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Abstract
We present a functional DBPL in the style of FP that facilitates the definition of precise

semantics and opens up opportunities for far-reaching optimizations. The language is integrated
into a functional data model, which is extended by arbitrary type hierarchies and complex objects.
Thus we are able to provide the clarity of FP-like programs together with the full power of sem-
antic data modelling. To give an impression of the special facilities for optimizing functional
database languages, we point out some laws not presented before which enable access path
selection already on the algebraic level of optimization. The algebraic way of access path
optimization also gives new insights into optimization strategies.

1 Introduction
The design of new database programming languages is still a challenging task, for on the one hand it has
to meet the conceptual requirements of programming languages and database systems at the same
time, and on the other hand it has to present a suitable integration of both. Concerning database
aspects, one observes that the drawbacks of the relational data model have led to a variety of so-called
“semantic data models” [HK87] that more or less provide explicit methods for modelling classification,
aggregation (tupling), association (grouping), and generalization. Unfortunately, some models grow very
large (and thus become unwieldy) in trying to cover all shades of each concept by permanently
introducing new modelling constructs; this does not come up to a good language design as described in
[ABC2M84]. Hence such models are not easy to use, and, not surprisingly, things will get even worse if
one tries to combine such a model with a programming language. The functional data model
[Shi81, BF79], however, with its few concepts is both easy to understand and to apply. Moreover, as we
will show, it is nevertheless able to cover the above mentioned modelling concepts. Furthermore, a
functional programming language can seamlessly be integrated into a functional data model [Nik88].

Concerning programming methodology, we believe that applicative languages are superior to
imperative ones for a number of reasons [Sad87, Bac78]. Particularly, functional programs are shorter
and much simpler, that is, easier to understand, than their imperative equivalents. Furthermore,
because of referential transparency their semantics have simple mathematical descriptions. Special
advantages of FP-like languages are [Bac78, Bac85]: (i) a hierarchic program structure which sim-
plifies understanding of programs and enhances reusability, (ii) reasoning on function level (instead of
object level), and (iii) an algebra of programs. Items (ii) and (iii) support a fine approach to program
verification and optimization [KS81, Bac85, BK90], which lets FP be an excellent candidate for a func-
tional DBPL, since optimization of queries to large databases is of particular interest [JK84].

The model we shall present in the following combines the modelling capabilities of semantic data
models including complex objects and type hierarchies with the rigorous FP programming-style. Thus on
the one hand, we significantly extend the models presented in [Shi81, BF79], and on the other hand, we
obtain powerful optimization facilities that are not possible in models such as [PK90, ACo85]. Note
that algebraic optimizations are not investigated in the work of [Shi81, BF79, BFN82] either.

Traditionally, the process of optimization is divided into two consecutive steps: algebraic opti-
mization and access path optimization, which is not performed algebraically. In this paper we shall
show that the functional model allows the latter kind of optimization to be done algebraically, too, thus
bringing both steps onto a common (high) level. It is this uniform treatment that opens up the way to
the investigation of new optimization strategies, for example, the interweaving of both optimization
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stages. In fact, we will see that it is advisable to try access path optimization before the “algebraic” one.
The rest of the paper is structured as follows: In the next section we introduce a functional DBPL

allowing for update and schema operations. Along with this we explain elements of the underlying ex-
tended functional data model. The definition of the semantics is outlined in Section 3. This enables us to
describe an approach to algebraic optimizations in Section 4. There we first consider the “classical”
algebraic optimization and the algebraic access path optimization separately (Subsections 4.1 and 4.2).
Then we outline a possible way to join these two approaches in Subsection 4.3. Conclusions drawn in
Section 5 will complete this paper.

2 ADAPLAN: A DBPL Based on an Extended Functional
Data Model
The functional data model [Shi81] views a database as a set of object and data types, a type being a
sort, that is, a set of data values or objects, together with some functions defined on that sort. Unlike
data sorts (like NUM or BooL), object sorts change in time because their objects have to be created and
may be deleted at some time. Likewise, data functions (such as + or ∧) always return the same result
when applied to the same data whereas functions defined on object types may be altered (for example,
salaries may rise). Object attributes are modelled by data-valued object functions, and relationships
between objects are captured by functions having object sorts as ranges (which may be complex ones,
see below). Object functions may be defined extensionally (then we call them mappings), or they are
derived by means of expressions (then we call them simply functions).

This basic model is extended in two directions.1 First, we introduce a means to arrange object types
into arbitrary hierarchies that can capture many different object class relationships. Inheritance of
functions is not the only benefit gained from this, for one can also selectively apply different functions to
a generalized object depending on its concrete subtype. Another reason for introducing generalizations is
the opportunity to let explicit integrity constraints be captured by inherent ones. In defining new types
one can express an inclusion or equality constraint between the set of new types and a set of already
existing types (refer to [HNSE87] for details, and note that multiple inheritance is not captured by this
method). In addition, each base type, that is, any type specialized out of the top sort OBJECT, is required
to be defined along with at least one key mapping because we want to ensure that each object can be
identified uniquely at any time. In [Bro84] this requirement is called entity integrity.

Second, the modelling of complex objects is supported by adding the type constructors (set) union
(A 1 … A n) , tuple [A 1 … A n] , set *A , and function (A → B) . Type constructors are used to describe the
types of functionals (see below) and to allow the definition of complex range types of object functions. In
the latter case function type constructors must not be used because “functions as ranges of functions”
would complicate the application mechanism (though desirable in some cases [AH87] we feel that
simplicity of the overall conception dominates). Since type constructors may be nested we achieve
type-completeness [AB87, ABC2M84]. For a detailed description of types and constructors, see [oho90].

