.tidyverse.org
2www.r-project.org
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version with no details shown and another with all the de-
tails shown by simply applying it. A version with all details
omitted is shown in Figure 1a, and another with all details
shown is depicted in Figure 1b. Ignoring color and consider-
ing only the level of detail for each of the regions, we might
need to create as many as 23 = 8 different charts. It is not
difficult to see how this quickly becomes unreasonable.
To support such an exploratory workflow in which de-

sign decisions can be delayed, we propose variational visual-
izations, which are structures that encode arbitrarily many
traditional visualizations in a systematic way. Variational
visualizations empower visualization authors and don’t force
them to commit prematurely to particular design decisions.
Variational visualizations are not limited to producing sim-
ply side-by-side comparisons of visualizations; due to their
tight integration into a general visualization DSL, they facil-
itate versatile combinations of visualization variants such as
overlays of alternative bar charts, as shown in Figure 1c.

The primary contribution of this work is a model of vari-
ational visualizations and its implementation as a domain-
specific language (DSL) that allows the creation, manipula-
tion, navigation, and rendering of variational visualizations.
In Section 2 we describe the basic design of the DSL for

building programmable visualizations. In Section 3 we dis-
cuss a systematic way of representing variation that is the
basis for Section 4 where we introduce variability into the
DSL. In Section 5 we demonstrate how to add variability to
visualizations and present several corresponding use cases.
In addition to the creation of variability we also sometimes
need to transform and aggregate variability. These two as-
pects are discussed in Sections 6 and 7, respectively. Finally,
we discuss related work in Section 8 and present some con-
clusions in Section 9.

2 Programming Visualizations
Our DSL (https://github.com/karljs/vis) is based on the work
presented in Smeltzer et al. [14], which introduced an em-
bedded DSL in Haskell. In contrast, our DSL is embedded
in Purescript3, which is similar to Haskell, but has the addi-
tional feature of making it easy to produce browser-based
graphics. Readers familiar with Haskell should have no prob-
lem understanding the definitions contained in this work.
The DSL groups functionality in to different layers. At

the bottom-most layer, users can work directly with the
core data types to customize every detail and make intricate
extensions. Higher layers of the DSL provide increasingly
abstracted combinator functions for cases when the details
are less important than quickly building charts. At the top of
this layering are functions for building simple default charts
such as bar and pie charts.

barchart :: Array Number -> Vis
piechart :: Array Number -> Vis

3www.purescript.org

Functions like these generally take an array4 of numbers as
input and produce a visualization, a value of type Vis.
The Vis type is the core of all visualizations and serves

two main purposes. First, it allows the composition of vi-
sualizations into larger visualizations. This could be spatial
composition or something more sophisticated such as stack-
ing chart elements. Second, it allows visualizations to be
transformed between Cartesian and polar coordinate sys-
tems. The Vis type is defined as follows.

data Vis = Mark MPs
| NextTo (NonEmptyList Vis)
| Above (NonEmptyList Vis)
| Overlay (NonEmptyList Vis)
| Stacked (NonEmptyList Vis)
| Cartesian (Vis a)
| Polar (Vis a)

type MPs = { vps :: VPs
, label :: Maybe Label
, ... }

The general structure of a visualization is a tree of composi-
tion and transformation operators with Mark nodes as leaves.
Every Mark node stores a set ofmark parameters, represented
as a record of type MPs, which include a set of visual pa-
rameters, represented as a record of type VPs. These visual
parameters are based on Bertin’s visual variables [2] and
encode aspects of a visualization that can be bound to data
such as width, height, and color.

type VPs = { height :: Number
, width :: Number
, color :: Color
, ... }

Returning to the other Vis constructors, in a Cartesian co-
ordinate system NextTo and Above spatially compose lists of
charts horizontally or vertically, respectively. In contrast, in
a polar coordinate system they respectively arrange charts in
a circle or from the outside in. Stackedmerges visualizations
to produce charts such as stacked bar charts, and Overlay

renders multiple charts into the same region of space. Finally,
Cartesian and Polar convert the space a visualization will
fill between coordinate systems. The constructors are best
understood by looking at examples.
We will start by showing how to construct a simple bar

chart. Ultimately, what we need is a NextTo composition of
Mark elements. Each Mark should have its height parameter
bound to a data value. We could just start constructing these
values as desired, but there are a number of helper func-
tions which can make it much easier. The first such helper
functions are:

4The choice of arrays is strictly because Purescript has special syntax using
square brackets [] for arrays, much like Haskell does for lists. We would
prefer to use non-empty lists as we do elsewhere, but the syntactic overhead
is significant.

https://github.com/karljs/vis
www.purescript.org
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(a) (b) (c)

Figure 1. Two pie charts and an overlay of two variants of a bar chart. The pie charts show the same data set: Chart (a) shows
the totals for three regions but omits all details while chart (b) shows the details for each region. (c) The overlaid bar charts
illustrate how different visualization variants can be integrated into single visualizations.

markHeight :: Array Number -> NonEmptyList Vis
markWidth :: Array Number -> NonEmptyList Vis

