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ABSTRACT
Existing spreadsheet systems allow users to change cells ar-
bitrarily, which is a major source of spreadsheet errors. We
propose a system that prevents errors in spreadsheets by
restricting spreadsheet updates to only those that are log-
ically and technically correct. The system is based on the
concept of templates that describe the principal structure
of the initial spreadsheet and all of its future versions. We
have developed a program generator that translates a tem-
plate into an initial spreadsheet together with customized
update operations for changing cells and inserting/deleting
rows and columns for this particular template.

We have designed a type system for templates that ensures
the following form of “spreadsheet maintenance safety”: Up-
date operations that are generated from a type-correct tem-
plate are proved to transform the spreadsheet only according
to the template and to never produce any omission, refer-
ence, or type errors.

Finally, we have developed a prototype as an extension
to Excel, which has been shown by a preliminary usability
study to be well accepted by end users.

Categories and subject descriptors: D.2.2 [Software
Engineering]: Design Tools and Techniques; D.2.7 [Soft-
ware Engineering]: Distribution, Maintenance, and En-
hancement; H.4.1 [Information Systems Applications]: Of-
fice Automation—spreadsheets

General terms: Languages, Reliability

Key words: Spreadsheet, Template, Program generation,
Error prevention, Type system, End-user software engineer-
ing
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1. INTRODUCTION
Of all end-user programming applications, spreadsheets

are without a doubt the most widely used. Estimates show
that hundreds of millions of spreadsheets are created for pro-
fessional use each year [14], yet in spite of their popularity,
spreadsheets also display their share of problems: Research
shows that spreadsheets contain errors at alarmingly high
rates [5, 12]. Some studies even report that 90% or more
of real-world spreadsheets contain errors [17]. Clearly, the
problem of spreadsheet reliability is of great importance to
the professional world.

The question of how to improve spreadsheet reliability
has been approached in several different ways. The de-
fault method provided by Excel revolves around a debug-
ging approach. Excel automatically detects errors which
render computation impossible, such as circular references
or divide-by-zero errors. It then flags these errors and leaves
the user to debug them using a selection of functions pro-
vided by the audit toolbar. However, while Excel points out
some computational errors, it cannot accurately detect less
obvious errors which may yield a computable value, but still
be semantically incorrect.

Another method of ensuring reliability is to encourage ex-
tensive testing of spreadsheets. Rothermel et al. have devel-
oped the “What You See Is What You Test” methodology
for spreadsheet testing, which encourages users to examine
the entire spreadsheet cell by cell [18]. By providing visual
feedback as to which cells have been tested, this methodol-
ogy is intended to promote thorough testing under the as-
sumption that users will, when prompted, be able to look at
a cell and determine if it contains a correctly computed value
or not. To support this approach, the authors have also in-
vestigated systems for automatically generating test values
[11] and for propagating user-supplied assertions through
spreadsheets [6].
∗This work is partially supported by the National Science
Foundation under the grant ITR-0325273 and by the EUSES
Consortium (http://EUSESconsortium.org).
†Work of Irene Cooperstein performed at Oregon State Uni-
versity during summer 2004 as part of the CRA-W Dis-
tributed Mentor Project.



However, these approaches suffer from two drawbacks.
First of all, they are time consuming. The effort to manually
check every1 formula in a spreadsheet is not trivial. Sec-
ond, these testing procedures must be repeated every time
a change is made to the spreadsheet to ensure its continuing
correctness. This software-maintenance issue is especially
important as spreadsheets are rarely viewed as static enti-
ties, but are instead edited and manipulated frequently in
the course of their use.

Although there is abundant evidence that professional
spreadsheets contain errors at a high rate, research also
shows that surprisingly few companies have adequate guide-
lines for spreadsheet development, and even fewer actually
follow those guidelines meticulously [13]. This suggests that
testing methodologies would probably not be employed fre-
quently enough to be effective in preventing errors. Any ap-
proach to designing a system to reduce errors, then, would
be more effective if integrated into the most basic steps of
designing and updating a spreadsheet, rather than requir-
ing the user to spend additional time performing a detailed
audit.

Therefore, we propose another method of ensuring spread-
sheet correctness focusing not on error detection, but on
error prevention. The idea we will pursue in this paper is
to specify the possible evolutions of a spreadsheet in ad-
vance and to create customized update operations for any
such specification. The benefit of this approach is that users
can still apply update operations to their spreadsheets (such
as row/column insertions or deletions), but only those that
keep the spreadsheet within the specified evolution and do
not introduce any reference, type, or omission errors.

Our goal is to create an environment in which update
operations can be guaranteed to always result in a correct
spreadsheet. In such an environment, formulas need only be
audited once, at its initial creation, thus reducing the main-
tenance work greatly because the potential sources of errors
can be reduced to data entry mistakes. We have imple-
mented this system as an extension of Excel. Our prototype,
dubbed Gencel, takes an initial template and translates it
into an Excel spreadsheet together with customized update
operations that safely expand the spreadsheet according to
the template as needed. In particular, Gencel eliminates the
following kinds of errors from spreadsheets.

• Omission errors (omitted cells in aggregations)

• Reference errors (undefined/wrong references)

• Type errors (operands have illegal types)

The impact of these errors has been extensively documented.
For example, an omission error has caused a Florida con-
struction company to underbid a project by a quarter of
a million dollars [8]. An example of a type error is the
illegal interpretation of a date as a numeric value, which
caused an operating fund of the Colorado Student Loan

1Part of this problem can be addressed by the concept of
“regions”, which are blocks of cells containing identical for-
mulas: A region can be validated with a single test [7]. This
approach relies on the presence of contiguous blocks of iden-
tical formulas. However, complex spreadsheets may not be
adequately represented by this model, as in the case where a
“region” consists of several cells of formulas which together
compose a repeating group.

Program to be understated by $36,131 [19]. Finally, a refer-
ence error caused a hospital’s records to overstate its Med-
icaid/Medicare crossover log by $38,240 [20]. The use of
Gencel would have prevented all these errors.

