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ABSTRACT
Parametric Fortran is an extension of Fortran that supports
the construction of generic programs by allowing the param-
eterization of arbitrary Fortran constructs. A parameterized
Fortran program can be translated into a regular Fortran
program guided by values for the parameters. This paper de-
scribes the extensions of Parametric Fortran by two new lan-
guage features, accessors and list parameters. These features
particularly address the code duplication problem, which is
a major problem in the context of scientific computing. The
described techniques have been successfully employed in a
project that implements a generic inverse ocean modeling
system.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.3.4
[Programming Languages]: Processors

General Terms
Languages

Keywords
Fortran, Generic Programming, Scientific Computing, Soft-
ware Maintenance, Reuse, Program Generation, Haskell

1. INTRODUCTION
Generic programming supports program adaptation

through generalization since it allows many algorithms to
be implemented independently of the choice of underlying
data structures. Programming languages provide constructs
to facilitate generic programming to different degrees. The
probably best known example is the templates of C++ [17,
28].

Generic programming is particularly useful in scientific
computing. For example, ocean scientists regularly develop
simulation programs to evaluate ocean models. Since the
model programs and the simulation programs usually have
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to deal with huge data sets (up to terabytes of data), they
are often implemented in a way that exploits the given com-
puting resources as efficiently as possible. In particular, the
representation of the data in the model programs is highly
specialized. If the simulation programs depend on the data
structures used in the models, scientists have to rewrite the
simulation programs for every ocean model, even though the
algorithm behind the simulation programs is the same. Such
simulation programs are usually written in Fortran for ef-
ficiency reason, for example, the Inverse Ocean Modeling
(IOM) system [4, 14] and the Weather Research and Fore-
casting (WRF) model [23]. Re-implementing the simulation
program for every model is very tedious and error-prone, and
the programs will be very difficult to maintain.

One approach to solving this problem is to develop a soft-
ware infrastructure that allows the definition of well-defined
interfaces to implement composable and reusable compo-
nents. This approach is pursued by the Earth System Mod-
eling Framework (ESMF) collaboration [9, 5]. One disad-
vantage of this approach is that model developers have to
re-implement their existing model programs against these
newly defined interfaces, which is not trivial because refac-
toring a collection of Fortran programs (often consisting of
hundreds of files and tens of thousands of lines of code) is
a time-consuming and error-prone task. Furthermore, when
their models want to apply another simulation program with
a different interface, they have to rewrite their model pro-
grams against the new interface again. Therefore, model
developers seem to prefer re-implementing simulation tools
specifically targeted for their model. This software engineer-
ing problem in scientific computing shows a great opportu-
nity for generic programming. Unfortunately, as a widely
used programming language in scientific computing, Fortran
lacks the support of generic programming. The only support
for generic programming in Fortran 90 is ad-hoc polymor-
phism, which allows different subroutines to share the same
name, but ad-hoc polymorphism is not enough to satisfy the
needs of generic programming in scientific computing.

In this paper, we demonstrate an extension of Fortran
to support generic programming, which is called Paramet-
ric Fortran [7]. The basic idea of Parametric Fortran is to
parameterize a Fortran program with parameters that repre-
sent the varying aspects of data structures and other model-
dependent information of the Fortran program. When the
values of these parameters are provided, a program genera-
tor can translate the parameterized program into a Fortran
program that fits the particular model. Scientists who de-
velop the simulation programs can implement their algorithm
in Parametric Fortran by using parameters to represent the
model-dependent information. When the information about
a specific model is given in the form of values for the param-
eters, a specialized simulation program can be generated for



this model. Therefore, developers of the simulation programs
only need to implement their algorithm once and can gener-
ate different instances for different models automatically.

A first design of Parametric Fortran was presented in [7].
Parametric Fortran has been used for developing the IOM
[4, 14] system. The IOM system developed in Parametric
Fortran is currently intensively used with the ocean model
PEZ at Oregon State University and the National Center for
Atmospheric Research, and with the model KDV at Arizona
State University. Other ocean modeling groups are currently
in the process of adapting the IOM system, such as ROMS
(developed at Rutgers and University of Colorado), ADCIRC
(developed at Arizona State University and University of
North Carolina), and SEOM (also developed at Rutgers).
The Fortran source code of the IOM system consists of more
than 10 thousand lines. With Parametric Fortran, the de-
velopers of the IOM system only need to maintain one copy
of their programs, which increases the productivity greatly.
When the IOM system needs to be applied to a new ocean
model, they only need to provide the parameter values for
that ocean model and the program generator will generate
the IOM code for that particular ocean model automatically.

During the development of the IOM system in Parametric
Fortran it became clear that the initial design of Parametric
Fortran was limited in particular with respect to concisely
expressing repeated code. In this paper, we present two new
features, accessors and list parameters, which are extremely
helpful in practice. In particular, with these two new lan-
guage elements, Parametric Fortran has a great potential im-
pact on other scientific computing projects. For example, by
using Parametric Fortran to implement the model-dependent
part, the WRF [23] system will be much easier to maintain.
Moreover, using list parameters of Parametric Fortran can
save about 30% of code for the WRF project. The Mer-
cator system [1], the Data Assimilation Research Testbed
(DART) developed by the NCAR Data Assimilation Initia-
tive (DAI) [24], and the Hybrid Coordinate Ocean Model
(HYCOM) system [2] can also utilize Parametric Fortran for
being generic with respect to ocean models. The code size
of all these systems can be greatly reduced by using list pa-
rameters and accessors of Parametric Fortran.