These functions generate Mark values with data bound to the
height and width respectively (as well as a constant value for
the unbound dimension, a default color, and a default label).
The implementation is uninteresting and is dominated by
boilerplate for converting from arrays of values to non-empty
lists. Again, this conversion is only used to improve the
interactive interface. The list result type makes the definition
of barchart very easy. Note that (<<<) is standard function
composition.5

barchart :: Array Number -> Vis
barchart = NextTo <<< markHeight

The piechart function also constructs a composition ofmarks.
However, we use the Polar constructor to ensure the chart
is interpreted in a polar coordinate system.

piechart :: Array Number -> Vis
piechart = Polar <<< NextTo <<< markWidth

Using functions such as barchart and piechart does not pre-
vent us from customizing the appearance of the rendered
result. Visualizations can be transformed after they are de-
fined by applying functions to them. Consider the following
sequence, beginning with a simple, colored pie chart. Note
that we use the > character to suggest an interaction with
the REPL, that is, code that users of the DSL would write.
This is to distinguish the code from the implementation of
the DSL itself that users are not concerned with.

> let myPie = piechart myData `colorAll` green

We create a pie chart and then color it green. The result is
shown in Figure 2a. The colorAll function works by travers-
ing the tree-shaped visualization and changing the color
anytime it reaches a Mark constructor. In Haskell this would
be a candidate for an approach such as Scrap Your Boiler-
plate [11]. Unfortunately, Purescript does not have an anal-
ogous library yet, and so we have to define some generic
5In Purescript (<<<) is used to avoid ambiguity, since the dot character (.)
is used for record access.

traversal functions by hand, namely updMP, which applies an
update on mark parameters to all marks in a visualization,
and updVP, which uses updMP to apply an update on visual
parameters to all marks in a visualization.

updMP :: (MPs -> MPs) -> Vis -> Vis
updMP f (Mark mps) = Mark (f mps)
updMP f (Cartesian v) = Cartesian $ updMP f v
updMP f (Polar v) = Polar $ updMP f v
updMP f (... vs) = ... $ map (updMP f) vs

updVP :: (VPs -> VPs) -> Vis -> Vis
updVP f = updMP (\mps->mps { vps = f mps.vps} )

Now we can implement the colorAll function relatively con-
cisely in the following way.

setColor :: Color -> Vis -> Vis
setColor c = updVP (\vps->vps { color = c })

colorAll :: Vis -> Color -> Vis
colorAll = flip setColor

Although coloring is conceptually straightforward, it is im-
plemented here as a visualization transformation. By default,
charts are colored black. In the preceding example we cre-
ated a black pie chart, which was not shown, and we then
transformed it into a green pie chart. This ability to trans-
form visualizations is one of the main advantages of this DSL.
This approach is not limited to simple visual tweaks either.
To demonstrate a more interesting use, we can convert our
pie chart into a bar chart without having to recreate any of
its components.
Doing this requires two steps. We need to swap the ori-

entation of the pie wedges, so that the data is bound to the
radius (height) rather than the angle (width) because we
want vertically oriented bars. This is because we want to
reuse the NextTo constructor to create a horizontal composi-
tion of bars. We could also convert the NextTo constructor to
an Above constructor, which is not demonstrated here. The
second step is to ensure that the visualization is interpreted
in a Cartesian coordinate system rather than a polar one.
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(a) (b) (c)

Figure 2. A series of visualizations produced by transformation functions.

To swap the width and height values of our bars we can
reuse the updMP function as follows.

swapWH :: VPs -> VPs
swapWH vps = vps { width = vps.height

, height = vps.width }

Until now we avoided introducing frames, which are struc-
tures that track contextual information about visualizations.
When rendering, say, a bar in a bar chart, the size of the
rectangle to draw will depend on the value of the data driv-
ing the visualization. However, a bar of height 3.0 will not
always be rendered at the same height. Instead, it depends
on the scale of the chart. If 3.0 is the highest data value being
charted, then the bar will be tall, but if it is the lowest value
then the bar may be quite short. Frames track the minimum
and maximum values in a chart in order to know how to
render a particular mark. The MPs type contains one frame
for the width and one for the height which were hidden
before.

type Frame = { frameMin :: Number
, frameMax :: Number }

type MPs = { ...
, frameH :: Frame
, frameW :: Frame }

Since we are swapping the widths and heights, we also need
to swap the frames. If we fail to also swap the frames when
swapping thewidth and height, then the rendered output will
be scaled incorrectly. We therefore arrive at the following
definition for the function reorient.

reorient :: Vis -> Vis
reorient =

updMP (\mps->mps { frameW = mps.frameH
, frameH = mps.frameW
, vps = swapWH mps.vps })

It is possible to delay computing these frames until the actual
rendering, but making them accessible could be useful in
that it allows the user to customize how charts are scaled. In
most circumstances frames can be managed automatically
and do not need to be exposed.

Referring back to the myPie value from the previous exam-
ple, we can do the following.

> let myRose = reorient myPie

This produces a rose chart (also called a Coxcomb chart), as
shown in Figure 2b. Now we have just one step remaining to
produce our desired bar chart. This step is much simpler than
the last because support for switching between coordinate
systems is available directly via the Cartesian and Polar con-
structors. We just need to apply Cartesian here to produce a
bar chart. When one of the coordinate system constructors
(Cartesian or Polar) is applied directly to another, the outer
one takes precedence. We will also apply some labels and
insert whitespace to tweak the final output.