In addition to these formal results, a pilot usability study
has indicated that Gencel would be well accepted by end
users and presents only a moderate learning curve.

In this paper, we will describe this system of spreadsheet
specifications and explain how automatically customized up-
date operations preserve the structure and correctness of a
given spreadsheet. In Section 2, we illustrate the idea of
using program generation to support the creation of safely
evolvable spreadsheets. In Section 3, we will briefly define
the table evolution calculus that forms the formal founda-
tion of our Gencel system. A type system for the calculus
is developed in Section 4 to guarantee that well-typed tem-
plates will be transformed into customized spreadsheets that
can only evolve without errors. Section 5 describes our im-
plementation of the Gencel system as an extension of Excel
and reports results of a pilot user study. Finally, related
work is outlined in Section 6, and conclusions and plans for
future work are given in Section 7.

2. SPREADSHEET GENERATION FROM
TEMPLATES

Given a spreadsheet, there are an infinite number of possi-
ble update operations that could be applied to it. However,
only a small set of these updates are reasonable. The de-
cision as to whether a particular update should be allowed
or prohibited depends on the roles of the affected cells in
the spreadsheet’s tables. The cells of a table can be distin-
guished according to their content into header, data, and
computation cells. Moreover, some rows or columns of a ta-
ble are fixed, like header and footer rows and columns, while
other rows and columns are duplicated if new data is to be
added.

The specification language that is part of our Gencel sys-
tem reflects this view and offers constructs to define a ta-
ble as a horizontal sequence of fixed and extensible columns
where a column is constructed as a vertical sequence of fixed
and extensible blocks, which are rectangular collections of
cells containing values and formulas. These specifications,
called templates, are translated into initial spreadsheets to-
gether with tailor-made versions of update operations per-
forming the tasks of insertion (or deletion), copying and
pasting, and updating existing formulas in such a way that
the spreadsheet correctness is always preserved. In this sec-
tion templates will be given in a visual notation called Vitsl
(visual template specification language). A corresponding
textual representation will be presented in Section 3 where
we introduce the table evolution calculus.

Our first example is the specification of a plain column
of numbers with a header at the top and a summation for-
mula at the bottom. This table template can be specified
by the Vitsl expression shown below. The template con-
sists of three elements: the header containing the label, the
footer containing the summation formula, and a vertically
expandable group (also called vex group for short) that con-
sists of a single cell containing the value 0. The argument
of the summation formula, u, is a relative reference to the
vex group above it.



Values

0
...

Σ(u)

In a user interface to edit these templates, which is described
in [2], we actually use row/column references as known from
Excel. However, for the technical discussion it is convenient
to have references represented in a textual form.

This template describes a class of tables that all consist
of one column with the shown header and footer and that
have one or more number cells in between.

In general, Vitsl offers the following visual elements for
templates:

• Cells, represented by rectangles that contain values
and formulas.

• References, represented by names for relative grid off-
sets.

• Vex groups, represented by vertical dots that indicate
the possible expansion of one or more cells in the ver-
tical direction.

• Hex groups, represented by horizontal dots that indi-
cate the possible expansion of one or more columns in
the horizontal direction.

An example of a horizontally expandable group (hex group)
is given in the summation table shown below.

Values · · · Total

0 Σ(`)
...

...

Σ(u) Σ(u)

Here the summation column is horizontally expandable and
is horizontally joined by a column that also contains a header
and a summation footer, but whose vex group contains a
summation formula whose argument `, which means “left”,
references the number cell of the hex group.

The hex group illustrates that expandable groups may
consist of groups of cells and not just single cells. Moreover,
one column can also contain multiple vex groups. An ex-
ample for a template containing multiple vex groups is the
accounting sheet shown below.

Income

0
...

Σ(u)

Expenses

0
...

Σ(u)

Net Earnings

∆(u5, u2)

The gaps between cells indicate the scope of the vertical
dots. For example, the first vex group is the repeated 0 and
not the block of the top two cells. The formula ∆(u5, u2)
computes the difference between the two summation cells
(u2 means “two cells up”, etc.).

Finally, a table can contain multiple hex groups. However,
vex groups and hex groups cannot be arbitrarily nested. The
only possible nesting is that hex groups may contain vex
groups, but not the other way around.

In addition, a couple of structural constraints are needed
to ensure that a reasonable definition for the spreadsheet up-
date operations exists. For example, all columns in a table
have to align vertically. To explain the idea of alignment,
consider a column as a sequence of fixed and expandable
blocks (cell groups), say c = [b1, . . . , bk]. Now c aligns with
another column c′ = [b′1, . . . , b

′
k] only if (1) bi has the same

height as b′i and (2) bi is an expandable group iff b′i is. This
constraint ensures that vex groups are horizontally aligned,
which allows the insert-row command to be defined to in-
sert a number of rows according to the common height of
the vex groups. Similarly, we require that all blocks in a
column have the same width. For columns in hex groups,
this constraint ensures that the insert-column command can
be defined to create a number of columns according to the
common width of the blocks of the hex group.

As a final example we present a template for a multi-year
budgeting sheet that contains a multi-cell vex group.

2005 · · · Total

Category Qnty Cost Total Qnty Cost

0 0 Π(`2, `) Σ(`3) Σ(`2)
...

...
...

Total Σ(u) Σ(u)

The relative references used in templates are very expres-
sive: First, unlike absolute addresses, relative references are
compositional. That is, they need not be adjusted when
cells or blocks are composed with other blocks. Second, de-
pending on their origin and target, relative references can
express single-cell addresses as well as ranges. For exam-
ple, the u references in the summation formulas in the table
above point into a vex group and refer to all the cells that
will be generated within that group. In contrast, the ref-
erences `2 and ` in the Π formulas point to nonexpandable
cells and refer always to single values.

