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Abstract
We present a spreadsheet debugger targeted at end users.

Whenever the computed output of a cell is incorrect, the
user can supply an expected value for a cell, which is em-
ployed by the system to generate a list of change sugges-
tions for formulas that, when applied, would result in the
user-specified output. The change suggestions are ranked
using a set of heuristics.

In previous work, we had presented the system as a proof
of concept. In this paper, we describe a systematic evalua-
tion of the effectiveness of inferred change suggestions and
the employed ranking heuristics. Based on the results of
the evaluation we have extended both, the change inference
process and the ranking of suggestions. An evaluation of
the improved system shows that change inference process
and the ranking heuristics have both been substantially im-
proved and that the system performs effectively.

1 Introduction
Programmers spend a major portion of their time debug-

ging code. A recent study conducted in the U.S. by NIST
found that software engineers typically spend 70-80% of
their time testing and debugging. On average, errors take
17.4 hours to find and fix [30].

The situation is particularly challenging in the area of
spreadsheets, which are by far the most widely used pro-
gramming tools [29]. For example, in the U.S. alone the
number of people programming spreadsheets is estimated
to be 11 million, compared to only 2.75 million other, pro-
fessional programmers. Studies have shown that there is
a high incidence of errors in end-user spreadsheets, up to
90% in some cases [25]. Some of these errors have resulted
in companies losing millions of dollars [14].

Program failures that occur during testing indicate faults
that have to be located and corrected during debugging.
The WYSIWYT testing methodology [26] has been devel-
oped to aid end users in testing spreadsheets. Even with the
testing framework, and automatic test-case generation sup-
port [3, 15], the debugging of spreadsheets is hardly sup-
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ported. Fault localization techniques [27] seek to help the
user with where the program corrections need to be made
when faced with one or more program failures during test-
ing. However, there is little help regarding how the program
needs to be changed.

Approaches to end-user debugging face two challenges.
The first is fault localization: In many cases end users do
not know the cause of a particular failure in their spread-
sheets. The second difficulty is that, even in cases in which
end users are able to identify the cause of a failure correctly,
they have trouble with formula syntax and often introduce
more errors. To solve both of these problems, a spreadsheet
debugger should help the users correctly identify the faults
within their programs and eliminate (or at least minimize)
the need for the user to apply changes to spreadsheet for-
mulas through manual editing.

The system described in this paper, GoalDebug, ad-
dresses these two challenges by automatically generating
change suggestions based on the user’s expectations about
the output of a cell. Moreover, change suggestions can be
automatically applied to spreadsheet formulas and obviate
the need for formula editing by the end user.

The problem of formula editing is substantiated by data
gathered during studies to evaluate the effectiveness of
fault-localization techniques [27] in the WYSIWYT sys-
tem. It was observed that subjects make many wrong de-
cisions (oracle mistakes) while performing their tasks [24].
Oracle mistakes are incorrect decisions made by users dur-
ing testing. The numbers for the incorrect testing decisions
found in the study [24] are shown in Table 1. In particular,
we can see from the data that there were 373 instances in the
Gradebook task and 293 instances in the Payroll task when
the subjects pinpointed the cells with errors correctly, but
then went on to make incorrect changes to the formulas in
the cells. Those errors could not have occurred when using
GoalDebug.

A principal difficulty of the GoalDebug approach is
caused by the fact that a different output in one cell can,
in general, be achieved through many different changes in
that or other cells. We employ heuristics to rank possible
changes so that the correct one shows up as high as possible
in the ranked list of suggested changes to be presented to
the user. In the two example spreadsheets discussed above,
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Gradebook Payroll
Number of subjects 51 51
Total errors 154 381

Errors on values 144 168
Errors on formulas 10 213

Total formula-edit errors 454 361
Correct to incorrect 81 68
Incorrect to incorrect 373 293

Table 1. User mistakes during debugging

the correct change suggestions are, in fact, ranked highest
by GoalDebug.

We have introduced initial ideas of GoalDebug in [2] as
a proof of concept. We describe the system in Section 2.
To evaluate GoalDebug, we have performed a systematic
study of the effectiveness of inferred change suggestions.
The idea was to systematically mutate spreadsheet formu-
las and see whether GoalDebug can suggest highly ranked
changes to revert these mutations. This evaluation is de-
scribed in Section 3. It turns out that certain kinds of muta-
tions could not be inverted at all. Guided by these results,
we have extended GoalDebug’s change inference, which is
described in Section 4.1. The evaluation of this improved
version of GoalDebug, described in Section 4.2, showed
only partial success, because the employed ranking heuris-
tics were not powerful enough to cope with the significant
increase in the number of change suggestions, caused by
the extension of change inference. We therefore have added
five new components to the ranking heuristics. These are
described in Section 5. An evaluation of the final system
with extended change inference and improved heuristics is
described in Section 5.2 and shows that the new ranking
heuristics are significantly better than the old and that the
overall effectiveness of the system is good. In Section 6
we discuss related work, and in Section 7 we will present
conclusions and discuss directions for future research.