> let myBars = Cartesian myRose `space` 0.1
`label` myLabels

The purpose of the space function is to insert whitespace
between the children of a visualization. For instance, when
given a NextTo composition, it will create a whitespace el-
ement and intersperse it into the list of visualizations con-
tained in the NextTo. The amount of space, or in this case
the width of the whitespace element, is specified relative to
the width of the children. Our bars have constant width 1.0
(inherited from the radius of the original pie chart) and so
specifying the value 0.1 means the whitespace inserted will
be 10% of the width of the bars.

space :: Vis -> Number -> Vis
space (NextTo vs) n =

NextTo $ intersperse (hSpace n) vs
space (Above vs) n =

Above $ intersperse (vSpace n) vs
space ...

hSpace v = spaceMark v 1.0 ...
vSpace v = spaceMark 1.0 v ...

spaceMark w h = Mark { vps: { height: h
, width: w, ...}, ... }
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Finally, we use the label function to attach labels to each
of the bars. It works by zipping together a list of visualiza-
tions with a list of labels. The label function itself deals with
converting arrays (unsafely) to nonempty lists as explained
earlier and is just a wrapper around labelList, which per-
forms the real labeling and which works with lists.

labelList :: Vis -> NonEmptyList Label -> Vis
labelList (Mark mps) ls =

Mark (mps { label = Just (head ls) })
labelList (NextTo vs) ls =

NextTo $ zipWith labelAll vs ls
labelList (Above vs) ls =

Above $ zipWith labelAll vs ls
labelList ...

The labelAll function referenced here just assigns a single
label to all parts of a visualization which, in this case, will
just be the bars.

3 Representing Variation
Before we can integrate variability into visualizations, we
need a systematic way of structuring variation. To that end
we make use of the choice calculus [7], which is a formal
model for variation based on named choices. Each choice con-
sists of a list of alternatives, and its name, called a dimension,
synchronizes the selection of a specific alternative with the
selection in other choices of the same name.
For example, the choice between the two numbers 3 and

4 can be represented as a variational integer in dimension
A with two variants as A⟨3, 4⟩. Choices can appear as parts
of expressions as in 2 +A⟨3, 4⟩, and expressions can contain
multiple choices in the same or different dimensions as in
A⟨1, 2⟩ +A⟨3, 4⟩ or B⟨1, 2⟩ +A⟨3, 4⟩. The difference between
these two expressions is that A⟨1, 2⟩ +A⟨3, 4⟩ encodes only
the two expressions 1 + 3 and 2 + 4 because the choices are
synchronized through the name A, whereas B⟨1, 2⟩ +A⟨3, 4⟩
represents four expressions 1+3, 2+3, 1+4, and 2+4 because
selections in the two choices are independent of one another,
since they occur in different dimensions. Choices can also
be nested as in A⟨B⟨2, 3⟩, 4⟩, and nested choice structures in
particular are subject to a number of laws and transformation
rules, but these are not of importance for the present paper.

Since we are building up to a Purescript DSL, we formalize
the choice calculus as a parameterized data type. We restrict
the type to binary choices for simplicity, which is not an es-
sential constraint, since any n-ary choice can be represented
by n − 1 (nested) binary choices.

type Dim = String

data V a = Chc Dim (V a) (V a)
| One a

Each alternative comes with a corresponding selector which
indicates that particular variant. Sets of selectors are called

decisions, which we represent as mappings from dimensions
to L or R.6

data Dir = L | R

type Selector = (Dim,Dir)

type Dec = Map Dim Dir

Selectors and decisions are used for eliminating variation
and extracting plain values from choice expressions. This
process is called selection and is defined as follows.

select :: Selector -> V a -> V a
select (L,d') (Chc d l r) | d==d' = select (L,d) l
select (R,d') (Chc d l r) | d==d' = select (R,d) r
select s (Chc d l r) = Chc d (select s l)

(select s r)
select _ (One x) = One x

Repeated selection through a decision is supported by the
selectDec function, which can completely eliminate varia-
tion more directly.

4 Integrating Variability into
Visualizations

To work effectively with variational visualizations, we have
to address two questions. First, how should we represent
variability in visualizations? We discuss several different
options together with their advantages and disadvantages
in Section 4.1. Second, how can we a navigate variational
visualization and select variants from it? We discuss this
aspect in Section 4.2.

4.1 Representing Variational Visualizations
Choices can be integrated into visualizations in several dif-
ferent ways. Most straightforwardly, we can just apply the V

type constructor to the existing Vis type.
type VVis = V Vis

This approach is general and allows us to define arbitrary
variational visualizations by simply placing visualization
alternatives in choices. For example, given visualizations v1
and v2, we can write Chc "A" (One v1) (One v2) for a choice
in dimension A.

Unfortunately, this method is somewhat crude. If we want
to encode variant visualizations which are mostly similar,
for example, differing only in a single bar or in color, we still
need to copy the entire structure into each leaf of the tree of
choices. Moreover, it could be valuable to be able to identify
visually which portions of a visualization actually vary and
which are constant. With this approach, identifying the con-
stant parts in our visualization would, at best, require some
kind of tree difference calculation. In the worst cases the
proper alignment among visualizations might be completely
ambiguous.
6We grant ourselves some syntactic liberty and use the Haskell tuple syntax
(a,b) instead of Purescript’s Tuple a b, both for values and types.
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Alternatively, we could push the V type constructor down
into the leaves of the tree. This would require us to modify
the Mark constructor for the Vis type in the following way.

data VVis = Mark (V MPs)
| ...