In the following we show how all the previous ideas can be turned into a concrete DBPL. Therefore,
the different concepts of the applicative database programming language ADAPLAN are presented by
giving several examples. The language provides schema, update, and query operations and furthermore
offers the ability to define explicit integrity constraints and transactions.

We begin with describing the schema for a parts database. A part is named and has a total price.
It is either a base part or an assembly group. A base part has an associated price, and an assembly
group has a parts list telling which parts are used how many times in its composition. Moreover, we
assume that parts are delivered by suppliers located in a certain city. In addition, we keep track of
orders each of which consists of a set of parts. Now, the definition of the object sorts looks like this:

TYPE Part ≤ OBJECT,     KEY name: Part |→ STRING
TYPE (Base Group) = Part
TYPE Supplier ≤ OBJECT, KEY name: Supplier |→ STRING
TYPE City ≤ OBJECT,     KEY name: City |→ STRING
TYPE Order ≤ OBJECT,    KEY who: Order |→ Supplier, no: Order |→ NUM

                                                
1 The subtype relationships of DAPLEX capture only a small part of imaginable type structures, and being restricted to
multivalued functions for grouping one is not able to model, for example, sets of sets.
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Here Part , City , Supplier , and Order  are each defined as a subtype of the top sort OBJECT. A bar to
the left of an arrow restricts a mapping to being total (a bar to the right specifies surjectivity), so with
the above definitions we require the key mappings being defined for each object of the respective sort.
Key mappings are missing in the definition of Base  and Group  because these types are subtypes of
Part  and therefore both inherit the key mapping name. In fact, this subtype specification defines a par-
tition, that is, each part has to be in exactly one of the respective subsorts. Now consider the definition
of the mappings:

MAP delivered: Part      |→| Supplier
MAP located:   Supplier  |→ City
MAP transport: Supplier  |→ STRING
MAP shipped:   Order     |→ *Part
MAP baseprice: Base      |→ NUM
MAP partslist: Group      → *[Part NUM]

Note that shipped  and partslist  yield complex objects, namely sets and sets of tuples, respectively.
Since partslist  maps group parts to parts we in fact have defined a recursive type.

Before defining the derived functions price  and total  some principles of the FP programming-
style should be outlined: Expressions (called functional forms) are built by applying functionals to func-
tions. Functions can be data type functions (such as +, ∪), object type functions (like located , name),
data type constants (for instance, 'Rome' , true , {3, 17} ), object type constants (for example, Order ,
Supplier('Cheap') ), or some special functions such as

id (identity function)
#i (selects the i th component out of a tuple)
T? (checks whether an object has type T)
split (partitions a set into an element and the remainder of the set)

The following set of functionals has proved to be useful in DBPLs (functions are denoted in general by
variables f , g, h, set-valued functions by s , t , predicates by p, q, constants by c , and mappings by m):

f  ο g (T �→ U) (S �→ T) → (S �→ U) composition

*f (S �→ T) → (*S �→ *T) map, apply-to-all

f/g ([T T] → T) (S → T) → (*S → T) aggregate

|p| (S → BOOL) → (*S → *S) filter

[f 1 … f n] (S �→ T 1) … (S �→ T n) → (S → [T 1 … T n]) tuple

{f 1 … f n} (S �→ T 1) … (S �→ T n) → (S → *(T 1 … T n)) set construction

~m (S �→ T) → (T → *S) inverse

p → f; g (S → BOOL) (S �→ T) (S �→ U) → (S → (T U)) conditional

The semantics of the functionals and their use is illustrated by the following examples:

*located  ο Supplier (1)
max/baseprice  ο Base (2)
÷ ο [+/baseprice +/1]  ο Base (3)
|(located = City('Rome'))  ο delivered|  ο Part (4)
∪/~delivered  ο ~located  ο City('Rome') (5)

Function composition can be imagined as pipelining the result of one function into the next and is needed
in almost any expression. In (1) the function located  is applied to each object in the set Supplier , so
the result is a set of cities. In (2) the mapping baseprice  is applied to each element of the set Base
(temporarily preserving duplicates) and then the maximum value is computed by aggregating the
results with the binary function max. Other examples for aggregation are: counting (summing up) a set
of elements (numbers), which can be expressed by +/1  (+/id ). The average price of base parts can be



309

determined as shown in (3) where a tuple, consisting of the sum of prices and the number of base parts,
is constructed to which the division operator is applied. To enhance readability we often use infix
notation (x f y)  in place of the FP expression f  ο [x y]  as in (4) which asks for all parts delivered
from Rome. The same query is expressed by (5) where first, all suppliers of Rome are determined (by
the inverse ~located ) and second, all parts delivered by each of them are calculated (by the inverse
~delivered ) and aggregated using ∪. Set construction and partition are present mainly for technical
reason; they will be defined formally in Section 3 where they are used in the definition of other
functionals. An example for the use of the conditional is given by the definition of the derived function
price 2:

FUN price: Part → NUM =
    Base? → baseprice;  +/(price  ο #1 × #2)  ο partslist
FUN total: Order → NUM = +/price  ο shipped  

The defining expression of price  operates as follows: Base?  checks whether the argument part is a
base part. In this case the stored price is the result; otherwise for all elements of the parts list, the total
price of the subpart is multiplied with its frequency and all values are summed up.3 The expression
defining total  should be clear now. More query examples are presented in Section 4.

Now let us consider some update operations. We follow the idea of AST (applicative state transition)
systems [Bac78] and consider each update as an atomic operation that transforms one (valid)
database state into another.4 Conceptually, an update happens all at once, that is, there is no unde-
fined intermediate state to which queries may refer, and the update operation itself “sees” at any time
nothing but the old, yet unchanged, database state. Moreover, an update is performed completely or not
at all, that is, when an integrity constraint is violated by a part of the update, the database state does
not change. Thus referential transparency is guaranteed for query and update expressions so that the
applicative nature of our language is not touched by updates. These topics are discussed more thor-
oughly in [Nik88]; implementation issues are considered in [Tri89].