Three different groups of people are concerned with Para-
metric Fortran. First, scientists who implement generic al-
gorithms in Fortran want to use the genericity provided
by Parametric Fortran. Second, computer scientists who
provide programming support in the form of new For-
tran dialects for scientists by extending the Parametric
Fortran compiler with new parameter types. Third, the
clients/modelers provide the model information by param-
eter values and will use the generated Fortran program for
their model. Rather than defining one particular extension
of Fortran, our approach provides a framework for extend-
ing Fortran on a demand basis and in a domain-specific way.
Figure 1 illustrates the principal interaction between the dif-
ferent groups of users. In the figure, simulation.pf is the
generic program developed by scientists in Parametric For-
tran, which implements their simulation algorithm. This
simulation program needs to work for three different models
named M1, M2, and M3. The clients of the simulation program,
who are the developers of the models, provide the parame-
ter values representing the information of their model. The
program generator, that is, the Parametric Fortran compiler,
generates the Fortran program simulation.f for each indi-
vidual model and provides the generated simulation program
to the clients. The Parametric Fortran compiler is written in
Haskell [25] by computer scientists.

The rest of this paper is organized as follows. In Sec-

tion 2 we illustrate the basic idea of Parametric Fortran by
examples. A new language feature called accessors will be
presented in Section 3. In Section 4, we will present another
new language feature called list parameters and show how
to use it to avoid duplicate code. In Section 5 we describe
the implementation of the Parametric Fortran compiler. Re-
lated work is discussed in Section 6. Finally, we present some
conclusions and future work in Section 7.

2. OVERVIEW OF PARAMETRIC FOR-
TRAN

In this section, we will demonstrate the use of Parametric
Fortran with two examples. We first introduce the syntax of
Parametric Fortran in 2.1. A generic summation subroutine
will be presented in 2.2. In Section 2.3, we illustrate how to
define a parameter type. A generic array-slicing subroutine
is described in Section 2.4.

2.1 Syntax
Parametric Fortran is an extension of Fortran by param-

eterization constructs. We distinguish two different kinds of
parameterization annotations. One to propagate parameters
into Fortran code and the other to stop the propagation of
parameters. Braces denote the scope of parameterizations.
The various parameterization constructs and their meanings
are listed in Table 1.

Table 1: Parameterization Constructs
{p : ...} everything inside the

braces is parameterized
by p

{p(v1,..,vn) : ...} only variables v1, ..., vn
are parameterized by p
inside the braces

{#p : ...} the outermost syntactic
object is parameterized
by p

!{ ... } nothing inside the braces
is parameterized

!v the variable v is not pa-
rameterized

A parameterization construct must surround a complete For-
tran syntactic object. When a parameterization construct
begins at one kind of syntactic object, it must also end at
the same kind. A parameterization construct can span mul-
tiple statements or declarations, but not a combination of
both.

2.2 Generic Summation of All Array Elements
The following example shows how to write a Parametric

Fortran subroutine to compute the sum of all the elements
of an array of real numbers. For simplicity, we suppose that
in this example the size of each dimension is fixed to 100.

1 subroutine arraySum (a, sum)
2 {dim: real :: a}
3 real :: sum
4 sum = 0.0
5 {#dim:
6 sum = sum + dim:a
7 }
8 end subroutine arraySum
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Figure 1: User Groups

An integer parameter dim is used in the example. The
value of dim represents the number of dimensions of the input
array and will guide the generation of the Fortran subroutine.
The parameter dim is used at three places. In line 2, dim
is used to parameterize the declaration of the input array
a. This parameterization will generate an array declaration
with dim dimensions. In line 5, dim parameterizes the whole
assignment statement (line 6), which will generate dim loops
over the assignment statement. The symbol # in front of dim
indicates that the parameterization is not propagated into
the subparts of the assignment statement. In the assignment
statement (line 6), the variable a is parameterized by dim.
In the generated program, this parameterization will cause
appropriate array indices to be generated. For dim = 2, the
following Fortran program will be generated.

subroutine arraySum (a, sum)
integer :: i1, i2
real, dimension (1:100, 1:100) :: a
real :: sum
sum = 0.0
do i1 = 1, 100

do i2 = 1, 100
sum = sum + a(i1, i2)

end do
end do

end subroutine arraySum

We can observe that in the generated program, a is declared
as a 2-dimensional array. The assignment statement that
assigns sum is wrapped by 2 loops over both dimensions of
a, and index variables are added to the array variable a.
The declarations for these index variables are also generated.
This particular behavior of the program generator is deter-
mined by the definition of the parameter type for dim, which
will be shown in Section 2.3.

2.3 Defining a Parameter Type
Parameter types are represented by Haskell data types.

The following shows the data type of the parameter type for
dim.

data Dim = Dim Int
deriving (Show, Typeable, Data)

Parameter types must be instances of type classes Typeable
and Data, because we have to apply the functions cast and

everywhere’ [18] to values of these types, which enables a
generic traversal of the syntax tree of Parametric Fortran
programs.

The abstract syntax of Fortran programs is represented
by a collection of Haskell data types that can represent only
syntactically correct Fortran programs. Therefore, the syn-
tax correctness of the generated Fortran programs is auto-
matically guaranteed by the type system of Haskell. Below
we show part of the data type definitions for Fortran indices,
expressions and Fortran statements.

data Ind = Ind [ExprP]
deriving (Typeable, Data)

data Expr = Con String
| Var VName IndP
| Bin BinOp ExprP ExprP
| Unary UnaryOp ExprP
deriving (Typeable, Data)

data Stmt = Assg ExprP ExprP
| Call SubNameP ArgListP
| FSeq StmtP StmtP
deriving (Typeable, Data)

The data types StmtP and ExprP represent parameterized
Fortran indices, statements and expressions.

data IndP = forall p . Param p Ind => I p Ind
data StmtP = forall p . Param p Stmt => S p Stmt
data ExprP = forall p . Param p Expr => E p Expr

A syntactic object may contain parameterized sub-objects,
for example, a Fortran sequential statement, which is of type
Stmt, may contain parameterized Fortran statements, which
are of type StmtP.