2 Debugging With Suggestions
Given the expected value w for a cell, represented by a

constraint, GoalDebug generates possible formula changes
that would result in the value w being computed in the cell.

For the following discussion, we regard a spreadsheet (s)
as a mapping from addresses (a) to formulas (f ). Formulas
are either plain values v, references to other cells (given by
addresses), or operations (ψ) applied to one or more argu-
ment formulas. The formula stored at the address a in s is
obtained by s(a). The evaluation of a formula f to a value
v in the context of a spreadsheet s is written as f→→s v. To
run GoalDebug on a spreadsheet s at a target cell with ad-
dress a, we assume a target constraint γ on a, which has
the following form (where ω ∈ {<,≤,=,≥, >}).

γ ::= ωv | γ ∧ γ | γ ∨ γ | λx.γ

In addition to value constraints (ωw), and constraints al-

low the formulation of ranges of values as expectations, and
or (as well as and) constraints capture results of constraint
propagation. Lambda abstractions are needed to define con-
straint transformations. Since a constraint γ defines a value
predicate, it can be applied to values, as in γ(v). For exam-
ple, [< 3∧ ≥ 1](2) yields true.

We perform change inference in three steps. First, we
find possible changes for a given target value (see Section
2.1). Second, we sort the results by applying a likelihood
heuristic (see Section 2.2). Finally, change suggestions are
presented to the end user in order of decreasing relevance
according to the computed ranking (see [2]).

2.1 Change Inference

Given a value constraint γ, change inference computes a
set of change suggestions. Each suggestion is expressed in
terms of a constraint γ, which will later be converted into
a value. A suggestion has the form a : f  γ to express
that the (sub)formula f that is contained in the cell with the
address a should be changed to a value v for which γ(v)
is true. The inference of change suggestions is formalized
through the function δ shown in Figure 1.

Let us elucidate the definition with several examples. If a
cell with address a contains a constant, say v (actual value),
but the target constraint is γ (with ¬γ(v)), the suggestion is
to change the constant v to another constantw (target value)
for which γ(w) holds (see def. (1) in Figure 1). How γ can
be converted into an actual target value is explained later.

In the case of a formula f(e1, . . . , ek), which evaluates
to v, there are basically two possibilities to derive a sugges-
tion: Either change the formula itself, or try to “backprop-
agate” the target constraint γ to the different arguments ei,
which depends, of course, on the operation f . In general,
we need k constraint transformations f1, . . . , fk that can
compute the change required for any argument that causes
the formula f(e1, . . . , ek) to evaluate to a value that satis-
fies γ. We abbreviate the sequence e1, ..., ei−1, ei+1, ..., ek

by ei and write f i(ei)(γ) to refer to the constraint for the
ith argument of f . This constraint must be defined to satisfy
the following implication.

f i(ei)(γ) = γ′ =⇒
(∀v.γ′(v) =⇒ γ(f(e1, ..., ei−1, v, ei+1, ..., ek))

For example, the constraint transformations for + are de-
fined as follows.

+1(v2)(γ) = λx.γ(x− v2)
+2(v1)(γ) = λx.γ(x− v1)

To see how this works, consider the case in which a cell con-
tains the formula 3 + 5 but should evaluate to a value that
satisfies the constraint > 11. In this case, +1 derives for
the first argument 3 the constraint λx.[> 11](x− 5), which
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δ(a, v, γ) = {a : v  γ} (1)
δ(a, f(e1, . . . , ek), γ) = ∪k

i=1δ(a, ei, f
i(ei)(γ)) ∪ {a : f(e1, . . . , ek) γ} (2)

δ(a, ↑a′, γ) = δ(a′, s(a′), γ) ∪ {a : ↑a′  ↑a′′|s(a′′)→→s v ∧ γ(v)} ∪ {a : f(e1, . . . , ek) γ} (3)

δ(a, if p then e else e′, γ) =


δ(a, e, γ) if p→→s T ∧ e′→→s v ∧ ¬γ(v)
δ(a, e′, γ) if p→→s F ∧ e→→s v ∧ ¬γ(v)
δ(a, p,= F ) ∪ δ(a, e, γ) if p→→s T ∧ e′→→s v ∧ γ(v)
δ(a, p,= T ) ∪ δ(a, e′, γ) if p→→s F ∧ e→→s v ∧ γ(v)