This change solves both of the problem mentioned for the
previous approach. Everything is now shared, since only the
leaves of a visualization may vary and we can always tell
exactly which parts are constant and which vary based on
whether or not there are any choices in a leaf. However, this
benefit comes at an even larger cost because we are now un-
able to construct certain kinds of visualizations. For example,
we can no longer construct a variational visualization where
one variant is a vertical bar chart (NextTo composition of
vertical bars) and the other is a horizontal bar chart (Above
composition of horizontal bars). Since an important use case
is the creation of comparable visualizations, this limitation
is unacceptable, and rules out this approach.

Finally, a third approach is to let the DSL user decidewhere
in the structure of their visualizations the variation should
occur. This can be achieved by adding a new constructor to
the original Vis type.

data VVis = Mark MarkParam
| Chc Dim VVis VVis
| ...

This hybrid approach removes the restriction on the kinds
of variational visualizations we can construct by allowing
the variation to occur anywhere. It puts the burden of this
decision on the user, which has the benefit that a savvy
user can design visualizations so that the constant parts and
variational parts are clearly demarcated. However, it requires
the user to understand the structure of visualizations more
deeply than the other approaches before being able to use the
DSL effectively. We believe this to be a reasonable tradeoff
and, going forward, this third approach is the one we adopt.

4.2 Prototype Visualization Renderer
We have developed a prototype tool to render variational
visualizations and navigate among their variants on top of
the Purescript DSL. It is based on HTML5 canvas graphics
and was used to generate all the figures in this paper.

The main design decision for the prototype is how to sup-
port a user in navigating among the different visualization
variants. Much of the utility of variational visualizations is
lost if the user is not able to make and modify selections.
Our prototype interface uses a two-part interface consisting
of checkboxes and radio buttons. Each dimension that oc-
curs in a visualization produces a checkbox, which indicates
whether a selection for this dimension has been made. If
checked, two radio buttons are shown, which denote which
alternative in the corresponding dimension is selected.
This checkbox/ratio button interface provides an inter-

active means to construct decisions with which to select

variants from a variational visualization. If a selection is
made in all dimensions, all variability is eliminated, and a
single variant visualization is shown as a result. In general,
however, selections are partial, and one or more dimension
remain unselected. In this case, all possible variants that
have not been eliminated through selections are displayed.
We have adopted a small multiples approach to rendering
multiple variants [17], which basically means to composing
the variant visualizations into a grid.

An example is shown in Figure 3, which shows two dimen-
sions corresponding to some variational data associated with
months of the year. The small format makes it somewhat
difficult to see, but the two dimensions are February and
June. The selection in the June dimension is {June.r}. Since
February is unselected, no decision for that dimension is
included, and therefore both February visualization variants
are displayed.
The figure also shows how color is used to map the user

control to parts of the visualization. The June dimension
has been assigned a green color (automatically), and the
corresponding region in the visualization is surrounded by
a green, dotted outline. This means that if we change the
selection in that dimension, we should expect that part of
the visualization to change. This variation region indicator
appears in both of the shown variants.

Using colors and small multiples in this way faces a num-
ber of issues, particularlywith respect to scalability. However,
this interface is only intended to be a prototype and not to
be a perfect solution to this problem.
In the following sections we explore the different ways

a programmer can construct and manipulate variational vi-
sualizations, and generate corresponding rendered output
using the prototype. There are three major categories of
tasks a user of our DSL can engage in, namely generating
variation, transforming variation, and consuming variation.
The following sections will focus on these three aspects in
order.

5 Generating Variation
Creating variation in a visualization is the most basic step
in working with variational visualizations. The produced
visualizations can then be either explored using the browser
prototype briefly discussed in Section 4.2 or subjected to
further transformations.

One frequent use case for generating variational visualiza-
tions is the manual introduction of variation. For example,
to look at and compare several alternative visualizations, we
can place them in choices and decide on the one we want by
simply loading them in the variational visualization browser.
We may also encounter situations in which we want to vary
part of a bigger visualization. We can achieve this with our
representations easily by creating a choice of the parts and
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Figure 3. The prototype user interface showing a variational visualization to which the decision {June.r} has been applied.

then combining it with the remaining parts of the visualiza-
tion using the other VVis constructors such as NextTo, Above,
etc.
In addition to constructing variation manually, there are

at least two common scenarios in which variation is added
programmatically to a visualization.

5.1 Visualization Provenance
One simple and useful way of systematically adding variation
to an existing visualization is offered by the function vary,
which is defined as follows.

vary :: (Dim,VVis -> VVis) -> VVis -> VVis
vary (d,f) v = Chc d v (f v)

This function is reminiscent of function application, with
good reason. Its purpose is to apply a visualization transfor-
mation function, f, but it does so in a way that preserves the
original visualization as a variant along with the newly trans-
formed result. Both visualizations are enclosed in a choice
with dimension d.

Since we often vary visualizations by changing visual
parameters, we also provide as a special instance of vary the
function varyVP.

varyVP :: (Dim,VPs -> VPs) -> VVis -> VVis
varyVP (d,f) = vary (d,updVP f)

To illustrate the use of vary, suppose we have created a
simple bar chart myBars.