For example, the data type ExprP can hold a parameter
value and a Fortran expression. By using the forall quanti-
fier in the data type definition we allow the parameter type
p to be any type that can parameterize a Fortran expression.
By defining a similar type for every Fortran syntactic cate-
gory, any part of a Fortran program can be parameterized.
A parameter type is represented by a Haskell data type. The
program generation is controlled by the parameter values.

The multiple parameter type class Param defines a relation
between parameter types and data types of Fortran syntactic
categories. In the type class definition, p represents the pa-
rameter type, and s represents the syntactic category. The



generator function gen takes a parameter value and a Fortran
syntactic object as input and generates a non-parameterized
syntactic object.

class Data p => Param p s where
gen :: p -> s -> s
gen _ = id -- default implementation

When a parameter type is provided, its instance for the type
class Param must be defined for every syntactic category to
guide the program generation. A parameter type usually
only affects a few Fortran syntactic categories. For the syn-
tactic categories that are not affected by the parameter type,
the default implementation as shown above will be used. In
this example, the parameter dim, which is represented by the
Haskell data type Dim, affects types, statements, and expres-
sions.

instance Param Dim Type where
gen (Dim d) (BaseType bt) = ArrayT (indx d) bt
gen p t = t

where indx d = replicate d [(a,b)]

instance Param Dim Stmt where
gen (Dim d) s | d>0 =

gen (Dim (d-1)) (For (newVar d) a b (F Void s))
gen p s = s

instance Param Dim Expr where
gen (Dim d) (Var v (I _ (Ind es))) =

Var v (ind (es++map (var . newVar) [1..d]))
gen p e = e

a = i2e 1
b = i2e 100

i2e :: Int -> ExprP
i2e n = E Void (Con (show n))

ind :: [ExprP] -> IndP
ind es = I Void (Ind es)

var :: VName -> ExprP
var v = E Void (Var v (ind []))

The definition of the function gen for Dim extends a type
by dimensions, adds loops over a Fortran statement, and
extends a variable by index variables. The index variables
used for extending array expressions and generating loops
are generated by the function newVar::Int->VName. The
names of these generated index variables are illegal Fortran
names. The program generator just marks the places where
a new variable is needed. After a program is generated, a
freshNames function will go through the whole program and
rename every marked place with an unused variable name
and add declarations for these variables to the program. Al-
though we could have implemented the generation of fresh
variables with a state monad directly, we decided not to do
so, because that would have complicated the interface for
implementing new parameters.

The data type Void is a parameter type used in those cases
in which no parameter is needed. Void can be used to pa-
rameterize any syntactic category. In Section 5.2 we will
demonstrate how parameterized programs are transformed
to programs parameterized by Void. Programs that are pa-
rameterized by Void are pretty-printed as plain Fortran pro-
grams. The Void parameter uses the default definition for
the function gen.

data Void = Void
deriving (Eq,Typeable,Data)

instance Show a => Param Void a where

In this definition for the parameter type Dim, we suppose that
the size of every array dimension is fixed to 100. It is not
difficult to extend the data type definition to allow the array
dimensions to have different sizes. Instead of containing only
an integer value, a value of the type Dim now contains an
integer value and a list of integer pairs, which specify the
lower and upper boundaries of all the dimensions.

data Dim = Dim Int [(Int, Int)]
deriving (Show, Typeable, Data)

The function gen for the parameter type Dim can be changed
as follows. The essential change happens in the instance def-
inition for Fortran types and statements. The instance defi-
nition for expressions remains practically unchanged because
the sizes of dimensions do not affect array indices.

instance Param Dim Type where
gen (Dim d bs) (BaseType bt) = ArrayT bs’ bt
gen p t = t

where bs’ = map (\(l,u)->(i2e l, i2e u)) bs

instance Param Dim Stmt where
gen (Dim d ((l,u):bs)) s | d>0 =

gen (Dim (d-1) bs)
(For (newVar d) l’ u’ (F Void s))

gen p s = s
where (l’, u’) = (i2e l, i2e u)

Types parameterized by Dim are expanded by the boundaries
of dimensions that are provided in the parameter value. The
boundaries are also used for the generated loops over state-
ments.

2.4 Generic Array Slicing
Array slicing means to project an n-dimensional array on

the dth dimension to obtain an (n−1)-dimensional array. In
the subroutine slice, a and b represent the argument and
result array, respectively, and k is an index value on the dth
dimension of a. In the body of the subroutine, two parame-
ters are used: First, the parameter dim, which represents the
number of dimensions of a, parameterizes the declaration of
a. Second, the parameter slice is a pair of integers (n,d),
representing the fact that the generated code slices the dth
dimension of an n-dimensional array. b is parameterized by
slice. This parameterization means that in the generated
program b has (n-1) dimensions and that array indices are
added such that the already existing index expression (in the
example: k) will appear at the dth dimension. The parameter
slice is not a Fortran variable, but a variable of Parametric
Fortran. Therefore, it causes no conflict with the name of
the subroutine.

subroutine slice(a, k, b)
{dim: real :: a}
{slice: real :: b}
integer :: k
{slice: b = a(k)}

end subroutine slice

For dim=3 and slice=(3,2), the generated Fortran subrou-
tine computes the kth slice on the second dimension of a
3-dimensional array. The same as in the first example, we
assume for simplicity that the size of each dimension is 100.