(4a)
(4b)
(4c)
(4d)

Figure 1. Change Inference

can be simplified to λx.[> 6](x) and further to (> 6). Sim-
ilarly, +2 derives for 5 the constraint λx.[> 11](x − 3) =
λx.[> 8](x) = (> 8). Both constraints can be converted
by the function V (shown below) into values (here, integer
values 7 and 9, respectively). Therefore, by applying either
suggestion we obtain a formula (7 + 5 or 3 + 9) that cor-
rectly computes a result larger than 11. For a function of k
arguments we can derive k suggestions, see def. (2).

For a cell reference, changes are inferred for the refer-
enced cell, and the address can be changed to any other cell
a′′ that evaluates to a value that satisfies γ. Moreover, the
reference can be replaced by the constant itself, see def. (3).

Finally, we provide a specialized inference for condi-
tional formulas since we have more detailed information
about the data flow from subformulas than in the generic
formula case described above. We distinguish four cases
depending on the result of the predicate and on whether or
not one of the alternatives evaluates to a value satisfying γ.
For example, consider the case when the cell a contains the
formula f = if p then e else e′. If the condition p evaluates
to true, f evaluates to its first alternative, that is, f→→s v where
e→→s v with ¬γ(v). Therefore, reasonable change suggestions
can be obtained through δ(a, e, γ). This case is captured in
definition (4a). Should in addition e′ evaluate to w with
γ(w), any change that causes p to evaluate to false is also a
reasonable change, see definition (4c). The two other cases,
(4b) and (4d), are obtained by an analogous consideration
of p evaluating to false and e evaluating to w with γ(w).

We can observe that the function δ propagates con-
straints through formulas while the system reports values
in the user interface. Once δ has propagated the initial con-
straint into a set of change suggestions, which still contain
constraints, these change constraints are converted into val-
ues by a function V . First, the constraint to be converted
is simplified as much as possible, for example, < 3∧ ≤ 1
can be simplified to ≤ 1. After that V can produce value
suggestions for constraints that do not contain ∧ or ∨.

V(ωv) = v for ω ∈ {≤,=,≥}
V(< v) = maxT {w | w < v}
V(> v) = minT {w | w > v}
V(γ) = γ

The functions maxT and minT are type-dependent
maximum and minimum functions. For example,

maxT {w | w < 3} yields 2 if w is an integer, while it
yields 2.99 if w is a floating point value.1 In cases when
γ is a non-simple constraint that cannot be solved, the user
is presented with a suggestion that is a textual description
of the constraint itself.

2.2 Suggestion Ranking

Since there can be many suggestions, the ranking heuris-
tics play an important role in minimizing the effort the user
has to invest in picking the correct change suggestion to ap-
ply. In the following, we describe the ranking heuristics of
the original GoalDebug system. Different ranking strategies
are applied depending on the kind of change suggestion.

For assessing the likelihood of a change to a formula, we
employ the idea of node equivalence classes for formulas
[19]. A similarity measure based on these classes indicates
the difference of the changed formula from the original one.
Since more drastic, that is, less similar changes, seem less
likely, higher similarity yields a higher rank for a particular
change suggestion.

For example, two formulas are considered to be copy
equivalent if they are identical when the relative references
are compared in the R1C1 notation. Two formulas are con-
sidered to be structurally equivalent if they contain the same
operations in the same order. Copy equivalence implies that
the original formula and the suggested change are more sim-
ilar than would be the case if they were only structurally
equivalent. Therefore, if a change suggestion recommends
changing a formula f to g that is copy-equivalent to f , the
change suggestion is ranked higher than a suggestion that
would yield a formula h that is only structurally equivalent
to f . Even lower ranked are changes to structurally non-
equivalent formulas. In GoalDebug this can happen in form
of value changes, that is, a formula is changed to a value.
For example, a change A2+2 to 5 would only receive a very
low ranking.