> let myBars = barchart myData

After viewing it, we decide that it may be valuable to see
the same data after applying a square-root transformation.
We could of course transform the data and produce a new
chart, but that causes us to lose any customizations we may
have applied. Another possibility is to define a visualization

(a) (b)

Figure 4. Generating variation. By using the vary function
we can transform a visualization and keep the original as an
alternative. By chaining applications, it is possible to track
the provenance of a visualization completely, ensuring every
variant is always reachable.

transformation that actually changes the heights of the bars
in the existing chart. We achieve this by first defining a
higher-order function that manipulates the heights of bars.

onHeight :: (Number -> Number) -> VPs -> VPs
onHeight f vps = vps { height = f vps.height })

We can then use varyVP to apply onHeight across the visual-
ization.

> let vBars = varyVP ("Sqrt",onHeight sqrt) myBars

The two variants are shown in Figure 4. Note that the square-
root transformed visualization is not automatically rescaled
to fill the frame. If the user prefers rescaling, this can be
easily achieved by applying the function:

fillFrame :: VVis -> VVis

By chaining applications of vary (and varyVP) it is possible
to build increasingly large choice structures that track all the
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variants of a visualization that are ever produced, serving as
a visualization provenance technique. The programmer can
then use selection to navigate through the visualization in
order to revisit older states.

5.2 Branching Visualizations
To truly support visualization history and provenance, our
DSL needs to be able to do more than just create a linear
sequence of changes. In particular, we also need to support
branching transformations, that is, we want to support a tree
of history information rather than a list. To support this, the
DSL must provide a way to indicate which previous variant
should serve as the starting point of a new transformation.
When working with the DSL in a REPL environment, it is
likely that visualizations will be created (such as with vary)
that are not bound to a particular name, meaning the user
does not have a reference to them. Fortunately, we can make
use of the existing choice calculus machinery to identify
visualizations.

The branch function serves this purpose and is analogous
to vary, but with an additional parameter in the form of
a decision. This decision is used to indicate where in the
choice tree the transformation should be applied and the
new variant should be inserted.

branch :: (Dim,VVis -> VVis) -> Dec -> VVis -> VVis

However, the implementation of this function is not quite
as simple as vary. Since the variational type constructor is
integrated recursively in the visualizations type, it is not
obvious when traversing the visualization whether we have
made all the relevant selections or whether some still remain
nested further down.
For this reason, we need to check explicitly. The helper

function lacksDims performs this task, searching recursively
for any of the dimensions selected in a particular decision.
We will show an example after the complete definition.

lacksDims :: Dec -> VVis -> Boolean
lacksDims dec (Chc d l r) = case lookupDim d dec of

Nothing -> lacksDims dec l && lacksDims dec r
_ -> false

lacksDims _ (Mark _) = true
lacksDims dec ...

The cases which are not shown just employ boilerplate code
to recursively check their child visualizations. With this
completed, we can return to the definition of branch.

branch :: (Dim,VVis -> VVis) -> Dec -> VVis -> VVis
branch (newDim,f) dec (Chc d l r) =

case lookupDim d dec of
Just L -> Chc d (branch (newDim,f) dec l) r
Just R -> Chc d l (branch (newDim,f) dec r)
Nothing -> if lacksDims dec (Chc dim l r)

then vary (newDim,f) (Chc dim l r)
else Chc d (branch (newDim,f) dec l)

(branch (newDim,f) dec r)
branch (newDim,f) dec ... = if lacksDims dec ...

Again, the omitted cases are repetitive boilerplate, and es-
sentially the same as the Nothing branch of the above case
statement, checking whether the traversal is finished and
dispatching accordingly. Consider the following example to
illustrate how this process work.
Suppose we have constructed a visualization v1. We ap-

plied vary to it, adding a visualization v1 within a new di-
mension A, which produces the following variational visual-
ization.

Chc A v1 v2

Next we apply vary a second time to add a visualization v3

within a new dimension B, which leads to:
Chc B (Chc A v1 v2) v3

Now we want to branch off the original v1. We pass the
decision {A.l ,B.l } to branch to indicate this.
The branch function first encounters the outer B choice,

performs a lookup, and sees the left alternative is selected.
Accordingly, we traverse only the left branch. We then en-
counter theA choice, and traverse the left branch again. Next,
suppose we encounter a NextTo constructor. This will trigger
an application of lacksDims. That function sees that neither
of the dimensions in the target decision occurs anywhere in
the remainder of the visualization. This means we are fin-
ished and apply our transformation function. If eitherA or B
had occurred, we would have needed to continue traversing
before performing the branching transformation.

As we did for vary, we also define a version of the branch

function for branching using a transformation of visual pa-
rameters.

branchVP :: (Dim,VPs -> VPs) -> Dec -> VVis -> VVis
branchVP (d,f) = branch (d,updVP f)

With this function we can produce branching visualizations,
which effectively supports a visualization historymechanism.
To illustrate, consider this simple example. Recall the vBars

visualization from the previous example which encodes a bar
chart as one variant and its square-root transformed version
as the other. The choice structure of that visualization is the
following (we use the name sqrtBars to refer to the result
of the transformation onHeight sqrt).

vBars = Sqrt⟨myBars, sqrtBars⟩

Now suppose we decide that a square root transformation
may have been a suboptimal choice. We want to create a new
variant that transforms the original bars using a reciprocal
transformation, without losing access to any existing variant.
We can achieve it in the following way. First, we define the
decision that corresponds to the variant we want (in this
case the decision consisting of the only selector ("Sqrt",L)
to locate original bar chart myBars). Then we apply the trans-
formation function to perform the reciprocal computation
using Purescript’s succinct notation for partially applied bi-
nary functions 1.0/_) with branchVP.
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> let orig = sel2dec ("Sqrt",L)

> let vvBars = branchVP ("Recip",1.0/_) orig vBars

This definition produces a new visualization with the follow-
ing updated variation structure where recipBars denotes to
the newly added visualization.

vvBars = Sqrt⟨Recip⟨myBars, recipBars⟩, sqrtBars⟩

Using a combination of vary and branch allows us to flexibly
generate visualization variants through transformation.