subroutine slice(a, k, b)
integer :: i1, i2
real, dimension (1:100, 1:100, 1:100) :: a
real, dimension (1:100, 1:100) :: b
integer :: k
do i1 = 1, 100

do i2 = 1, 100
b(i1, i2) = a(i1, k, i2)

end do
end do

end subroutine slice

Each parameter, such as dim or slice, requires a separate
definition that explains how parameter values affect the pa-
rameterized Fortran constructs. We have seen how to define
the parameter type for Dim. The following code shows how
to define a parameter type for slice.

data Slice = Slice (Int,Int)
deriving (Show, Typeable, Data)

The data type Slice contains a pair of integers. Like Dim,
the parameter type Slice affects types, statements, and ex-
pressions. We can define the function gen as follows (a, b,
ind, and var are defined as in the previous example).

instance Param Slice Type where
gen (Slice (n, d)) (BaseType bt) =

ArrayT (indx (n-1)) bt
gen p t = t

where indx m = replicate m [(a,b)]

instance Param Slice Stmt where
gen (Slice (n, d)) s | n>1 =

gen (Slice (n-1, d))
(For (newVar (n-1)) a b (F Void s))

gen p s = s

instance Param Slice Expr where
gen (Slice (n, d)) (Var v (I _ (Ind es))) =

Var v (ind (map (var . newVar) [1..d-1]
++ es
++ map (var . newVar) [d..n-1]))

gen p e = e

If the parameter value is Slice (n, d), the function gen
adds n-1 dimensions to a type, adds n-1 loops over a state-
ment, and insert n-1 index variables to an array expression
in the way that the existing index is at the dth dimension.

3. ACCESSORS
We have shown a generic array-slicing subroutine in Sec-

tion 2.4. Requests from scientists for an even more general
array slicing method led to the development of the subrou-
tine presented in this section. This example demonstrates
the new concept of accessors in Parametric Fortran.

The following code generalizes the slice subroutine from
the previous section to enable array slicing on k dimensions
simultaneously.

1 subroutine slice(a, p.inds, b)
2 {p.n: real :: a}
3 {p.o: real :: b}
4 integer :: p.inds
5 {#p.o:
6 {p.o:b} = {p:a(p.inds)}}
7 end subroutine slice

This program is parameterized by a parameter p. A param-
eter can be a plain value, such as an integer, or it can be

a more complex record structure, which may contain some
fields of which each can be used as a parameter. The value
of each field can be accessed through accessors in the form
of p.f, where p and f represent the parameter name and the
field name, respectively. When a field is used to parameter-
ize a syntactic object e by {p.f:e}, the value of the field is
used as a normal parameter. When a field is mentioned in a
program without parameterizing anything, its value is used
to parameterize an empty syntactic object. In this example,
the parameter p contains four fields, n, o, dims, and inds.
p.n represents the number of dimensions of the input array,
p.o represents the number of dimensions of the output ar-
ray, p.dims is a list of numbers representing the dimensions
to be sliced on, and p.inds represents the index variables
on the dimensions. Similar to the previous examples, we as-
sume for simplicity that the size of each dimension is 100. It
is not difficult to add this information to the parameter. In
the subroutine slice, a is the input n-dimensional array, a’s
declaration is parameterized by p.n. The variable b is the
result (n−k)-dimensional array and is parameterized by p.o.
The field p.inds is used at three places. In the parameter
list of the subroutine, p.inds means that the index variables
will be in the parameter list of slice as input parameters.
In line 4, p.inds is used to indicate that the index variables
are integer variables. In line 6, p.inds is used at the right-
hand side of the assignment statement which means that the
index variables will be inserted as a’s indices. In line 5, p.o
parameterizes the assignment statement to add loops. Also,
p.o parameterizes the variable b to insert index variables. We
use p to parameterize the right-hand side of the assignment,
instead of a field of p, because in this parameterization, for
inserting the index variables to the correct positions, both
p.dims and p.o are needed. For example, when the value
of p is provided in the following way, the generated Fortran
subroutine will be able to compute the slice on the first and
third dimensions of a 4-dimensional array.

p = {n=4, o=2, dims=[1,3], inds = [i,j]}

The following code shows the Fortran subroutine, which is
automatically generated by the Parametric Fortran compiler.

subroutine slice(a, i, j, b)
integer :: i1, i2
real, dimension (1:100,1:100,1:100,1:100) :: a
real, dimension (1:100,1:100) :: b
integer :: i, j
do i1 = 1, 100

do i2 = 1, 100
b(i1, i2) = a(i, i1, j, i2)

end do
end do

end subroutine slice

We can observe that in the generated program, a is a 4-
dimensional array and b is a 2-dimensional array. The in-
dex variables i and j are inserted to the expression a at
the first and third position in the assignment statement,
which is specified by p.dims. The assignment statement is
wrapped by 2 additional loops because the output array is
2-dimensional.

The parameter types used by p can be defined as follows.

data SliceK = SliceK Dim Dim Dims Inds
data Dims = Dims [Int]
data Inds = Inds [VarName]

Every field of p has a parameter type that has already been
defined as an instance of the type class Param. The field n
and o have the parameter type Dim, dims has the type Dims,
and the field inds has the type Inds, which contains a list of



variable names. Since Dims is not used independently, it just
uses the default implementation for gen. The parameter inds
only parameterizes empty syntactic objects, defining the gen
function for the type Inds is straightforward. For example,
we can define the function gen for indices as follows.

instance Param Inds Ind where
gen (Inds vs) EmptyInd = Ind (map var vs)
gen p i = i

The parameter p can be used to parameterize an expression
to add index variables. We define the function gen as follows.

instance Param SliceK Expr where
gen (SliceK _ o dims _) (Var v (I q i)) =

Var v (I Void (insertInds o dims (gen q i)))
gen p e = e

insertInds :: Dim -> Dims -> Ind -> Ind
insertInds (Dim d) (Dims ds) i = ...