Changes to references are ranked based on their Man-
hattan distance from the original reference. This approach
makes closer cells more likely suggestions. For example,
any suggestion to change B5 in a formula, say 2*B5, to B6
or B4 (or to A5 or C5) would be ranked higher than sugges-
tions for changes to B7, A4, or D5. This heuristic is based

1The number of decimal places is arbitrarily fixed to 2.
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Operator Description
ABS ABSolute value insertion
AOR Arithmetic Operator Replacement
CRP Constants RePlacement
CRR Constants for Reference Replacement
LCR Logical Connector Replacement
ROR Relational Operator Replacement
RCR Reference for Constant Replacement
FDL Formula DeLetion
FRC Formula Replacement with Constant
RFR ReFerence Replacement
UOI Unary Operator Insertion
CRS Contiguous Range Shrinking
NRS Non-contiguous Range Shrinking
CRE Contiguous Range Expansion
NRE Non-contiguous Range Expansion
RRR Range Reference Replacement
FFR Formula Function Replacement

Table 2. Mutation operators for spreadsheets

on the assumption that the introduction of the incorrect ref-
erence is primarily the result of a mechanical error (clicking
an incorrect cell to select the target) and reflects typical ref-
erence errors that occur when users click in a wrong cell
while editing formulas.

Finally, value changes are ranked based on their types.
For example, a change suggestion that recommends chang-
ing an integer value to a float (which could be caused,
for example, by a division constraint) would have a lower
rank than a suggestion that recommends changing an in-
teger value to some other integer value. This ranking does
not apply to suggestions to replace formulas by values since
these are already covered by the ranking based on similarity,
which is very low in this case.

3 Evaluation

The evaluation of GoalDebug has to consider two as-
pects. First, the system should be able to generate change
suggestions to correct errors in the formulas that manifest as
program failures. In this context, an effective change sug-
gestion is one that corrects the formula error. Second, the
system should be able to rank the generated change sugges-
tions so that the correct change suggestions show up high on
the list presented to the user. In this context, a more effective
set of ranking heuristics would rank the correct change sug-
gestions higher than a less effective one. The effectiveness
of the generated change suggestions and ranking heuristics
are the two parameters we will be measuring the perfor-
mance of the system on.

To study these two aspects, we systematically mutate for-
mulas and determine whether GoalDebug is able to suggest
changes that can revert those mutations and how high they
are ranked among all inferred changes.

In previous work, we have developed operators for muta-
tion testing of spreadsheets [5]. These operators were based

on mutation operators developed for general-purpose pro-
gramming languages [20] and on errors committed by end
users while creating spreadsheets [8, 23]. One of the goals
behind the design of the mutation operators was to automat-
ically seed spreadsheets with errors for empirical studies.
The full suite of mutation operators we have developed is
shown in Table 2. These operators can be used to model
deviations from the correct spreadsheet.

For the evaluation, we used spreadsheets used in empiri-
cal studies described in [3,15], see Table 3. For each spread-
sheet the following information is given.

1. Number of formula cells in the spreadsheet (Fml).
2. Total number of cells in the spreadsheet (Total).
3. The number of generated irreversible mutants. These

are formulas that evaluate to the same value as the
original formula and thus cannot produce failures that
could be identified by the user. GoalDebug is prin-
cipally inapplicable in those cases and cannot be in-
voked to generate change suggestions since the com-
puted output and expected output are the same.

4. The number of generated reversible mutants. These
mutant formulas evaluate to values that are different
from the values produced by the original formulas, and
GoalDebug can be invoked on those cells.

5. Total number of generated mutants for each sheet.

Sheet Cells Mutants
Fml Total Irrever. Rever. Total

Microgen 2 12 143 33 176
GradesNew 8 26 157 181 338
FitMachine 6 18 366 74 440
Digits 6 14 172 293 465
NetPay 6 18 61 47 108
Purchase 15 50 172 153 325
RandJury 21 58 578 308 886
Sales 16 29 0 338 338
Solution 3 12 119 116 235
Budget 6 24 46 112 158
MBTI 28 83 902 243 1145
NewClock 10 24 156 165 321
GradesBig 21 48 283 647 930
Harvest 9 26 10 221 231
Payroll 54 100 347 1057 1404
Total 211 542 3512 3988 7500

Table 3. Sheets used in the evaluation

Obviously, not all operators shown in Table 2 are ap-
plicable to all formulas. Therefore, we picked sheets that
had many different kinds of formulas to be able to apply
the operators from the suite. All operators, except FDL
(formula-deletion operator) and FRC (formula replace with
constant operator) from the suite were used to seed errors
in the spreadsheet. We excluded the FDL operator for two
reasons. First, Excel does not handle the inclusion of ref-
erences to blank cells in spreadsheet formulas consistently.
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Sheet Operators: Uncorrected [Total]
AOR CRP CRR LCR NRE NRS RFR ROR RRR