6 Transforming and Maintaining Variation
The previous section introduced some ways in which we
can systematically introduce variation into visualizations.
Recall, however, that generation is only one of three general
categories of tasks we want to support. The second category
is for those tasks which transform variation without generat-
ing or removing it. That is, tasks which maintain the amount
of variation.

6.1 Mutating and Replacing Variants
One straightforward task that does not affect the structure
of the variation is to replace particular variants. In Section 5
we showed how to add variants using the vary and branch

functions. Replacing a visualization is similar and equally
useful. Suppose, for example, that we have produced a varia-
tional visualization but none of the variants include labels.
Now we have changed our mind and would like to see all of
the visualizations with labels.

We could use the branch function to transform each vari-
ant, adding a new dimension in which the right alternatives
now contain the versions with labels. However, since adding
global dimensions grows the number of variants exponen-
tially, we may wish to avoid doing so. In cases when we do
not care to preserve the original variants, we can instead
turn to mutate, which is very similar to branch. Since mutate
replaces variants of already existing choices, it doesn’t need
a dimension as an argument. In the definition we make good
use of the lacksDims helper function from earlier.

mutate :: (VVis -> VVis) -> Dec -> VVis -> VVis
mutate f dec (Chc d l r) =
case lookupDim d dec of

Just L -> Chc d (mutate f dec l) r
Just R -> Chc d l (mutate f dec r)
Nothing -> if lacksDims dec (Chc d l r)

then f (Chc d l r)
else Chc d (mutate f dec l)

(mutate f dec r)
mutate f _ (Mark mps) = f (Mark mps)
mutate ...

Since in our example the goal is to mutate the visualiza-
tion variants to add labels, and we want to do this to every
variant rather than a subset of them, we can use the empty
decision as an argument. This will ensure that no sub-tree is
selected and so all variants are transformed. Using the empty

decision in this way is, of course, no different than labeling
the visualization directly with label, but it shows that our
standard transformation functions are actually a special case
of mutate.

> let myVis = ...

> let myLabVis = mutate (`label` ["A", ..., "G"])
emptyDec myVis

One simple but useful extension to mutate is the replace

function. Rather than mutating an existing variant, replace
simply overwrites it. We can easily define replace in terms
of mutate.

replace :: VVis -> Dec -> VVis -> VVis
replace v = mutate (\_->v)

6.2 Conditional Mutation
One further kind of task we wish to support that does not
add or remove variation is what we call conditional mutation.
The idea is to allow predicates to be defined over visualiza-
tions and mutate or replace only those portions and variants
which are matched by the predicate. As an example, suppose
that we have generated a variational visualization in which
each variant contains a number of composed bar charts of
varying sizes and kinds. Several of the charts depict quarterly
revenue, and we wish to transform only those bar charts into
pie charts in order to better see the ratio of the individual
quarters to the whole year. There are a number of ways
to achieve this, but for this example we choose to define a
predicate that matches those charts by counting the number
of bars. Only the revenue charts have 4 data points, so it
is an easy way to distinguish them. We could also write a
predicate to check the color, labels, or other aspects of the
structure as well.

Once again we can also make use of decisions to indicate
where in the visualization we would like our predicate to
be tested. However, there is one complication compared to
branch and mutate. In addition to the check that lacksDims
performs to see whether we have traversed far enough into
the visualization structure, we also need to determine when
to apply our predicate. Unfortunately, there is not an obvi-
ously correct solution to this. For example, suppose we have
a visualization with the following structure.

Chc "A"

NextTo

NextTo

Mark . . . Mark

NextTo

Mark . . . Mark

. . .

Suppose further that we have used a decision to indicate
we want the left branch of all A choices. At the root node
we encounter an A choice and accordingly traverse the left
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alternative, leaving the right alternative unchanged. Next
we encounter a NextTo node. If we simply used lacksDims,
we would discover that there are no more A choices remain-
ing, indicating that the traversal is potentially finished. We
could now test our predicate and, if appropriate, perform
the mutation. However, it is not obvious that this is the
correct approach. In this particular case, what remains is a
horizontal composition of bar charts. This takes the form
of nested NextTo constructors. If the user wants to trans-
form these into pie charts, it would require a function which
correctly handles a horizontal composition of exactly two
charts, traversing the outer NextTo and then changing the in-
ner ones. This is sometimes not possible to learn by visually
inspecting the rendered output. For instance, by inspecting
the output we cannot know if there is, perhaps, a Cartesian

constructor layered between the NextTo constructors.
In fact, this would all but prevent the implementation of

our desired check for four bars. We would need to actually be
checking for a composition of two visualizations which each
contain four bars, and moreover we would need to write
a transformation function that deals with this multi-tiered
composition.
Instead, we take the approach of not applying the predi-

cate at this point, immediately after we exhaust the relevant
choices. Instead, we continue traversing the visualization
until we reach what we (heuristically) determine is a single,
complete visualization. This results in the predicate being
applied separately at each of the lower NextTo constructors.
This work is done in the isVis function.

isMark VVis -> Boolean
isMark (Mark _) = true
isMark _ = false

isVis :: VVis -> Boolean
isVis (NextTo vs) = any isMark vs
isVis (Above vs) = any isMark vs
isVis (Chc _ l r) = isVis l && isVis r
isVis ...