The function insertInds inserts the d index variables to an
array expression in the way that the existing indices are at
the positions specified by ds.

Every parameter type that has fields is an instance of the
type class AccessClass and must define the member function
access. The function access takes a parameter value and a
field name as input, the return type is Maybe ParV for dealing
with possible errors. When the field name passed to access
is not defined, Nothing is returned. Otherwise, the field value
is returned. The following code shows the definition for the
data type ParV, which is used to wrap a parameter value,
and the instance definition for the parameter type SliceK.

data ParV = forall p . (Param p Expr,
Param p Stmt,
...
)

=> ParV p

class AccessClass p where
access :: p -> String -> Maybe ParV
access p s = Nothing -- default implementation

instance AccessClass SliceK where
access (SliceK n _ _ _) "n" = Just (ParV n)
access (SliceK _ o _ _) "o" = Just (ParV o)
access (SliceK _ _ dims _) "dims" = Just (ParV dims)
access (SliceK _ _ _ inds) "inds" = Just (ParV inds)
access _ _ = Nothing

The fields n and o are redundant considering we know how
many dimensions to slice by the length of the field dims. The
following relationship holds.

p.n = p.o + length dims

Since only parameter names or field names can be used as pa-
rameters, but not expressions of parameters, we can remove
neither p.n nor p.o to eliminate the redundancy. Further-
more, the above relationship between the field values is not
guaranteed. If users provide field values for which the above
relation does not hold, the generated program will contain
type errors. We are currently investigating a dependent type
system for Parametric Fortran to check the constraints that
the parameter values should satisfy.

By using accessors, the readability of the Parametric For-
tran program can be improved, especially when writing more
complex Parametric Fortran programs with many parame-
ters. Accessors alone are not an essential extension to Para-
metric Fortran– they can always be simulated by expand-
ing the record to a plain collection of individual parameters.
However, accessors prove to be very expressive when used
together with list parameters, which are discussed next.

4. LIST PARAMETERS
In this section we illustrate a typical problem of duplicated

code [11] in scientific computing applications. This example
motivates the introduction of list parameters.

In scientific computing, simulation programs are often used
to perform computations on some state variables represent-
ing the measurements in scientific models. In different mod-
els both the number and the meanings of the state variables
may be different, which makes writing simulation programs
very difficult. By using Parametric Fortran, we can write a
template of Fortran code fragment and parameterize it by
the information about the state variables. Once the parame-
ter value for a particular model is provided, the computation
code for all the state variables can be generated automati-
cally.

Apart from the varying number of state variables, sim-
ilar code fragments in the simulation programs often lead
Fortran programmers to duplicate code through “copy and
paste”, which can easily introduce errors. Moreover, when
a change is required in one part of the computation, all the
copies of the code fragment have to be changed in the same
way, which is also prone to errors. Programs that contain du-
plicated code are known to be very difficult to maintain [11].
With Parametric Fortran, more specifically, with the combi-
nation of the two new language features of Parametric For-
tran, accessors and list parameters, programmers only need
to maintain one code fragment for duplicated code, which
simplifies program maintenance.

In the following example, we show how to write a simple
simulation program in Parametric Fortran that can avoid the
problem of duplicated code.

program simulation
{#stateVars:

{stateVars.dim : real :: stateVars.name}
}
{#stateVars:

{stateVars.dim : allocate(stateVars.name)}
call readData(stateVars.name)
call runComputation(stateVars.name)
call writeOut(stateVars.name)
deallocate(stateVars.name)

}
end program

In this simulation program, we have a list parameter
stateVars containing a list of Parametric Fortran param-
eters of which each contains the information about one sin-
gle state variable. In this simple example, we suppose that
every state variable is stored in an array whose number of
dimensions is specified by the parameter field dim. Again for
simplicity, the size of each dimension is fixed to 100. An-
other information in the parameter for a state variable is its
name, which can be accessed through the parameter field
name. The declaration and body part of the simulation pro-
gram are parameterized separately since they belong to dif-
ferent Fortran syntactic categories. In Parametric Fortran,
a parameterization construct can span multiple statements
or declarations, but not a combination of both. If we want
to generate the simulation program for a model with two
state variables that represent temperature and velocity, and
the arrays storing the two variables are 3-dimensional and
2-dimensional, respectively, the value for stateVars can be
provided as follows.

stateVars = [temp, veloc]
temp = {dim=3, name="temperature"}
veloc = {dim=2, name="velocity"}



The following simulation program will be generated for this
model. In the generated program, a declaration statement
and a code fragment for the computation are generated for
both state variables.

program simulation
real, dimension (:,:,:), allocatable :: temperature
real, dimension (:,:), allocatable :: velocity
allocate(temperature(1:100, 1:100, 1:100))
call readData(temperature)
call runComputation(temperature)
call writeOut(temperature)
deallocate(temperature)
allocate(velocity(1:100, 1:100))
call readData(velocity)
call runComputation(velocity)
call writeOut(velocity)
deallocate(velocity)

end program

The following code shows the definition of the parameter type
for state variables.

data StateVar = SV Dim VarName
deriving (Show, Typeable, Data)

The definition of the function gen for the type [StateVar]
can be automatically derived from the definition of gen for
StateVar. The details will be shown in Section 5.4.

List parameters are very helpful for reducing code size of
scientific simulation programs. In the IOM [14] project, af-
ter using Parametric Fortran list parameters to remove du-
plicated code, the code size is reduced by almost 50%. In
the WRF [23] project, which has a huge community of users
and contains more than 100 thousand lines of code, by using
Parametric Fortran, about 30% of code can be saved.