As already indicated, updates must not violate integrity constraints which include inherent and also
explicit ones. Inherent integrity constraints are, for example, key integrity, referential integrity,
invariants of mappings (like being total or surjective), or inclusion/equality constraints implied by type
definitions. The latter are preserved by update operations, and thus due to the above type definition, for
instance, inserting a new part object can easily be done by inserting it into any of its subtypes. Note
that we have to supply the values for the key mappings.

NEW Base('Cylinder'):OBJECT
NEW Order(Supplier('Cheap'), 33):OBJECT

The type following the colon is the type the new object “comes from”, so in this case two “completely
new” objects are meant. In contrast, if we want to insert an already existing object into another type,
for example, a part into a type Selfmade  (not defined in the above schema), we write:

NEW Selfmade('Cylinder'):Base('Cylinder')

causing that the object is now element of three types. Next, consider the update of a mapping which is
specified by a pair [ object key(s) mapping value]:

LET baseprice: ['Cylinder' 100]
LET partslist:  ['Engine' {[Part('Engine Block') 1] [Part('Cylinder') 4]}]

In the second update the constructors set and tuple were used to obtain complex objects. Update oper-
ations can cope with multiple values, too; then a set of update pairs has to be provided. If, for instance,
the prices of all base parts delivered by supplier Cheap increase by 10%, the following update is per-

                                                
2 This is similar to the cost and mass example of [AB87].
3 Note that functionals have higher precedence than functions (conditional having lowest). Precedence can be changed
using parentheses.
4 In fact, the old database state is preserved so that the new state does not simply replace the old but rather extends it.
In particular, this opens up the possibility for dynamic integrity constraints, but this is not crucial to the following dis-
cussion. For details refer to [Erw89].
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formed:

* LET baseprice: *[name baseprice × 1.1]  ο |delivered =Supplier('Cheap')|  ο Base

For each part object selected by the filter expression a tuple consisting of its name and the raised price
is constructed resulting in the required update set. The deletion of objects is performed by giving a single
object or a set of objects, for example, deleting a specific group object respectively all parts of a certain
supplier is done by:

DROP Group('Engine')
* DROP ~delivered  ο Supplier('Cheap')

There are cases in which one update operation alone cannot achieve the desired change in the database,
for example, if a cylinder is not viewed as a base part any more, how can we make it become an element
of the Group  subtype? Simply adding it to the subtype is not possible since that would contradict the
partition constraint; dropping it first is not possible either due to the reference from the above defined
parts list. Now, a transaction can be written within which the referential integrity may temporarily be
violated.

BEGIN
  DROP Base('Cylinder')
  NEW  Group('Cylinder'):OBJECT
END

In addition to inherent integrity constraints it is possible to state explicit integrity constraints, too:

ASSERT notfree: and/(price > 0)  ο Part

which checks for all parts whether the price is positive. Subsequent updates are accepted only if the
condition evaluates to true . Notice that the specification of a new integrity constraint is accepted only
if it holds in the current state.

3 Query Language Semantics
Due to limitation of space we will not give definitions for all language constructs; we will rather concen-
trate on defining part of the query language thus justifying optimization laws which follow in Section 4.
A complete treatment is given in [Erw89] where formal semantics of update operations and schema op-
erations are provided, too. There the formal basis of FP, called FFP [Bac78], is extended by the notion of
mappings. This facilitates the definition of an AST-system in which database state and history,
integrity constraints, and transactions can formally be defined. The resulting persistent FP
programming system is then used to give an operational semantics to the DBPL ADAPLAN.

A constant (constant function) is an element of a data or object type or a name of an object type
denoting the set of objects belonging to that type. The set of primitive functions consists of constants,
data and object type functions, and some miscellaneous functions (id , split , …). A mapping inherently
means a set of pairs; the meaning of a mapping application can be compared with a table lookup: A pair
is sought in the extension of the mapping for which the first component equals the object to which the
mapping is applied. If such a pair exists its second component is obtained as the result of the
application, if not, the undefined object (⊥) is returned. An expression denoting a query or defining a
derived function is given by a functional form, which is an application of a functional (sometimes called
“program forming operator” or “combining form”) to functions or expressions.

Since the set of functionals is fixed the expressive power of the query language is inferior to that of
the λ-calculus. We feel that this is not a severe limitation because one can easily identify a set of func-
tionals that meets the requirements of a DBPL. Extensions of FP to enable full higher order program-
ming are considered, for example, in [Bel85, SS86].

For convenience the semantics of the language is defined by function level equations which also
may serve as (basic) laws for optimizations. We will give only those equations explaining the essence of
some functionals which are of special interest in database languages; a more complete collection of
equations, including composition ο, tuple [] , selection #, and conditional ( → ; ) , can be found in



311

{f ο h} if f ο h = g ο h

{f ο h g ο h} otherwise{

{f ο h} if f ο h = g ο h

{f ο h g ο h} otherwise{

[Bac85].
Since we are dealing with sets rather than lists we have to define a corresponding construction

functional and a selection function (like []  and # for tuples). Likewise, we have do adapt the definition of
the map functional to operate on sets.

set construction {}: (S �→ T) (S �→ U) → (S → *(T U))

{f g}  ο h :=

The special case (for two functions) given here can easily be generalized to more arguments. Elements
can be selected out of a set by means of set partition, which is realized by the function split :

partition split: *S �→ [S *S]

split  ο {} := ⊥
split  ο s  := [f t]  where {f} ∪ t = s  and f ∉ t

The second line means that an element of s  is selected non-deterministically.
Now the map functional is defined referring to set construction and partition.