(a) (b)

Figure 5. Conditionally mutating parts of a visualization. In
this case we globally mutate all charts containing exactly
four bars into pie charts to better showcase their relationship
to the whole.

This function makes use of some simple heuristics about
what constitutes a complete visualization. Unfortunately, it
is always possible to construct a complicated visualization
that it fails to detect correctly. We believe this is a reasonable
tradeoff, pending some practical evaluation of both options.

We can now return to the implementation of condMutate,
and make use of both lacksDims and isVis.

condMutate :: (VVis -> Boolean) -> (VVis -> VVis)
-> Dec -> VVis -> VVis

condMutate p f dec v@(Chc d l r) =
case lookupDim d dec of

Just L -> Chc d (condMutate p f dec l) r
Just R -> Chc d l (condMutate p f dec r)
Nothing -> if lacksDims dec v && p v

then f v
else v

condMutate p f dec v@(NextTo vs) =
if lacksDims dec v && isVis v

then if p v then f v else v
else NextTo $ map (condMutate p f dec) vs

condMutate ...

Returning to the example, the final step is to define the pred-
icate for condMutate. Here is a predicate that checks whether
a visualization contains exactly four bars.

> fourBars :: VVis -> Boolean
fourBars (NextTo vs) = case toUnfoldable vs of

[Mark _, Mark _, Mark _, Mark _] -> true
_ -> false

fourBars _ = false

This function converts the nonempty list to an array for easy
pattern matching and then checks whether we have a NextTo
composition of exactly four Marks, corresponding to bars.
Now we can finally apply it to the existing visualization to
perform the mutation. The output is shown in Figure 5.

> let barAndPies =
condMutate fourBars (Polar << reorient)

emptyDec allBars

The idea of using a predicate to perform mutation condi-
tionally applies more generally in other transformation sit-
uations as well. We could define more general versions of
functions such as vary and branch that also include such a
conditional check. It is a completely orthogonal feature.

7 Aggregating Variation
The third and final category of tasks we support are those
which reduce the amount of variation through aggregation.
In the context of visual data analysis, this corresponds to
situations in which we make decisions about design aspects
we had been exploring.

7.1 Selecting and Ignoring
When we generate variation in a visualization, it is often be-
cause we are not sure what the optimal visual representation
is for the task at hand. However, as the process continues
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some of those uncertainties will be removed. In these situa-
tions, we may wish to commit to one alternative in a dimen-
sion of variation through selection (in the choice calculus
sense, see Section 3). The definition of the function select

provided earlier needs to be adapted slightly. That definition
would only work if we had defined our visualizations to be of
type V Vis rather than integrating V directly as a constructor.
Here is a partial definition.

select :: VVis -> Dec -> VVis
select (Chc d l r) dec = case lookupDim d dec of
Just L -> select l dec
Just R -> select r dec
Nothing -> Chc d (select l dec) (select r dec)

select ...

Suppose we have used the vary function to produce a variant
of a chart with labels, which were originally omitted.

> let labVis = vary ("Labels",`label` myLabs) myVis

After doing this we see that the labels clutter the representa-
tion too much, making it difficult to read. We would like to
commit to the representation without labels, effectively un-
doing the application of vary. All we need is selection. Since
this pattern of ignoring a previously added variant occurs
frequently, we add a function that does exactly this. This
function also relieves the user from the need to remember
that new variants are added as “right” variants and that the
old visualizations are kept as “left” variants.

ignore :: VVis -> Dim -> VVis
ignore d = select (sel2dec (d,L))

With the help of ignore, we can now simply define the
variation-reduced visualization as follows.

> let noLabVis = ignore "Labels" labVis

Note that since in this example we have a reference to myVis,
we don’t strictly need the function ignore, but that will not
always be the case.

7.2 Flattening
One final kind of variation aggregation the DSL supports
is flattening. The basic idea of flattening is that sometimes
we want to eliminate variation but not by promoting one
variant and eliminating the other. Instead, flattening allows
us to specify exactly what should be done with the variants.
Since this operation acts on choices directly rather than on
visualizations, the traversal of the flatten function looks
slightly different from the ones introduced so far.

flatten :: (VVis->VVis->VVis) -> Dec -> VVis -> VVis
flatten f dec (Chc d l r)

| lacksDims dec l && lacksDims dec r = f l r
| otherwise = Chc d (flatten f dec l)

(flatten f dec r)
flatten f dec (NextTo vs) =

NextTo $ map (flatten f dec) vs
flatten ...