5. THE PARAMETRIC FORTRAN COM-
PILER

In this section, we describe the basic structure of the Para-
metric Fortran compiler. The Parametric Fortran compiler
transforms the program through the following steps. First,
the source program is parsed into an abstract syntax tree in
which some nodes are parameterized by parameter names.
Parameter values are read in from a file and placed in a list
of name-value pairs. Next, parameter names in the abstract
syntax tree are replaced with their values. Then a new syn-
tax tree, in which no node is parameterized, is generated
according to the values of the parameters. The effect of pa-
rameter values on the syntax tree is determined by Haskell
definitions of syntax-tree transformations. Finally, the new
Fortran program represented by the generated syntax tree is
written to a file.

For the implementation of the frontend of Parametric For-
tran we have used the Haskell scanner generator Alex [6] and
the parser generator Happy [22]. The main part of the Para-
metric Fortran compiler is written in Haskell [25] using the
type-directed recursion library by Lämmel and Peyton Jones
[18] that is part of the GHC compiler [12].

5.1 Parameter Substitution
The Parametric Fortran parser produces an abstract syn-

tax tree in which some nodes are parameterized by parame-
ter names. We need to replace these parameter names with
their values to apply the program generation. The name-
value pairs of parameters are kept in a list of type PList.

type PList = [(VarName, ParV)]

The function subst performs a traversal on the abstract
syntax tree returned by the parser; it finds syntactic objects
parameterized by names and replaces the names with param-
eter values. The function subst is implemented using the
everywhere’ combinator [18] that applies a generic transfor-
mation function of type forall a.a->a to every node in a
tree in a top-down manner. The generic transformation func-
tion is built with extT, which combines non-generic transfor-
mation functions into a generic one.

subst :: Data a => PList -> a -> a
subst param = everywhere’ (id ‘extT‘

substS param ‘extT‘
substE param ‘extT‘
...)

In the definition of the generic subst function, we need in-
dividual substitution functions for every syntactic category.
For example, the function substE substitutes the parame-
ter names with values for Fortran expressions. The function
substE takes a list of name-value pairs and a parameterized
expression as input. If that expression is parameterized by
a name, it returns the expression parameterized by a value
which is found in the list of name-value pairs.

We use the function getName to get the name of a pa-
rameter. Then we look up the value of that parameter in
the name-value list and replace the parameter name with its
value. The lookup is needed only when the parameter itself
is a name. If it is not, for example, if the parameter is Void,
getName just returns an empty string and substE leaves the
parameter unchanged. The function getName is defined as
follows.

getName :: Typeable a => a->VarName
getName = id ‘extQ‘ (\p->VarName "")

substE :: PList -> ExprP -> ExprP
substE param (E p e) =

case getName p of
VarName "" -> E p e
v -> case lookup v param of

Just (ParV q) -> E q e
Nothing -> parameterNotDefinedError p

5.2 Code Generation
For each Fortran syntactic category we define a transfor-

mation function which takes a syntactic object parameterized
by a parameter value and returns the generated Fortran ob-
ject parameterized by Void. For example, the following code
shows the transformation function for Fortran expressions
and Fortran statements.

transE :: ExprP -> ExprP
transE (E p e) = E Void (gen p e)

transS :: StmtP -> StmtP
transS (S p s) = S Void (gen p s)

To transform a program we define the function genF. Again,
we use everywhere’ to traverse the syntax tree and to ap-
ply a transformation function to each node in a top-down
manner.

genF :: Data g => g -> g
genF = everywhere’ (id ‘extT‘

transE ‘extT‘
transS ‘extT‘ ...)



5.3 Implementation of Accessors
A parameter field is used as a normal parameter in a Para-

metric Fortran program. For program generation, we have
to substitute a parameter field by its value. In Section 5.1
we demonstrated how to replace a parameter name with its
value. In this Section, we will show how to replace a param-
eter field p.f with its value.

The data type Accessor represents a parameter field. The
type VarName represents the name of the parameter and the
type String represents the field name. The parameter fields
in a syntax tree are replaced by parameter values through a
collection of functions.

data Accessor = Accessor VarName String
deriving (Typeable,Data)

For example, the function substE maps an expression param-
eterized by a parameter field to an expression parameterized
by the value of the parameter field. There are similar func-
tions for each Fortran syntactic category.

substE :: PList -> ExprP -> ExprP
substE pList (E p e) =

case getAccE p of
Just (Accessor v f) ->

case lookup v pList of
Just (ParV q) -> E (AccessorV q v f) e
Nothing -> paramNotFoundError v

Nothing -> ... -- not a parameter field

getAccE :: forall p . Param p Expr =>
p -> Maybe Accessor

getAccE = (\p->Nothing) ‘extQ‘ Just

If an expression is parameterized by a parameter field v.f,
substE first finds the value of the parameter v in the param-
eter list, then wraps the parameter value by the data type
AccessorV. Both the data types Accessor and AccessorV
represent an accessor. The difference is that Accessor
contains the parameter name and the field name, while
AccessorV also contains the parameter value. The type
AccessorV is defined as an instance of the type class Param.
For example, the following code shows the program generator
function for AccessorV and Fortran expressions.

data AccessorV = forall p. AccessClass p =>
AccessorV p VarName String

instance Param AccessorV Expr where
gen (AccessorV p v f) e =

case access p f of
Just (ParV w) -> gen w e
Nothing -> invalidFieldError v f

5.4 Implementation of List parameters
The value of a list parameter is a list of Parametric Fortran

parameters. The program generator generates a sequence of
syntactic objects when a Fortran syntactic object is parame-
terized by a list parameter. This is accomplished by making
a list of parameters an instance of the type class Param. The
following code shows the instance definition for the list type
and the data type of Fortran statements.

instance (Param p Stmt) => Param [p] Stmt where
gen [] s = NullStmt
gen (p:ps) s = S p s ‘FSeq‘ S ps s

However, this definition of the program generator is not cor-
rect when we use accessors on list parameters. Consider, for
example, the case when p is a list parameter whose value is
[p1, p2, ..., pn]. If we use p.f to parameterize a syntactic ob-
ject, we actually want to generate a list of syntactic objects
which are parameterized by p1.f , p2.f , ..., pn.f , respectively.
To accomplish this behavior, we must extend the Parametric
Fortran compiler in the following ways.