map *: (S → T) → (*S → *T)

*f  ο {} := {}

*f  ο s  := ∪ ο [f  ο #1 *f  ο #2]  ο split  ο s

From this definition the following equation can immediately be derived:

*f  ο {g h} =

Aggregation enables the application of binary functions to sets of arguments.

aggregation /: ([T T] → T) (S → T) → (*S → T)

f/g  ο {}  := unit  ο f

f/g  ο {h} := g  ο h

f/g  ο s   := f  ο [g  ο #1 f/g  ο #2]  ο split  ο s

Note that aggregation is defined properly only for functions f  being associative and commutative. This
aggregation yields deterministic functions since the order in which elements are taken from s is irrel-
evant to the semantics. The aggregation of an empty set is defined exactly if unit  ο f  is defined.
(unit  ο f  yields the unit element for the operation f , for example, unit  ο + = 0 and unit  ο ∪ = {} .) We
shall assume that unit  is predefined by the system and that a user may update/extend it if necessary.

The filter functional takes a predicate and constructs a function which restricts a set to those
elements for which the predicate holds.

filter ||: (S → BOOL) → (*S → *S)

|p|  ο s := ∪/(p → {id}; {})  ο s

The inverse of a mapping m is a function selecting all objects of its domain that are mapped to the value
to which the inverse is applied. (dom yields the domain of a mapping.)

inverse ~: (S → T) → (T → *S)

~f  ο c := |f = c|  ο dom ο f

~f  ο s := |f ∈ s|  ο dom ο f

Note that in the case of set-arguments (second line) the definition of inverse differs from the mathemat-
ical one. This was done because in the context of database queries the interpretation presented here is



312

needed more often. Consider, for example, a query which asks for all orders that contain expensive
parts. With the above definition, the scan

||price > 1000|  ο shipped ≠ {}|  ο Order

can be replaced by the more intuitive inverse construction

~shipped  ο |price > 1000|  ο Part

which directly supports the use of indexes (see below). Note that if a multi-valued function is viewed as
a relation, the inverse of such a function just corresponds to the inverse relation.

Bear in mind that, according to the FP-style, we are manipulating functions and not objects. Thus
in general, the function variables used in equations stand for arbitrary functional forms which greatly
extends the applicability of laws.

4 Optimization
The existence of an algebra of programs [Bac78, Bac85, Wil82] is founded on the combining forms being
the only means for constructing programs and queries. This algebra can be used to reason about pro-
grams, and we will describe part of it by giving several equations containing combining forms and func-
tion variables. Apart from the laws defining the algebra of programs, there are derived rules (identities
that can be inferred directly from the laws) and theorems (giving nonrecursive definitions for recursively
defined functions, see [Wil82, KS81] for details). It has turned out that derived rules are suited best for
our purpose.

The completeness of a set of rules can be judged from three different points of view: First, a com-
plete set of rules in the sense that it explicitly contains all valid rules is impossible to give since each
law has infinitely many instantiations. (This is due to the fact that a variable in an equation stands for
an almost arbitrary program.) Second, a set of rules may be considered complete if it describes the
intended semantics of the functionals. More specifically, such a complete set of rules may then serve as
a rewrite system capable of reducing any functional form to an object. Such a treatment is given in
[HW385]. Third, due to [Bac85]: “… the object of a complete description would be to give a practically
useful set of equations, some of which might be redundant …”. It is this view we adopt here, and we shall
provide a powerful set of rules which goes beyond the rules of relational algebra, especially being
concerned with employing access paths on the algebraic level of optimization. This set of rules is par-
tially redundant when promising good optimizations and not complete in the second sense, that is,
ignoring rules that cannot be used for optimization. The need for redundant rules can be seen from the
following example: A general filter |p|  can at best be “moved to the right”, but a selection |f = c| ,
which is an instance of the former, can sometimes be transfomed directly into a table lookup (see rules
(I3) and (I4) in Subsection 4.2). Some of the rules to be presented are touched partially in [BK90] where
a general algebraic optimization framework is described.

one principal goal of query optimization in database systems is to minimize the number of I/o-
operations making up the prevailing amount of processing time. This is traditionally achieved by first
reducing the number and extent of intermediate results and after that employing access paths. Since in
our approach both steps of optimization are performed on an algebraic level it seems to be an inter-
esting question whether an interweaving scheme of plain optimization5 with index optimization, or, ac-
cess path optimization, will be advantageous over the traditional two-step approach. As it turns out,
this indeed seems to be the case.

So in a first attempt we will present here an optimization scheme that considers both steps sepa-
rately: For each step we first present a set of rules, then we outline a possible optimization strategy,
and finally we give several examples of query optimization. Where possible, we compare our approach
with that of relational algebra. This is done in Subsections 4.1 and 4.2, respectively. Finally, we indicate
in Subsection 4.3 how both steps could be joined together.

                                                
5 From now on we will call the “classical algebraic optimization” plain optimization to distinguish it from index opti-
mization which is also performed algebraically within our framework.



313

4 . 1 Reducing Intermediate Results

We start by giving laws supporting plain optimization. Note that in this place we have to consider only
those functionals yielding expressions that operate on sets, namely, filter, map, and aggregate.

A well-known heuristic is to perform selections as early as possible, which can be achieved in our
language by applying laws to move selections to the right.

|p|  ο *f =→ *f  ο |p  ο f| (F1)
|p|  ο ∪/id =→ ∪/id  ο *|p| (F2)

Rule (F2) can be viewed as a generalization of the law in relational algebra for commuting selection with
union.