Additionally, the budget template with its multi-cell vex
group illustrates another powerful feature of our model that
goes beyond Excel’s capabilities—the possibility of non-
consecutive ranges. Consider, for example, the rightmost
summation formula Σ(`2). The relative reference refers to
the cell containing the Π formula, which represents a prod-
uct. The repeated application of insert-column commands
generates several non-adjacent instances of that cell. Never-
theless, the update operations created by the Gencel system
will properly update the rightmost summation formula to al-
ways contain references to exactly all those cells (see Figure
2). The same is true for the Qnty summation formula.

The initial spreadsheet generated from the budget tem-
plate is shown in Figure 1. Note the toolbar on the right-
hand side of the screenshot. This is the user interface for
the customized update functions.



Figure 1: Generated Gencel spreadsheet.

After one column and two row insertions and several
changes to the stored values, the spreadsheet might look as
shown in Figure 2. Observe how the SUM formulas in the last
column contain references that represent a non-consecutive
range. The Gencel system offers additional buttons for in-
serting columns to the left and right of the current position
as well as for inserting rows above and below the current
row. Note that it is not possible to enter values of wrong
types or to change or delete existing formulas.

For illustration we show here the formula view of the gen-
erated spreadsheet. End users will generally only see the
computed values. The spreadsheet in Figure 2 is created
by precisely following the formal definitions of the table cal-
culus. We can optimize the generated formulas further by
compressing ranges, which yields, for example, SUM(D3:D5)

in cell D6.

3. THE TABLE EVOLUTION CALCULUS
The table evolution calculus provides a formal foundation

for the Gencel system. In Section 3.1 we will define its syn-
tax. In Section 3.2 we describe the translation of templates
into tables. The semantics of table update operations rela-
tive to a template is given in Section 3.3, and the evaluation
of tables is defined in Section 3.4. A more detailed descrip-
tion can be found in [9].

3.1 Syntax
A template t is given by a horizontal composition (|) of

fixed (c) or expandable (c→) columns, where a column is
given by a vertical composition (ˆ) of fixed (b) or expandable
(b↓) blocks. A block is given by a composition of formulas
(f). Blocks are also used to represent plain tables. Formu-
las consist of basic values (φ), references (ρ), and expressions
that are built by applying functions to a varying number of
arguments given by formulas (φ(f, . . . , f)). In this simple
version of the table calculus we only use functions that can
be applied to an arbitrary number of arguments of the same
type, like addition (Σ) and multiplication (Π). This restric-
tion simplifies the semantics of formulas and the type system
a bit, but is not essential.

References are given by pairs of integers and represent
relative references in the form of offsets. We use the fol-
lowing abbreviations for cell offsets: ` = (−1, 0), r = (1, 0),
u = (0,−1), and d = (0, 1). We sometimes use sequences of
abbreviated offsets to represent larger offsets, for example,

` ` = `2 = (−2, 0). The syntax of templates is summarized
in Figure 3.

f ∈ Fml ::= φ | ρ | φ(f, . . . , f) (formulas)

b ∈ Block ::= f | b | b | bˆb (blocks, tables)

c ∈ Col ::= b | b↓ | cˆc (columns)

t ∈ Template ::= c | c→ | t | t (templates)

Figure 3: Template Syntax.

The constructs correspond directly to the visual notation.
Whenever we want to talk about an arbitrary repeating
group, that is, either a vex or a hex group, we also use
the notation b+. We also define that ˆ and | associate to
the left. In the following we use the metavariables u and v
to range over Template, Col, and Block, which allows us to
give some definitions more concisely.

As an example, consider the summation column, which
was shown as the first Vitsl example in Section 2. This
column is represented by the following template.

Valuesˆ0↓ˆΣ(u)

We refer to this expression as SumCol in the following. The
summation table is represented by the following expression,
which we name SumTab.

(Valuesˆ0↓ˆΣ(u))→ |TotalˆΣ(`)↓ˆΣ(u)

To support the semantics definition, we introduce the con-
cept of template instance as a generalization of template.
The syntax of template instances is identical to the syntax
of templates given in Figure 3, except that b↓ and c→ are
replaced by b

|k and ck, respectively, where k represents the
number of times b or c has been expanded. We use the
metavariable t to range over template instances. Similar to
repeating groups in templates, we use the abbreviation uk

to represent an arbitrary vex or hex group in a template
instance. A column c (from a template) of width w that
is expanded k times in a template instance corresponds in
the generated table to kw columns. This whole area in the
table is called c’s expansion area, and k is called c’s repe-
tition. Likewise, a block b of height h that is expanded k
times corresponds in the generated table to a rectangular
area of height kh.

We summarize all structures/concepts and their distin-
guishing characteristics explicitly in Table 1 for easy future
reference.

Structure/Concept contains ...

template (t) ˆ, |, u↓, u→, and u+

template instance (t) ˆ, |, u
|k, uk, and uk

table (= block) (b) ˆ and |

repetition (k) exponent in u
|k, uk, or uk

expansion area (b) subpart of a table

Table 1: Auxiliary Structures

3.2 Generating Table Instances and Tables
The function I produces the initial template instance from

a template by simply replacing each “→” or “↓” exponent by
a “1” exponent. The functions←→u and lu compute the width



Figure 2: Updated Excel budget spreadsheet.

and height of a table (column, block) u as follows. For for-

mulas we define
←→
f = lf = 1. For horizontal composition

we have
←→
u | v = ←→u +←→v and lu | v = max(lu, lv), whereas

for vertical composition we have
←→
uˆv = max(←→u ,←→v ) and

luˆv = lu + lv. For repeating groups in templates we

have
←→
u+ =←→u and lu+ = lu, whereas for vex (hex) groups

in template instances we define
←→
u
|k = ←→u and lu|k = klu

(
←→
uk = k←→u and luk = lu).2

The following function locates cells in templates and ta-
bles based on absolute references.

f [1, 1] = f

(u | v)[i, j] =


u[i, j] if i ≤ ←→u
v[i−←→u , j] otherwise

(uˆv)[i, j] =


u[i, j] if j ≤ lu
v[i, j − lu] otherwise

u+[ρ] = u[ρ]

b
|k[x, y] =


b[x, ((y − 1)mod lb) + 1] if y ≤ klb
⊥ otherwise

ck[x, y] =


c[((x− 1)mod←→c ) + 1, y] if x ≤ k←→c
⊥ otherwise

The last case allows applications of the lookup function to
work on templates. In Section 4 we will use the function
also on template types.