Again, we also provide a version of the function that takes
as argument a function that manipulates visual parameters.

flattenVP :: (VPs->VPs->VPs) -> Dec -> VVis -> VVis
flattenVP f = flatten (updVP f)

This function has many uses. Suppose, for example, we are
analyzing data collected from a set of redundant sensors. For
each data point we have potentially more than one value
due to the redundancy, that is, variational data. As shown in
Figures 6a and 6b, we have two variant charts that show two
of the values varying. Our goal now is to produce a third
chart which will show the mean values everywhere that
variation occurs. The first thing we need to do is define a
simple helper function to produce a bar based on the average
height of two existing bars.

avgHeight :: VPs -> VPs -> VPs
avgHeight vps1 vps2 =

vps1 { height = (vps1.height+vps2.height)/2.0 }

Now we can apply that to our existing visualization and get
the result shown in Figure 6c.

> let avgBars = flattenVP avgBars emptyDec myBars

Again, one reason for why one might want to transform
the visualization directly instead of the underlying data is
that the visualization might be part of a bigger variational
visualization, which had to be reconstructed if the data were
to be changed. Another reason is that we may want to see
the resulting averages in the context of the original data,
for example, to get a sense of where and how much the
data varies. This is not clear from Figure 6c. We can create
yet another version of the visualization by overlaying the
averages with the bars for the original data (displayed using
a lighter color). The result is shown in Figure 6d.
This example presents only a very simple case for flat-

tening for the purpose of illustration. Many other, more
convincing, use cases exist. For example, if in a variational
visualization each of two variants has its advantages, and
we want to combine the best of both such as when we want
to take the frames from one alternative but the color from
another. Or consider the case when we want to merge two
variants into an overlay of two visualizations. Sometimes
we might even need a conditional selection from different
variants, for example, to promote the variant that is simplest
(has the fewest marks) or has the highest maximum value.
The function flatten can be employed to express all these
variation transformations.

8 Related Work
The related work in this field can roughly be assigned to one
of two categories: (1) DSLs and other visualization tools, and
(2) applications of variation.

8.1 DSLs and Visualization
The grammar of graphics [20] and its most popular imple-
mentation in the form of ggplot2 [19] take an object-oriented
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(a) (b) (c) (d)

Figure 6. Using flattening to aggregate variational data. Figures (a) and (b) show two variants of the same variational
visualization where two of the data values vary. Figure (c) shows the visualization after using flatten to compute the average
values of the variational bars and charting that value instead. Figure (d) shows the average visualization overlaid with the
visualizations of the original data.

DSL approach to visualization, which supports some similar
concepts to this work, including interpreting visualizations
in different coordinate systems and transforming data in a
post hoc fashion. However, the language is not designed to
support exploratory visualization but instead primarily to
describe and produce a single visual artifact.

Many visualization systems make use of domain-specific
languages. For example, Protovis [3] is a Javascript-embedded
DSL for constructing visualizations. It was based on a declar-
ative domain-specific language which separated the spec-
ification of visualizations from the rendering process [9].
Protovis employed typical visualization abstractions such
as scales (for example, for distinguishing quantitative and
ordinal data) and layouts (such as clusters and stacks). The
original authors have since moved on to D3 [4], which trades
the domain-specific abstractions for more familiar web stan-
dards. While this has the advantage of being more flexible
in terms of creating general documents driven by data, the
large number of D3 wrappers developed in the visualization
community demonstrates that a DSL approach is still de-
sirable. As with most other visualization DSLs, the goal of
Protovis was to create single artifacts rather than to support
an iterative and incremental workflow.
DSLs have also been effective in visual domains outside

of information visualization. For example, Rautek et al. [12]
showed how multiple DSLs can be employed to perform
scientific visualization tasks and Duke et al. [5] advocated for
DSL approaches in general, using scientific visualization as
a domain to demonstrate the potential value. The Diagrams
DSL, described partially by Yorgey [21], supports the creation
of mathematical diagrams and, like this work, makes use of
composition and relative spacing.

8.2 Variation
Probably the work most directly related to this work form
the perspective of working with variation is Side Views [15].
Side Views is a user interface extension specifically targeted
at supporting open-ended tasks. It provides both dynamic

previews of visual editing operations as well as interface
elements for adjusting the parameters to those operations
(for example, angle of rotation or degree of blur). It is also
possible to compose operations to preview sequences of
commands.
Parallel Paths [16] expands on Side Views by focusing

on how users can be supported in navigating variants and
promoting variants. While their specific model of variation
is not discussed, the authors mention being able to show
“slices” of variation which is analogous to variants in the
choice calculus. They also have a model they call “selection”
which supports a kind of projectional editing [1].

Finally, Hartmann et al. [8] took a variation-based ap-
proach to user interfaces and interactions which require
comparison tasks, and Erwig and Smeltzer [6] describe ap-
plying the choice calculus to produce variational pictures.

9 Conclusion
This paper demonstrates a domain-specific embedded lan-
guage in Purescript for creating and manipulating varia-
tional visualizations. Through the use of examples, we have
demonstrated how the generation, transformation, and ag-
gregation of variation contained in visualizations is useful
in supporting the iterative workflow associated with visual
data analysis.

In particular, the combination of variational visualization
and visualization transformations allows analysts to delay
committing to any particular design decisions regarding their
visualizations. Instead, by modeling variation explicitly, they
can simply keep all desired variants, navigate among them,
transform them, and only remove extraneous ones when
ready.
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