After being moved right, cascades of selections should be grouped together. We present only two
rules; the reader may easily discover others.

|p|  ο |q| =→ |p ∧ q| (F3)
(|p| ∪ |q|) =→ |p ∨ q| (F4)

Finally, the expressions inside the filter might be simplified like, for example, p ∧ p  =→  p.
Since functional joins of the relational model can be expressed as mapped function applications (for

example, πCity.name (Part  |><|  Supplier  |><|  City)  ≡ *name  ο *located  ο *delivered  ο Part ) it is poss-
ible to reduce the number of intermediate results of such join cascades, which is not possible in the
relational model. Similarly, we can reduce a map followed by a filter to a conditional aggregate (that rule
is closely related to (A3), see below).

*f  ο *g =→ *(f  ο g) (M1)
*f  ο |p| =→ ∪/(p → {f}; {}) (M2)

Powerful rules exist for the optimization of aggregates that are totally missing in the relational model.
Provided that the binary function of an aggregate is idempotent and, in the case of filter, the unit for f  is
defined, a cascade of aggregates can be eliminated (A1), likewise a map (A2) or filter (A3) preceding an
aggregate. Moreover, a number of “parallel” aggregates can be turned into one (A4), which means that
just one iteration over the same set suffices to produce a tuple of aggregate values.

f/g  ο ∪/id =→ f/(f/g) (A1)
f/g  ο *h =→ f/(g  ο h) (A2)
f/g  ο |p| =→ f/(p → g; unit  ο f) (A3)
[f 1/g 1 … f n/g n] =→ [f 1 ο [#1 _1 #1 _2] … f n ο [#n _1 #n _2]]/[g 1 … g n] 6 (A4)

To see the correctness of (A2) it is helpful to have the following theorem:

Theorem. For all functions f : [T T] → T , g: S → T , and s: → *S   with
(i) f  being associative and commutative
(ii) ∀ x  ∈ S: f  ο [x x]  = x
the following equation holds:

f/g  ο s  = f/id  ο *g  ο s

The proof is given in the Appendix. Now the validity of (A2) can be shown as follows:

f/g  ο *h
=→ f/id  ο *g  ο *h (Theorem)
=→ f/id  ο *(g  ο h) (M1)
=→ f/(g  ο h) (Theorem)

An optimization strategy employing the above rules might consist of the following steps:

                                                
6 #i _j  is simply an abbreviation for #i  o  #j .
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Reduce Intermediate Results
(1) Expand function definitions.
(2) Move filters to the right.

Group filters.
(3) Group maps.
(4) Group aggregates.

The steps (2) - (3) may be followed by an additional optimization of subexpression. Note that the above
scheme is amenable to enhancements, for example, it is possible that after step (3) rules of step (2)
may apply again so that a loop back might be introduced.

Let us consider some examples. If we want to check transportation costs we might look at cheap
parts and find out the cities of those suppliers that ship their parts by airplane. The query would be
transformed as follows:

*located  ο |transport='air'|  ο *delivered  ο |price<10|  ο Part

=→ *located  ο *delivered  ο |(transport='air')  ο delivered|  ο |price<10|  ο Part (F1)
=→ *located  ο *delivered  ο |(transport='air')  ο delivered  ∧ (price<10)|  ο Part (F3)
=→ *(located  ο delivered)  ο |(transport='air')  ο delivered  ∧ (price<10)|  ο Part (M1)
=→ ∪/((transport='air')  ο delivered ∧ (price<10) →

{located  ο delivered}; {})  ο Part (M2)

Here we were able to eliminate three intermediate sets. Another example is the query for all currently
ordered parts that are delivered by supplier Cheap:

|delivered = Supplier('Cheap')|  ο ∪/id  ο *shipped  ο Order
=→ ∪/id  ο *|delivered = Supplier('Cheap')|  ο *shipped  ο Order (F2)
=→ ∪/id  ο *(|delivered = Supplier('Cheap')|  ο shipped)  ο Order (M1)
=→ ∪/(|delivered = Supplier('Cheap')|  ο shipped)  ο Order (A2)

Query (3) of Section 2 can be optimized using rule (A4):

÷ ο [+/baseprice +/1]  ο Base
=→ ÷ ο [+  ο [#1 _1 #1 _2] +  ο [#2 _1 #2 _2]]/[baseprice 1]  ο Base (A4)

The resulting query scans the type Base  is only once, building tuples of aggregate values immediately,
whereas the original query needs two scans to build the tuple of aggregates.

Note that optimization may also apply to updates, for instance, the price-raising update of Section
2 can be transformed as follows:

* LET baseprice:  *[name baseprice  × 1.1]  ο |delivered = Supplier('Cheap')|  ο Base
=→ * LET baseprice: ∪/(delivered = Supplier('Cheap') →

{[name baseprice × 1.1]}; {})  ο Base (M2)

Finally, let us complete the comparison with relational algebra. Since the functional model differs sig-
nificantly from the relational model a comparison on the whole is not possible. This was already indi-
cated in the discussion preceding rule (M1) and has its climax in the fact that a cartesian product oper-
ator is missing in the functional model. Nevertheless, if we would add a cartesian product operator
cp: [*S *T] → *[S T]  to our algebra, laws corresponding to relational algebra could, of course, be
formulated. Consider, for example, commuting selection with cartesian product (cf. [Ull89], p. 665):

|p  ο #1|  ο cp  ο [s t] =→ cp  ο [|p|  ο s t]
|p  ο #1 ∧ q  ο #2|  ο cp  ο [s t] =→ cp  ο [|p|  ο s |q|  ο t]
|p  ο #1 ∧ q|  ο cp  ο [s t] =→ |q|  ο cp  ο [|p|  ο s t]

Since function application and tuple selection correspond to projection we also can give laws for
removing cascades of projection or for commuting projections with other operators. Such rules can
easily be defined, for example:

[#1 … #n]  ο [f 1 … f m] =→ [f 1 … f n] (if n ≤ m, cascade of projection)
*f  ο (s ∪ t) =→ *f  ο s ∪ *f  ο t (commuting projection with union)
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Readers specifically interested in these laws may refer to [BK90] where a framework related more
closely to relational algebra is considered.