Next we define the function G for generating a table from a
template. In fact, we define a slightly more general function
that works on template instances and that can be reused in
the definition of the update operations. In the initial tem-
plate instance all → and ↓ exponents are replaced by ones.
Then each application of an insert-column command to a
hex group increases its exponent by one, whereas each ap-
plication of an insert-row command increases the exponents
of all vex groups in one line by one.

A template instance contains sufficient information to
(re)generate all formulas with all correct references for the
corresponding table. This fact is exploited in the defini-
tion of the update operations, which essentially create an
updated template instance and derive the changed formulas
from the new instance.

2Since we will reuse these auxiliary functions in the defini-
tion of the type system, we define them more generally for
arbitrary templates and template instances, and not just for
blocks.

The translation function G defined in Figure 4 takes as in-
put the position of the top-left corner of the part currently
being translated (x, y), which is needed for the proper trans-
lation of references (third line), and the complete template
instance (t). The last argument is the part of the template
instance that is seen at the current location (x, y).

Gx
y(t, φ) = φ

Gx
y(t, φ(f1, . . . , fn)) = φ(Gx

y(t, f1), . . . ,Gx
y(t, fn))

Gx
y(t, (i, j)) = Rx

y(t, i, j)

Gx
y(t, u | v) = Gx

y(t, u) |Gx+←→u
y (t, v)

Gx
y(t, uˆv) = Gx

y(t, u)ˆGx
y+lu(t, v)

Gx
y(t, ck) = Gx

y(t, c) |Gx+←→c
y (t, c) | . . . |Gx+(k−1)←→c

y (t, c)

Gx
y(t, b

|k) = Gx
y(t, b)ˆGx

y+lb(t, b)ˆ . . . ˆGx
y+(k−1)lb(t, b)

Figure 4: Table generation.

The translation of relative into absolute references is per-
formed by the function R whose definition is technically
involved since it has to consider many different cases. For
lack of space we therefore give here an informal explanation
of the function and refer for the formal definition to [9]. R
takes a template instance t and determines the absolute ad-
dress or the range of absolute addresses that correspond to
the relative reference (i, j) contained in the cell (x, y).

First, R determines whether (i, j) points to a cell that
is contained in a horizontally and/or vertically repeating
group, which is remembered in the flags ξx and ξy (to be
reused in Section 4). In that case the reference might denote
a horizontal, vertical, or two-dimensional range, but only
if the current cell (x, y) that contains the reference (i, j)
is not contained in a repeating group that is expanded in
parallel with the referenced one. This information can be
obtained for the horizontal dimension by checking whether
x+ i lies outside the horizontal range of a possible repeating
group containing (x, y), in which case the cells are expanded
independently of one another. In this case the predicate
δh(x, y) holds (again, reused in Section 4). Similarly, only if
y + j lies outside the vertical range of the group containing
the current cell, it is not expanded together with the group
containing (i, j), in which case the predicate δv(x, y) holds.

Second, if R has to produce a range, the corresponding
references are computed by selecting all addresses (x′, y′)
from the complete expansion area containing the referenced



cell (x + i, y + j) whose relative offset from the beginning of
its corresponding instance of a repeating group is the same
as the offset of the referenced cell from the first repeating
group. Formally, this condition is expressed by requiring
x′mod w = (x + i)mod w and y′mod h = (y + j)mod h
where w and h are the width and height, respectively, of
the repeating group. Figure 2 illustrates this case where
the generated range for the summation formula under Qnty

consists only of two cells, which both start at the beginning
of each repeating-group instance, that is, columns B and E.
A similar example is the summation formula under Cost.

As an example, consider the template SumCol together
with the instance t = Valuesˆ0

|3ˆΣ(u). Assume we want to
find the range of the u parameter in the bottom-most cell.
In this case, we apply the function R1

5(t, 0,−1) since the u
is in the fifth row of this instance, and it references an offset
of one up in the vertical direction.

First, we determine δh(0,−1) and δv(0,−1). These pred-
icates tell whether or not the referenced location leaves the
current expansion in horizontal or vertical direction, respec-
tively. At this time the value of the referred location is
computed by (1 + 0, 5 + (−1)) = (1, 4). This address is ver-
tically outside the current expansion area, which consists
of the referencing cell address (1, 5) alone. Therefore, δh is
false, but δv yields true.

Next we observe that the expansion area containing the
referred location is vertically repeating from 2 to 4. With
this information, R computes the range {(1, 2), (1, 3), (1, 4)}
by taking all values of y within 2 and 4 such that the blocks
align (this is significant if the block size in the repeating
group is more than 1).

As another example consider the budget sheet presented
in Section 2. We can observe in Figure 2 that the ranges for
the summation formulas in the two rightmost columns are
just horizontal ranges even though the references point into
a horizontally and vertically expandable region. However,
since the cells containing the references are vertically aligned
with the referenced cells, which means that their vertical
expansions are synchronized, or, δh is false, only a horizontal
range is created.

Applying the function G to I(t) yields the initial table,
that is, a block that contains a copy of all the values and
formulas from the template.

As an example, assume we want to construct the ta-
ble for the instance t = Valuesˆ0

|3ˆΣ(u). In this case,

G first starts with G1
1(t, (Valuesˆ0

|3)ˆΣ(u)). G breaks the
template instance into the upper and lower segment, deter-
mines the height of the upper segment, and recursively calls
G1

1(t, Valuesˆ0
|3) and G1

5(t, Σ(u)). The latter parameter coor-
dinate is generated by inspecting the height of the top piece,
which consists of a single unit label and a three unit expan-
sion block. The upper section is broken again, so that the
repeating block is addressed with G1

2(t, 0
|3), which leads to

G1
2(t, 0)ˆG1

3(t, 0)ˆG1
4(t, 0). Each of these applications of G re-

sults in 0. The lower portion is handled by the case of func-
tion application, which turns G1

5(t, Σ(u)) into Σ(G1
5(t, u)),

which results in Σ((1, 2), (1, 3), (1, 4)), as shown through the
example for illustrating the working of R. Therefore, the
generated table will be

Valuesˆ0ˆ0ˆ0ˆΣ((1, 2), (1, 3), (1, 4)).