• Define the data type RepList to represents list param-
eters.

• Write a function, repParam, that replaces accessors on
a list parameter with accessors on parameter values of
the elements of the list.

• Create an instance of the Param type class for RepList
to turn a block of code into a sequence of those blocks.

The type RepList is defined as follows.

data RepList = forall p . (Data p, AccessClass p)
=> RepList VarName [p]

The data type RepList is used to store the name and value
of a list parameter. The value of a list parameter is a list
of parameter values and is captured by the [p] in the data
type definition. The name of a list parameter has to be
remembered to solve the problem caused by the combination
of list parameters and accessors.

The generation of a list of syntactic objects parameterized
by p1.f , p2.f , ..., pn.f is performed by the function repParam.
The function repParam replaces an accessor on a list parame-
ter with a specific parameter value in the list. repParam takes
a parameter value in a list and the name of the list parameter
as arguments and does an everywhere’ traversal on a sub-
tree of a Parametric Fortran program. When repParam finds
an accessor, it checks if the parameter name in the accessor
matches the name of the list parameter. When it does, the
accessor is replaced by the accessor whose parameter value
is replaced with the specific parameter value.

repParam :: Data a => ParV -> VarName -> a -> a
repParam p v = everywhere’

(id ‘extT‘
(\q@(AccessorV r w f) ->

if v == w then AccessorV p w f
else q))

The generator function tries to get the value of the param-
eter field by calling the function access and calls generator
function for the field value. If the accessor function cannot
get a value for the field, an error is reported.

The function readParam reads a parameter value from a
pair of strings. The first element of the pair represents the pa-
rameter name and the second represents the parameter value.
The value of a list parameter is transformed into a value of
the type RepList. For each parameter type, readParam calls
readP, stopping when there is a match and returning a pa-
rameter name and value. When there is no match, the com-
piler reports an error. If the parameter value is a list, we
package it inside a RepList along with its parameter name.

readParam :: (String, String) -> ParV
readParam (name,v) =

case (readP v :: Maybe [StateVar]) of
Just x -> ParV (RepList (VarName name) x)
Nothing -> ... -- try next parameter type

The following code shows how to create an instance of the
Param type class for RepList and Fortran statements.



instance Param RepList Stmt where
gen (RepList v []) s = NullStmt
gen (RepList v (p:ps)) s =

FSeq (S p (repParam (ParV p) v s))
(S (RepList v ps) s)

The program generator creates a sequence of statements, of
which each is parameterized by a value from the list. One
thing to notice is that the result of the function gen for the
type RepList contains parameters that are not Void. All
parameters will be Void in programs generated by the func-
tion genF (refer to Section 5.2) because genF applies the gen
function in a top-down manner.

6. RELATED WORK
Different programming languages support generic pro-

gramming to a different degree and in different ways. C++
supports generic programming through function templates.
In Java and C#, generic methods and interface are used
for generic programming. Most functional programming lan-
guages also have support for generic programming. Haskell
[25] supports generic programming through polymorphic
functions and type classes. Generic Haskell [19] extends
Haskell by allowing the definition of functions by induc-
tion on the structure of types. ML [29] uses functors and
type signatures in addition to polymorphic functions to
achieve generic programming. In the array processing lan-
guages APL [15] and J [16, 13] there are built-in mechanisms
for computing with variable-dimensional arrays. Generally,
generic programming means the ability to define functions
that can work with different data types in these programming
languages. In Parametric Fortran, the concept of generic
programming is extended to being capable of implementing
programs working with different models, which means that
Parametric Fortran supports more complex genericity than
most other programming languages because models are more
complex entities than types. The type-based genericity sup-
ported in other programming languages is fully supported
in Parametric Fortran. Furthermore, some interesting forms
of genericity can only be supported in Parametric Fortran.
For example, in each model, not only the data structures are
different, but also the interfaces of subroutines/functions or
the number of state variables that need to be processed in
the simulation program are different. These differences can
be represented by Parametric Fortran parameters easily but
are generally not possible in type-based generic programming
languages.

For example, the array summation and slicing examples
can be expressed in C++. The C++ template library
Boost.MultiArray provides a class template for declaring
multidimensional arrays, using the number of dimensions as a
parameter. A generic function could be implemented for slic-
ing a multidimensional array on specific dimensions in C++.
This function would be generic because it is parameterized
by the array type to enable it to work with array types of
different dimensions. However, the code duplication example
cannot be easily realized in C++ or other programming lan-
guages since the parameterization requires parameters that
are not types.

Some work has been done for removing duplicated code
from programs. For example, CloRT [20] automatically
rewrites duplicated code into programming abstractions.
The approach of linked editing is used to manage duplicated
Java code in [21].