4 . 2 Algebraic Access Path optimization

As already indicated we want to focus our discussion on performing access path optimizations already
on the algebraic level. An approach to make this feasible in the relational model was outlined in [SS90]
where the relational model was formally extended by the notion of tuple identifier.

We start by giving some general observations. First, we note that an index in the functional data
model is nothing but a materialized inverse mapping. Second, the general objective of the use of indexes
is to replace a scan of the domain of a mapping by a scan of the range of that mapping. Surely, the
profit of any such transformation depends on the type of scan and on the structure of the domain and
range. (This will be explained soon.) Third, since the information about domains and ranges of functions
are recorded in the schema corresponding schema equations have to be added to the optimization rules.
These are of the form:

dom ο f = S (if f  total)
rng  ο g = T (if g surjective)

for mappings/functions f: S |→ T , g: S →| T . For instance, in our schema holds:

dom ο located   = Supplier  (S1)
dom ο baseprice = Base  (S2)
dom ο delivered = Part  (S3)
rng  ο delivered = Supplier  (S4)
dom ο shipped   = Order  (S5)

To keep the subsequent discussion more compact we from now on identify a type name with the equiv-
alence class of expressions induced by schema equations as those above. So in order to match a rule
against an expression f  possibly each expression of f ’s equivalence class has to be considered.

Next we present a schema that captures all possible (as far as we have studied) index opti-
mizations in the framework of the presented data model. The general rule may be formulated as:

domscani ο dom ο f =→ rngscani ο rng  ο f (I1) - (I5)

where domscani and rngscani can be one of the following forms:

i domscani rngscani comment

1 *f id

2 g/f g/id (only if g is idempotent)

3 |p  ο f| ∪/~f  ο |p|

4 |f = c| ~f  ο c

5 id ∪/~f

Note that (I4) and (I5) are special cases of rule (I3) with p = |f = c|  and p = true . In fact, the
resulting expression of (I4) reduces to ~f  ο c  since c  denotes a constant.

Let us briefly consider the conditions under which the above rules may be applied together with the
expected savings in execution time. The first rule is especially helpful if the range of a mapping is
smaller than its domain and if it is stored separately from the domain or perhaps additionally. The
latter condition is typically fulfilled if there is an index on f . Generally, the same preconditions also
apply to the rules (I2) - (I4). Concerning the second rule, if the binary function is max or min  and the
index is stored as a B-Tree, this rule can replace a full scan of the range by a sublinear (logarithmic)
one. Rule (I3) can be applied very often since the left side denotes the selection of objects due to a prop-
erty (p) of a certain attribute (f ). Besides the range-size, the gain of efficiency depends on the
selectivity of p. In the extreme, only constantly many objects qualify, as it is often the case for rule (I4),
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and so the full scan sometimes can be reduced to a simple table lookup; it is obvious that the case (I4)
should be checked (and, of course, applied if possible) before (I3) is tried. Rule (I5) applies if a scan of a
small subtype (being located very low in the hierarchy) is to be performed and the complete hierarchy is
stored together, that is, not clustered horizontally [CDFLNR82]. Then scanning the whole hierarchy
may require the loading of several blocks for each element of the subtype, and thus a lookup driven by
the range seems much more appropriate.

We observe that in order to apply rules (I1) - (I4) a function at the right of the scanform has to
match the f  in the expression dom ο f . Since f  is sometimes involved in tuple expressions it is recom-
mendable to move f  out of tuples to the right so that the index rules can be applied. This can be done
with the help of the following tuple factorization rule:

[E 1 … E n] =→ [f 1 … f n]  ο g (T1)
where Ei  = f i  ο g or Ei  = f i  = c

Likewise, it is sometimes necessary to undo previously performed optimizations to let an index scheme
apply. Examples are the following undo rules:

*f  ο |p  ο f| =→ |p|  ο *f (U1)
*(f  ο g) =→ *f  ο *g (U2)
∪/f  ο |p  ο f| =→ ∪/id  ο |p|  ο *f (U3)

Rule (U1) undoes (F1), (U2) undoes (M1), and (U3) is a combination of (U1) and (A2). This indicates
that an interweaving scheme of plain and index optimization is highly useful because there are cases in
which F-, M-, and A-rules have to be avoided if index optimization should apply. To see the need for U-
rules consider the following diagram in which a situation for the application of (U1) is given (we assume
p ≠ (id = c)  so that (I4) cannot be applied):

*f  ο |p  ο f|  ο dom ο f *f  ο ∪/~f  ο |p|  ο rng  ο f

|(U1)∨

|p|  ο *f  ο dοm ο f |p|  ο  rng  ο f

It is immediately clear that the expression resulting from the transformation (U1, I1) is more efficient
than the one resulting from (I3). Note carefully that a rule *f  ο ∪/~f  =→  id  is true only for single-valued
functions (refer to the definition of ~ in Section 3) so that the rule (U1) is needed in general to achieve
the above optimization. Unlike the reader may perhaps suppose, this rule does not contradict the gen-
eral heuristic to perform selections as soon as possible. As can be seen from the result it rather has to
be understood as an intermediate step in a transformation that finally allows index access.

The strategy for index optimization may now be described as follows:7

Index optimization
(1) Identify the subset of mappings M (occurring in the query) on which an index is defined.
(2) Try to match an index rule with f  ∈ M. If none matches, apply T- and U-rules and try again.

If a matching index rule is found, apply it.
(3) Repeat step (2) until no more index rules are applicable.