3.3 Update Operations
Two kinds of update operations are allowed on generated

tables: (1) changing values to other values of the same type
and (2) inserting and deleting rows and columns. The first
kind of update is realized in the following way. Before a
new value φ can be entered into a cell at address (x, y), it
is ensured that the cell in the template that corresponds to
(x, y) does not contain a formula and the type of the cell is

the same as the type of φ. We write chgφ
(x,y)(t, b) for the up-

date of the cell located at (x, y) in table b to the new value
φ. The argument t gives the template instance that corre-
sponds to b. Formally, chgφ

(x,y) returns a pair (t, b′) where

t is the unchanged template instance and b′ is the changed
table. The effect of the row/column-insertion commands
depends on the current position in the table. For example,
the insert-column command (insC) will insert k new Excel
columns if the current position is within a hex group that
has the width k. The formulas and values to be inserted into
the new cells are taken from the hex group of the template.
For a position outside of a hex group, insC has no effect.
Similarly, the insert-row command (insR) works only when
the current position is in a cell from a vex group, in which
case k new rows will be inserted where k is the height of all
the aligned vex groups covering the current vertical position.
Again, formulas and values are copied from corresponding
vex groups of the template.

In general, the insertion of columns and rows requires also
the adjustment of absolute references in existing cells. We
can accomplish both the generation of absolute references
in newly inserted formulas and the reference adjustments
by employing the G function in the following way. First, we
update the template instance by increasing the exponent of
a hex group (or a collection of vex groups). Then we can
simply apply G to the new template instance and obtain cor-
rect formulas with correct absolute addresses for the whole
table. Finally, we merge this new table with the values from
the old table.

The functions for updating template instances, Cx and
Ry, can be defined by recursively descending to the column
or rows indexed by x or y, respectively, and incrementing
column and row exponents if the encountered table part
is a repeating group. Whereas Cx has to descend only to
the column level and extends at most one exponent for one
column, Ry has to recurse into blocks that are contained
inside columns and extends all aligned blocks (of which there
are generally more than one). For example, executing R2 on

the template instance Valuesˆ0
|3ˆΣ(u) results in the instance

Valuesˆ0
|4ˆΣ(u).

Merging the actual values from the old table with the new
table obtained by G is achieved by two functions H (and V)
that copy all values outside of the column (or row) range for
the newly inserted column (row). These functions accept
four parameters: an x and y coordinate, which start at 1
and 1, along with a newly generated table and the table
before the row or column insertion. Both functions work
by recursively descending to the individual cells. Each cell
that that lies within the newly inserted columns (or rows)
is left unchanged, that is, the default from the template is
retained. Similarly, all formulas are left unchanged. All
other cell values are copied from the latest table version.
Again, we defer for the formal definition to [9].



Finally, the semantics of insC and insR are defined as fol-
lows. In the given definitions, the t argument represents the
current template instance, whereas b represents the actual
table. In addition to the new table, the functions also return
the new template instance t′.

insC
(x,y)(t, b) = (t′,H1

1(G1
1(t
′, t′), b)) where t′ = Cx(t)

insR
(x,y)(t, b) = (t′,V1

1 (G1
1(t
′, t′), b)) where t′ = Ry(t)

Note that in the implemented Gencel system we do not keep
a copy of the whole actual spreadsheet. Instead we send to
Excel only cell definitions that need to be changed. The
concept of template instances allows us to describe the up-
date operations in the formal model as well as to implement
an efficient system. Deleting rows and columns works in a
similar way, see [9].

3.4 Table Evaluation
The evaluation of a table essentially means to evaluate all

cells by applying basic functions and looking up references.
The evaluation of cells requires the whole table as an ad-
ditional parameter to facilitate the evaluation of references,
which are given by absolute addresses. Therefore, the eval-
uation is formalized by a judgment b1→→b b2 defined in Figure
5 that expresses that table or block b1 evaluates to b2 in
the context of the table b. The metavariables xi used in the
rules Sum and Prod range over numeric values.

Val
φ→→b φ

Sum
fk→→b xk 1 ≤ k ≤ n

Σ(f1, . . . , fn)→→b x1 + . . . + xn

Prod
fk→→b xk 1 ≤ k ≤ n

Π(f1, . . . , fn)→→b x1 ∗ . . . ∗ xn
Ref

b[ρ] = f f→→b φ

ρ→→b φ

Hor
b1→→b b3 b2→→b b4

b1 | b2→→b b3 | b4
Ver

b1→→b b3 b2→→b b4

b1ˆb2→→b b3ˆb4
Tab

b→→b b′

b→→b′

Figure 5: Evaluation of tables (blocks).

We use the notation ⇓b to express that the table b is fully
evaluated, that is, b contains only values and does not con-
tain any unevaluated formulas or unresolved references. For-
mally, ⇓b holds for b = φ, or for b = b1ˆb2 and b = b1 | b2 if
⇓b1 and ⇓b2 holds.

4. TYPE SYSTEM
In this section we define a type system for templates to

guarantee a meaningful generation of tables and their up-
date operations.

We distinguish between two sets of types. First, the types
of formulas (ϕ) include base types (α), for example, Num
and String, and (first-order) function types for functions
with an arbitrary number of arguments. It is easy to add,
for example, unary and binary operations and correspond-
ing function types and additional function-application typ-
ing rules. Second, the types of templates (τ) have the same
structure as tables, see Figure 6.