Parametric Fortran was developed for use in scientific com-
puting. Most scientific computing applications deal with
huge data sets. Usually, these data sets are represented by

arrays. The data structures of these arrays, such as the num-
ber of dimensions, are often different in different models to
which the same simulation algorithm will be applied. Some
languages, such as APL [15] and J [16, 13] provide built-in
operations for computing with variable-dimensional arrays.
However, APL and J only provide efficient operations for ar-
ray processing, but not for efficient numerical computations,
which prevents APL and J to be widely used in the scientific
computing area.

In the Weather Research and Forecasting (WRF) system
[23], generic Fortran programs are needed for communica-
tion with different models. A program generator in C has to
be written for each model-generic module to be generated.
The program generation is controlled by a so-called registry,
which contains the model information. The approach is not
general and since many modules need to be generated, the
maintenance of these program generators is difficult.

Parametric Fortran is essentially a metaprogramming tool
[26]. Existing Fortran metaprogramming tools include
Foresys [27], whose focus is on the refactoring of existing
Fortran code, for example, transforming a Fortran77 pro-
gram into a Fortran90 program. Sage++ [3] is a tool for
building Fortran/C metaprogramming tools. However, to ex-
press applications as the ones shown here a user has to write
metaprograms in Sage++ for transforming Fortran, which
is quite difficult and error prone and probably beyond the
capabilities of scientists who otherwise just use Fortran. In
contrast, Parametric Fortran allows the users to work mostly
in Fortran and express generic parts by parameters; most of
the metaprogramming issues are hidden inside the compiler
and parameter definitions. Forge [8] is a program gener-
ator that transforms discrete equations into Fortran code.
With Parametric Fortran we can create complete Fortran
programs, whereas Forge is limited to the specification and
generation of subroutines that will be part of larger simula-
tion programs.

There has also been a lot of work on the generation of
Fortran code for simulations in scientific areas. All of them
are concerned with the generation of efficient code for one
particular scientific model. For example, CTADEL [30] is
a Fortran code-generation tool, which is applied to weather
forecasting; its focus is on solving weather-forecast models,
especially, solving partial differential equations. This and
other similar tools do not address the problem of the mod-
ularization of scientific models to facilitate generic specifica-
tions.

The work reported in [10] is similar to Parametric For-
tran in the sense that scientific computations are described
in functional way and are then translated into lower-level
efficient code. But again, the approach does not take into
account model-dependent specifications.

7. CONCLUSIONS AND FUTURE WORK
Parametric Fortran extends Fortran by allowing the pa-

rameterization of Fortran code fragments. This approach
increases the productivity of Fortran programmers and helps
with the maintenance of Fortran programs. We have suc-
cessfully applied Parametric Fortran in scientific computing
to enable ocean scientists to implement model-generic algo-
rithms [14, 7]. Beyond the IOM system, Parametric Fortran
also has the potential to be applied to many other scientific
computing projects, such as the WRF [23] system, the Mer-
cator system[1], the DART system [24], and the HYCOM
system [2].

In this paper we have presented two new features of Para-
metric Fortran called accessors and list parameters. By us-
ing accessors, we can use parameters as records and access



the field values of parameters. This feature improves the
readability of Parametric Fortran programs and helps to re-
duce the number of parameters needed in applications. List
parameters are an improvement that increases the expres-
siveness of Parametric Fortran and allows us to solve some
practical problems, such as removing duplicated code, that
could not be dealt with in the previous version.

Future work includes the development of a dependent type
system for Parametric Fortran to allow deducing constraints
for parameter values from Parametric Fortran programs. The
constraints will be provided to the Parametric Fortran pro-
grammers. If the parameter values satisfy all the constraints,
the generated Fortran programs will be guaranteed to be free
of type errors.
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[19] A. Löh, D. Clarke, and J. Jeuring. Dependency-style
generic haskell. In 8th ACM Int. Conf. on Functional
Programming, pages 141–152. ACM Press, 2003.

[20] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Partial redesign of Java software
systems based on clone analysis. In 6th Working
Conference on Reverse Engineering, pages 326–336,
1999.

[21] M. Toomim, A. Begel, S. L. Graham. Managing
Duplicated Code with Linked Editing. In IEEE
Symposium on Visual Languages and Human-Centric
Computing, pages 173–180, 2004.

[22] S. Marlow and A. Gill. Happy User Guide, 2000.
http://www.haskell.org/happy/doc/html/happy.html.

[23] J. Michalakes, S. Chen, J. Dudhia, L. Hart, J. Klemp,
J. Middlecoff, and W. Skamarock. Development of a
Next Generation Regional Weather Research and
Forecast Model. In Developments in Teracomputing:
Proceedings of the Ninth ECMWF Workshop on the
Use of High Performance Computing in Meteorology,
pages 269–276, 2001.

[24] NCAR. DART. http://www.cgd.ucar.edu/DAI/.
[25] S. L. Peyton Jones. Haskell 98 Language and Libraries:

The Revised Report. Cambridge University Press,
Cambridge, UK, 2003.

[26] T. Sheard. Accomplishments and Research Challenges
in Meta-Programming. In 2nd Int. Workshop on
Semantics, Applications, and Implementation of
Program Generation, LNCS 2196, pages 2–44, 2001.

[27] Simulog, SA, Guyancourt, France. FORESYS,
FORtran Engineering SYStem, Reference Manual v1.5,
1996.

[28] A. A. Stepanov and M. Lee. The Standard Template
Library. 1994. Technical Report X3J16/94-0095,
WG21/N0482, ISO Programming Language C++
Project.

[29] J. D. Ullman. Elements of ML Programming (2nd ed.).
Prentice-Hall International, London, UK, 1998.

[30] R. van Engelen, L. Wolters, and G. Cats. The
CTADEL Application Driver for Numerical Weather
Forecast Systems. In 15th IMACS World Congress,
volume 4, pages 571–576, 1997.