Let us consider some examples. To illustrate the use of the equivalence classes we give explicit trans-
formations referring to the corresponding schema equations when necessary. The queries (1) and (2) of
Section 2 can be directly transformed as follows:

*located  ο Supplier
=→ *located  ο dom ο located (S1)
=→ rng  ο located (I1)

                                                
7 To be precise, we had to add conditions to the index rules (which are based on cost-estimates) so that substitutions are
performed only when they are expected to result in more efficient queries. But the preceding discussion of the index rules
has indicated that these considerations are very similar to those of the relational model. So we do not investigate that
topic any further.

(I3)→−−−

(I1)→−−−
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max/baseprice  ο Base

=→ max/baseprice  ο dom ο baseprice (S2)
=→ max/id  ο rng  ο baseprice (I2)

Note that the resulting expressions are more efficient not only when the range is smaller than the
domain but also if the functions are not clustered with their domain, that is, stored as a separate table
(see [CDFLNR82]). Next we show how query (4) of Section 2 can be optimized to query (5):

|(located = City('Rome'))  ο delivered|  ο Part

=→ |(located = City('Rome'))  ο delivered|  ο dom ο delivered (S3)
=→ ∪/~delivered  ο |(located = City('Rome'))|  ο rng  ο delivered (I3)
=→ ∪/~delivered  ο |(located = City('Rome'))|  ο dom ο located (S4, S1)
=→ ∪/~delivered  ο ~located  ο City('Rome') (I4)

Finally, we give an example showing the need for T- and U-rules in the process of index optimization.
Suppose we want to know for each part, which is transported by airplane, the city from which it is
delivered.

*(located  ο delivered)  ο |transport  ο delivered = 'air'|  ο Part
=→ *(located  ο delivered)  ο |(transport = 'air')  ο delivered|  ο Part (T1)
=→ *located  ο *delivered  ο |(transport = 'air')  ο delivered|  ο Part (U2)
=→ *located  ο |transport = 'air'|  ο *delivered  ο dom ο delivered (U1, S3)
=→ *located  ο |transport = 'air'|  ο rng  ο delivered (I1)
=→ ∪/(transport = 'air' → {located}; {})  ο rng  ο delivered (M2)

The last step shows that it might be possible and desirable to optimize an expression that has passed
index optimization even further with respect to plain optimization. Another example is given in the next
subsection.

4 . 3 Putting Things Together: A Proposal for a Combined Optimization

As we have seen in the last example, some of the rules for plain optimization and index optimization in a
certain way “contradict” each other which means that rules to be applied in one direction supporting,
for example, plain optimization, have to be applied in the opposite direction to facilitate index opti-
mization. A solution to this could be a strategy that first chooses a primary optimization goal (plain
optimization or index optimization) and then proceeds along a specific strategy as outlined above. Since
the right goal may often be difficult to choose alternatively both goals could be followed and of the two
results the one expected to be more efficient could finally be choosen, but this would reduce the effi-
ciency of the optimization process itself. We instead suggest the following procedure:

Combined Index & Plain Optimization
(1) Expand function definitions.
(2) Identify the subset of mappings M (occurring in the query) on which an index is defined.
(3) If M is empty or does not “promise” a sufficient increase in performance, go to step (5).
(4) Try to match an index rule with f  ∈ M. If none matches, apply T- and U-rules and try again.

If a matching index rule is found, apply it.
Repeat step (4) until no more index rules are applicable.

(5) Perform plain optimization, that is:
Move filters to the right. Group filters. Optimize resulting subexpressions.
Group maps. Optimize resulting subexpressions.
Group aggregates. Optimize resulting subexpressions.

Clearly, a crucial point is the judgement of the performance opportunities of identified index mappings
(cost estimation will be similar to the relational model).

It is interesting to observe that the above scheme suggests, differently from the relational model,
that index optimization should be carried out before plain optimization. As already discussed in con-
nection with the rule (U1) (see Subsection 4.2), this is not inconsistent with the well-known heuristic to
perform, in any case, selections as early as possibly. It rather seems that such transformations are ob-
tained as a by-product of the index optimization. A nice consequence of this is that if step (4) is applied,
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in the subsequent step (5) only few transformations are expected to be performed. This can be seen
from the fact that the index rules transform expressions, which are possibly amenable to plain opti-
mization, into forms for which only few rules exist to be applied further.

Let us consider a final example that needs preprocessing, that is, application of T- and U-rules, be-
fore index optimization can take place and a plain optimization after that. We want to find those parts
that are contained in very important orders, that is, with a total of more than 10000.

∪/shipped  ο |total > 10000|  ο Order

=→ ∪/shipped  ο | +/price  ο shipped > 10000|  ο Order (def. of  total )
=→ ∪/shipped  ο |( +/price > 10000)  ο shipped|  ο Order (T1)
=→ ∪/id  ο |( +/price > 10000)|  ο *shipped  ο Order (U3)
=→ ∪/id  ο |( +/price > 10000)|  ο *shipped  ο dom ο shipped (S4)
=→ ∪/id  ο |( +/price > 10000)|  ο rng  ο shipped (I1)
=→ ∪/(( +/price > 10000) → id; {})  ο rng  ο shipped (A3)

Since optimization schemes as the one above are hardly investigated yet, it seems to be a promising
topic for further research.

5 Conclusions and Further Research
We have indicated that functional programming can be utilized profitably in the domain of database
programming languages: easy description of semantics, simple and well-structured programs, and,
above all, good opportunities for verification and optimization are the basic advantages of FP-like lan-
guages. In particular, we have presented algebraic optimization rules that cover and even extend the
range of algebraic transformations in the classic relational database model. It is an inherent property of
the functional data model that an inverse corresponds very closely to an index access. This in turn
makes the algebraic approach to access path optimization possible at all. We have shown how a uni-
form treatment of the traditional two-step approach to optimization enables the integration of plain op-
timization and index optimization on an algebraic level. We believe that some new understandings of the
optimization process can be gained from this (for instance, the heuristic “selection as early as possible”
is partially covered by index optimization) and that the investigation of new optimization strategies is
very promising.