The type system is defined through several judgments.
First, we give typing rules for formulas. Since the type of
a formula f depends, in general, on the types of formulas
that are contained in cells referenced by f , we formalize the
typing of formulas by a judgment σx

y . f : ϕ that expresses

ϕ ::= α | α+ → α (formula types)
σ, τ ::= α | τ | τ | τˆτ | τ→ | τ↓ (template types)

Figure 6: Formula and template types.

that f , found at position (x, y) in the template, has type ϕ
in the context of the template type σ. The typing rules for
formulas are shown in Figure 7. We have two rules for typing
references that are used to distinguish between references to
single cells and ranges. We can reuse the predicates δ and
ξ from Section 3.2 to determine the nature of a reference
ρ, that is, whether ρ denotes a range of cells (in which case
Θ(ρ) holds) or a single cell (in this case we have ¬Θ(ρ)). We
define the predicate Θ as follows.

Θ(ρ) :⇐⇒ (δh(x, y) ∧ ξx) ∨ (δv(x, y) ∧ ξy)

In rule App we use the notation α[+] to represent α or α+,
which allows single references as well as range references to
be used as function arguments. However, range references
are otherwise prohibited in cells, which is expressed effec-
tively through the Fml rule in Figure 9, which requires α
and prohibits α+ for f .

Val
φ has type ϕ

σx
y . φ : ϕ

App
σx

y . φ : α+ → α′ σx
y . fi : α[+]

σx
y . φ(f1, . . . , fn) : α′

Ref
σ[(x, y) + ρ] = τ ¬Θ(ρ)

σx
y . ρ : τ

Ref+
σ[(x, y) + ρ] = τ Θ(ρ)

σx
y . ρ : τ+

Figure 7: Formula typing rules.

We do not allow the arbitrary composition of blocks and
columns. Some constraints are already expressed by the ab-
stract syntax. In addition, we allow the vertical composition
only for blocks of equal width, see the rules Ver and Col in
Figure 9. Finally, we restrict the horizontal composition to
columns that have the same vertical pattern. This constraint
is expressed through the alignment predicate t o t, which is
defined to be the reflexive and transitive closure of the re-
lation formalized in Figure 8. The alignment of columns is
used as a premise in rule Template in Figure 9.

t1 o t t2 o t
t1 | t2 o t

c o t
c→ o t

c1 o c3 c2 o c4

c1ˆc2 o c3ˆc4

c1 o c4 c2 o c5 c3 o c6

c1ˆ(c2ˆc3) o (c4ˆc5)ˆc6

b1 o b2

b↓1 o b
↓
2

lb1 = lb2

b1 o b2

Figure 8: Column alignment.

The type system shown in Figure 9 defines judgments of
the form σx

y ` t : τ that express that the (sub)table t has
the template type τ at the position (x, y) in the context σ.
Here we overload the judgment notation for tables, columns,
blocks, and formulas.

To illustrate the typing rules, we give a couple of exam-
ples. Using rule Val (from Figure 7) and Block+ (from



Fml
σx

y . f : α

σx
y ` f : α

Hor
σx

y ` b : τ σx+
←→
b

y ` b′ : τ ′ lb = lb′

σx
y ` b | b′ : τ | τ ′

Ver
σx

y ` b1 : τ σx
y+lb1 ` b2 : τ ′

←→
b1 =

←→
b2

σx
y ` b1ˆb2 : τˆτ ′

Block+
σx

y ` b : τ

σx
y ` b↓ : τ↓

Col
σx

y ` c1 : τ σx
y+lc1 ` c2 : τ ′ ←→c1 =←→c2

σx
y ` c1ˆc2 : τˆτ ′

Col+
σx

y ` c : τ

σx
y ` c→ : τ→

Template
σx

y ` t : τ σx+
←→
t

y ` t′ : τ ′ t o t′

σx
y ` t | t′ : τ | τ ′

Figure 9: Table typing rules.

Figure 9), we can derive that 0↓ has type Num↓. Since Val-

ues has type String and is also of width 1, rule Ver can be
employed to show that Valuesˆ0↓ has type StringˆNum↓. To
type the reference in the formula Σ(u) we need a template-
type context. With a context σ = StringˆNum↓ˆNum we
can first derive by rule Ref+ σ1

3 . u : Num+ (the row num-
ber 3 results from the adjustment in the second premise of
the Ver rule). Since, according to rule Val, Σ has the type
Num+ → Num in any template-type context σx

y , we can ap-
ply the App rule to obtain the type Num for the summation
cell, which finally yields the type σ for the whole summation
column.

The type system allows the typing of cyclic references by
assuming a fixed, arbitrary type for all cells on the cycle in
σx

y . Cycles represent nonterminating computations and cor-
respond to nonterminating function definitions whose value
is undefined. In contrast to a Turing-complete language, we
can detect nonterminating computations by identifying cy-
cles in tables. Therefore, we consider a template to be type
correct only if it does not contain any cycles.

Definition 1. t is well typed with template type τ if
τ1
1 ` t : τ and t does not contain a cycle.

The main result for the presented table calculus is that
a type-correct template allows only the generation of ta-
bles that can be always safely evaluated and never result in
a computational error, such as type, omission, or reference
errors. To express this result formally we define the set of ta-
bles T (t), that is, the set of (template instance, table) pairs,
that can be obtained from a template t through update op-
erations as follows. T (t) is the smallest set satisfying:

(1) (I(t),G1
1(I(t), I(t))) ∈ T (t)

(2) (t, b) ∈ T (t) =⇒ u(x,y)(t, b) ∈ T (t)

for 1 ≤ x ≤
←→
b , 1 ≤ y ≤ lb and

u ∈ {insR, insC , delR, delC , chgφ}

The table-evolution-safety property can now be expressed
by the following theorem, which is proved in [9].

Theorem 1. If t is well typed and (t, b) ∈ T (t), then
∃b′.b→→b′ ∧ ⇓b′.

5. PROTOTYPE EVALUATION
The components of the Gencel system are shown in Figure

10. The generator and type checker have been implemented
in Haskell [15]. We have already successfully employed a
similar Haskell-backend strategy in the recent implementa-
tion [1] of a header and unit inference system [10]. The
information from the Excel sheet being manipulated by the
end user is captured by a VBA program and sent to the
backend server. The VBA system is shipped as an Excel
add-in. The Haskell modules are compiled with GHC to a
Windows executable that runs as the backend server.

Spreadsheet
Message
Dispatcher

Value
Checker

Type
Checker

Message
Dispatcher

Generator

Structure
Updates

Value
Updates

Frontend Backend

Templates

HaskellExcel VBA

Figure 10: Gencel system architecture.

The Gencel toolbar has four buttons for row and column
insertions and two buttons for row and columns deletions.
Depending on which button has been clicked, the VBA pro-
gram sends the corresponding message, with information
about the current cell selection, to the backend server. The
server performs the update to yield the new template in-
stance. It then generates the messages for the updates to be
performed to the Excel spreadsheet and sends them to the
VBA program (these messages simply paint the new tem-
plate instance in the Excel spreadsheet). Through Excel
events, the VBA program also keeps track of value updates
to the Excel spreadsheet.

The backend server contains a “Message Dispatcher” that
receives messages from the VBA program. In case of struc-
tural updates like row/column insert/delete operations, the
dispatcher interacts with the “Generator” module to come
up with the new template instance and the messages to re-
flect the update in the Excel frontend. In case the user
changes a value in the Excel spreadsheet, the dispatcher
forwards the message to the “Value Checker” module that
checks the updated value against the template to ensure
that the new value is type correct. The other components
of the backend server include the “Type Checker” module
that checks the spreadsheet template loaded into the system



by the user to ensure that it is type correct. The template,
after type checking, is translated into the initial table in-
stance by the generator.

Each Excel spreadsheet generated by the Gencel system
has a corresponding Vitsl file that contains the most recent
template instance for which the user saved the spreadsheet.
Each time the user issues the save-file command in Excel,
Excel would save the workbook, and the Excel events trig-
gered notify the backend server to save the current template
instance. Whenever the Gencel add-in has been enabled in
Excel, every time the user loads a workbook in Excel, the
events would trigger the backend server to load the corre-
sponding template instance. This allows us to keep both
files synchronized.

Since we were concerned with the usability aspects of
Gencel, we conducted as a first step a pilot think-aloud
study with four subjects of varying age and experience with
Excel. The subjects were drawn from a continuing educa-
tion course for high school teachers conducted at Oregon
State University. The think-aloud portion of the study took
approximately one hour per subject. The first part of the
study required the subjects to develop a budget spreadsheet
to compute the projected and actual earnings for a com-
pany with multiple business locations. The second part of
the exercise required the subjects to update the spreadsheet
to include a new business location, as well as earnings data
for a new time period. Of the four subjects, two success-
fully completed their tasks while two had to stop when they
ran into technical difficulties from trying to use the Excel
insertion and copy/paste features while within the Gencel
framework.

Two of the subjects performed an initial visual audit of the
spreadsheet after loading the template. However, the sub-
jects gained trust in the system’s error prevention capabili-
ties and only checked the values in the data cells while per-
forming the later tasks. Three of the four subjects demon-
strated a moderate-to-good grasp of the Gencel system after
only a short period of instruction, and expressed apprecia-
tion for the error-prevention capabilities of Gencel. Sup-
porting this level of confidence in the subjects is the fact
that of the spreadsheets created (each with approximately
160 cells), none contained any errors.

The preliminary results from the study were very encour-
aging. They indicate that the users quickly perceive multiple
benefits from the Gencel system, find it for the most part
easy to learn, and that users do in fact create correct spread-
sheets with Gencel. The study also highlighted several areas
of improvement, information invaluable to the continued de-
velopment of Gencel. A more comprehensive and detailed
study is planned for the near future.

6. RELATED WORK
We discuss related work in the areas of spreadsheet testing

[18, 11, 16] and consistency checking [10, 6, 3, 4, 1].
Rothermel et al. have come up with the “What You See

Is What You Test” methodology for testing spreadsheets
[18]. This methodology uses data flow adequacy criteria
and coverage monitoring to give users incremental feedback
(using cell coloring and a “testedness” progress bar) on the
percentage of cells that have been tested. A system that
automatically generates test cases for end users to help them
test their spreadsheets is described in [11]. Fault localization

techniques to help end users locate the sources of errors have
also been incorporated into this testing approach [16].

The use of assertions to identify erroneous formulas is pre-
sented in [6]. In this system, assertions entered by the user
are propagated through the spreadsheet formulas. It then
warns the user if there is a conflict between the value in the
cell and the cell’s assertion or when there is a conflict be-
tween the system-generated assertion and the user-specified
assertion for a cell with a formula.

A formal reasoning system for detecting spreadsheet er-
rors based on a classification of spreadsheet contents into
units was proposed in [10]. A related approach is reported
in [3], which extends the unit system by a new kind of rela-
tionship. Although that described extension provides more
fine-grained information about headers, it complicates au-
tomatic header inference. Accordingly, the approach of [3]
requires the user to manually annotate spreadsheets with
header information. Recently, we have implemented an au-
tomatic unit checker that is based on the automatic infer-
ence of header information based on different aspects of the
spatial layout of spreadsheets [1]. The system presented in
[4] carries out unit checking based on the actual physical
or monetary units of the data in the spreadsheet. This ap-
proach requires the user to annotate the cells with the unit
information, which is then used in the subsequent analysis
to flag formulas that violate unit correctness.

The most distinguishing difference between the described
approaches and Gencel is that all the previous work has been
concerned with the identification of errors in spreadsheets,
whereas the approach taken by Gencel focuses on error pre-
vention.

7. CONCLUSIONS AND FUTURE WORK
We have presented a system for the development of safely

evolvable spreadsheets. Two key aspects of the system are:

• Customized update operations are automatically cre-
ated by a program generator from templates

• A type system guarantees the absence of errors in
spreadsheets that evolve from templates

An initial user study has indicated that the system is us-
able by end users and has a gentle learning curve. The user
study also provided valuable feedback for directions of fu-
ture research. The two most important next steps are the
following.