The heuristics forming the basis of the optimization strategy presented in Subsection 4.3 do not
result from experiments nor from a translation of, for instance, the relational model. They are rather
founded on the set of presented rules together with the sketched cost model in mind. So it would be inter-
esting to verify the strategy with a larger set of examples. Along with this, a thorough comparison with
the relational algebra could be performed by means of a mapping between the data models.

We have not yet considered optimizations for parallel execution. Since filter, map, and aggregation
commute with set-union (the latter again only if the binary function (f ) is idempotent) this can be
handled easily on the algebraic level, too. For example, the following laws can be employed:

*f  ο (s ∪ t) =→ *f  ο s ∪ *f  ο t
|p|  ο (s ∪ t) =→ |p|  ο s ∪ |p|  ο t
f/g  ο (s ∪ t) =→ f  ο [f/g  ο s ∪ f/g  ο t]
*(s? → f; g)  ο (s ∪ t) =→ *f  ο s ∪ *g  ο t

(The extensions to unions of more than two arguments are straightforward.) The fact that functional
programming is especially amenable to parallel execution is well-understood, but the interesting
question is now how to integrate the above rules with the two other optimization strategies. Will access
path optimization still be the first to try?

Additional potential for optimization lies in taking a lazy query evaluator [BFN82], thus leaving the
strict semantics of FP programs: (i) unnecessary evaluations and database accesses are avoided
because of call-by-need parameter passing and (ii) pipelining is already included in the execution of such
an interpreter; hence some rules become redundant in the optimization cycle, for example, (M1). These
ideas were incorporated into a prototype that was implemented within the work of [Erw89] on a SUN
3/60. This was done similar to the proposals of [BFN82] but was based on a relational instead of a
network database system. Notice that the semantics may change in case of recursive function defini-
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tions because the existence of a unique least fixpoint is guaranteed only if functions are strict [Wil82].
In [BF79, BFN82] FP was used only as a query language and algebraic optimization was not con-

sidered at all, and in [BK90] FP was considered as a target language into which object-oriented lan-
guages should be compiled. We have demonstrated that beyond these ideas an FP-like language can
definitely serve as a “full” DBPL allowing for sophisticated optimizations.
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Appendix
We present the proof to the theorem of Section 4.1 to show how easily one can reason about functional
equations.

Proof. (By induction on the number of elements of s).
If s = {}  = *g  ο s, then f/g  ο {}  = unit  ο f  = f/id  ο {}  = f/id  ο *g  ο s (by def. of / ) .
If s  ={h} , then f/g  ο {h}  = g ο h = id  ο g ο h = f/id  ο {g  ο h}  = f/id  ο *g  ο {h}  (by defs. of / ,id ,and * ).
For s  = {h i}  (h ≠ i ) we have:

f/g  ο {h i}  =
f  ο [g  ο h g  ο i] def. of /
Now we distinguish two cases:
Case 1: g ο h = g οi . Then

f  ο [g  ο h g  ο i]  =
g  ο h = (ii)
f/id  ο *g  ο {h}  = (see Case s  = {h} )
f/id  ο *g  ο {h i} def. of *

Case 2: g ο h ≠ g οi . Then
f  ο [g  ο h g  ο i]  =
f  ο [g  ο h f/id  ο {g  ο i}]  = def. of /
f/id  ο {g  ο h g  ο i}  = def. of /
f/id  ο *g  ο {h i} def. of *

Now we assume that the theorem is true for t  where [h t]  :=  split  ο s  (s ≠ {}  and t  ≠ {} ). Note that
t  has exactly one element less than s. We let [i u]  :=  split  ο t . Since the choice of a concrete
partition does not affect the result of an aggregation we can assume w.l.o.g.

(iii) split  ο *g  ο t  = [g  ο i *g  ο v]  with v  = |g ≠ g  ο i|  ο u
(iv) split  ο *g  ο s  = [g  ο h *g  ο t]  if g ο h ∉ *g  ο t , see Case 2 below
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In equation (iii) v denotes those elements being mapped by g to a different value than i . This ensures
the validity of the equation. We conclude further:

f/g  ο s  =
f  ο [g  ο #1  f/g  ο #2]  ο [h t]  = def. of /
f  ο [g  ο h f/id  ο *g  ο t] by induction hypothesis
Case 1: ∃ i  ∈ t : g ο i  = g ο h

f  ο [g  ο h f/id  ο *g  ο t]  =
f  ο [g  ο h f  ο [id  ο #1  f/id  ο #2]  ο split  ο *g  ο t]  = def. of /
f  ο [g  ο h f  ο [g  ο i  f/id  ο *g  ο v]]  = (iii)
f  ο [f  ο [g  ο h g  ο i] f/id  ο *g  ο v]  = (i)
f  ο [g  ο i f/id  ο *g  ο v]  = (ii)
f  ο [id  ο #1 f/id  ο #2]  ο split  ο *g  ο t  = (iii)
f/id  ο *g  ο t  = def. of /
f/id  ο *g  ο (t ∪ {h})  = def. of *
f/id  ο *g  ο s

Case 2: ∀ i  ∈ t : g ο i  ≠ g ο h
f  ο [g  ο h f/id  ο *g  ο t]  =
f  ο [id  ο #1 f/id  ο #2]  ο split  ο *g  ο s  = (iii)
f/id  ο *g  ο s def. of /

■■