(1) Integrate Vitsl into Excel so that an end user can
switch between two modes of spreadsheet editing: (a) the
editing of templates, and (b) the expansion of tables and
editing values. The challenge is to define an editing envi-
ronment that can support flexible changes in the template-
editing mode while keeping it synchronized with the current
table (and also template instance).

(2) To support a wide-spread use of the Gencel system
and to enable a smooth transition, we have to offer tools that
can load existing Excel spreadsheets into the Gencel system.
To this end, we have to be able to distill templates from
Excel spreadsheets such that the spreadsheet is an instance
of the template. We call this process of identifying templates
from plain spreadsheets template parsing. To cope with the
anticipated high degree of ambiguity, we plan to leverage
spatial analysis techniques that we have recently developed
to identify semantic structures in spreadsheets [1].



Other useful extensions to be investigated include the in-
tegration of formatting into templates, which is to be inher-
ited by evolving spreadsheets, or the concept of value gener-
ators that allow the systematic creation of new values taken
from sequences/tables, such as [k, k +1, . . .] or [Jan, Feb, . . .],
instead of repeatedly generating the same values when in-
serting rows and columns.

We believe the Gencel system is a promising new ap-
proach to address some of the software engineering prob-
lems in spreadsheets. The biggest advantages of the error-
prevention approach, enabled through program generation,
is a higher degree of correctness and the saving of (debug-
ging and testing) time. Although the requirement for tem-
plates and the safety checks constrain the spreadsheet edit-
ing process, we believe the trade-off “safety for convenience”
is worthwhile as it is well appreciated in many areas of our
lives.

8. REFERENCES
[1] R. Abraham and M. Erwig. Header and Unit Inference

for Spreadsheets Through Spatial Analyses. In IEEE
Int. Symp. on Visual Languages and Human-Centric
Computing, pages 165–172, 2004.

[2] R. Abraham, M. Erwig, S. Kollmansberger, and
E. Seifert. Visual Specifications of Correct
Spreadsheets. Technical Report CS05-60-1, School of
EECS, Oregon State University, 2005.

[3] Y. Ahmad, T. Antoniu, S. Goldwater, and
S. Krishnamurthi. A Type System for Statically
Detecting Spreadsheet Errors. In 18th IEEE Int.
Conf. on Automated Software Engineering, pages
174–183, 2003.

[4] T. Antoniu, P. A. Steckler, S. Krishnamurthi,
E. Neuwirth, and M. Felleisen. Validating the Unit
Correctness of Spreadsheet Programs. In 26th IEEE
Int. Conf. on Software Engineering, pages 439–448,
2004.

[5] P. S. Brown and J. D. Gould. An Experimental Study
of People Creating Spreadsheets. ACM Transactions
on Office Information Systems, 5(3):258–272, 1987.

[6] M. M. Burnett, C. Cook, J. Summet, G. Rothermel,
and C. Wallace. End-user Software Engineering with
Assertions. In Int. Conf. on Software Engineering,
pages 93–103, 2003.

[7] M. M. Burnett, A. Sheretov, B. Ren, and
G. Rothermel. Testing Homogeneous Spreadsheet
Grids with the “What You See Is What You Test”
Methodology. IEEE Transactions on Software
Engineering, 29(6):576–594, 2002.

[8] S. Ditlea. Spreadsheets Can be Hazardous to Your
Health. Personal Computing, 11(1):60–69, 1987.

[9] M. Erwig, R. Abraham, I. Cooperstein, and
S. Kollmansberger. Gencel — A Program Generator
for Correct Spreadsheets. Technical Report
TR04-60-11, School of EECS, Oregon State
University, 2004.

[10] M. Erwig and M. M. Burnett. Adding Apples and
Oranges. In 4th Int. Symp. on Practical Aspects of
Declarative Languages, LNCS 2257, pages 173–191,
2002.

[11] M. Fisher II, M. Cao, G. Rothermel, C. Cook, and
M. M. Burnett. Automated Test Case Generation for
Spreadsheets. In Int. Conf. on Software Engineering,
pages 141–151, 2002.

[12] J. F. Lerch, M. M. Mantei, and J. R. Olson. Skilled
Financial Planning: The Cost of Translating Ideas
Into Action. ACM Conf. on Human Factors in
Computing Systems, pages 121–126, 1989.

[13] R. R. Panko. What We Know About Spreadsheet
Errors. Journal of End User Computing (Special issue
on Scaling Up End User Development), 10(2):15–21,
1998.

[14] R. R. Panko. Spreadsheet Errors: What We Know.
What We Think We Can Do. In Symp. of the
European Spreadsheet Risks Interest Group
(EuSpRIG), 2000.

[15] S. L. Peyton Jones. Haskell 98 Language and
Libraries: The Revised Report. Cambridge University
Press, Cambridge, UK, 2003.

[16] S. Prabhakarao, C. Cook, J. Ruthruff, E. Creswick,
M. Main, M. Durham, and M. Burnett. Strategies and
Behaviors of End-User Programmers with Interactive
Fault Localization. In IEEE Int. Symp. on
Human-Centric Computing Languages and
Environments, pages 203–210, 2003.

[17] K. Rajalingham, D. R. Chadwick, and B. Knight.
Classification of Spreadsheet Errors. Symp. of the
European Spreadsheet Risks Interest Group
(EuSpRIG), 2001.

[18] G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A Methodology for Testing Spreadsheets.
ACM Transactions on Software Engineering and
Methodology, pages 110–147, 2001.

[19] U.S. Department of Education. Audit of the Colorado
Student Loan Program’s Establishment and Use of
Federal and Operating Funds for the Federal Family
Education Loan Program, July 2003. Report
ED-OIG/A07-C0009.

[20] U.S. Department of Health and Human Services.
Review of Medicare Bad Debts at Pitt County
Memorial Hospital, January 2003. Report
A-04-02-02016.