Microgen 6 [6] 0 [3] 4 [4] 1 [1] 0 [0] 0 [0] 3 [16] 3 [3] 0 [0]
GradesNew 18 [18] 0 [4] 25 [25] 1 [1] 0 [0] 0 [0] 16 [123] 10 [10] 0 [0]
FitMachine 9 [9] 3 [6] 11[11] 1 [1] 0 [0] 0 [0] 5 [41] 6 [6] 0 [0]
Digits 62 [62] 0 [17] 43 [43] 0 [0] 0 [0] 0 [0] 27 [152] 19 [19] 0 [0]
NetPay 3 [3] 0 [6] 12 [12] 0 [0] 0 [0] 0 [0] 0 [22] 4 [4] 0 [0]
Purchase 14 [14] 0 [4] 29 [29] 0 [0] 0 [0] 0 [0] 3 [91] 15 [15] 0 [0]
RandJury 87 [87] 0 [47] 33 [33] 6 [6] 0 [0] 0 [0] 6 [119] 16 [16] 0 [0]
Sales 72 [72] 0 [12] 49 [49] 0 [0] 0 [0] 0 [0] 24 [205] 0 [0] 0 [0]
Solution 21 [21] 0 [2] 12 [12] 0 [0] 0 [0] 0 [0] 11 [77] 4 [4] 0 [0]
Budget 15 [15] 0 [1] 18 [18] 0 [0] 0 [0] 0 [0] 10 [75] 3 [3] 0 [0]
MBTI 43 [43] 0 [24] 35 [35] 16 [16] 0 [0] 0 [0] 3 [120] 5 [5] 0 [0]
NewClock 20 [20] 1 [11] 22 [22] 1 [1] 0 [0] 0 [0] 0 [97] 14 [14] 0 [0]
GradesBig 6 [6] 3 [5] 28 [28] 1 [1] 99 [99] 27 [27] 12 [103] 14 [14] 272 [364]
Harvest 0 [0] 0 [0] 5 [5] 0 [0] 40 [40] 18 [18] 0 [24] 0 [0] 99 [134]
Payroll 170 [170] 0 [42] 166 [166] 0 [0] 0 [0] 0 [0] 39 [641] 38 [38] 0 [0]
Total 546 [546] 7 [184] 492 [492] 27 [27] 139 [139] 45 [45] 159 [1906] 151 [151] 371 [498]

Table 4. Original version of GoalDebug’s effectiveness at correcting mutations

For example, a (reference to a) blank cell in a SUM aggrega-
tion is treated as a 0, whereas a blank cell in an IF statement
is considered to be smaller than any string or number. A
blank cell in a binary operation is flagged as an error. This
aspect makes it difficult to model Excel’s handling of blank
cells. Second, it seems unlikely that the user would mark
an empty cell as incorrect and specify the expected output.
The FRC operator was excluded because the mutation is not
a minor change to reverse. That is, given only the expected
output and the actual data in the cell, it is not easy in general
to generate a formula that would result in the expected out-
put. Even so, if either of these situation arose, GoalDebug
could potentially do one of two things. The first option
would be to directly recommend that the specified expected
value be entered in the cell. The second option would be
to look for formulas within the spreadsheet which if copied
and pasted to the cell under consideration would result in
the expected value being computed. All such candidate for-
mulas could be ranked from high to low confidence with
increasing distance from the target cell.

The number of mutants that have not been corrected by
this version of GoalDebug are shown in Table 4. These
are the cases in which none of the suggestions generated
by GoalDebug correct the mutation.

The evaluation setup is shown in Figure 2. We ran the
mutation operators on the sheets and then compared the
output from the generated mutants with the output from
the original spreadsheet. For the cells in which the out-
puts from the original spreadsheet and the mutants were
different, we specified the outputs from the original spread-
sheet as the expected values and ran GoalDebug to generate
change suggestions. We then applied the generated change
suggestions to the mutated spreadsheets to determine the
number of cases in which the mutation is reversed by ap-
plying the change suggestion generated by GoalDebug. In

Mutant SheetsSpreadsheets

MutOps

ChangeInf

Changes Apply

SpreadsheetsCompare

Corrected Uncorrected

Figure 2. Evaluation setup

cases in which GoalDebug was effective at correcting the
mutants, we determined the rank of the change suggestions
that would reverse the effect of the mutation operators.

We carried out the evaluation using the suite of muta-
tion operators to get an idea of what kind of extensions are
required for GoalDebug to be able to suggest changes for a
wide range of faults. It should be clear from a comparison of
the different mutation operators in Table 2 and the change
suggestion inference mechanism shown in Figure 1 that the
original version of GoalDebug would not be able to reverse
all the possible mutations. The numbers shown in Table 4
reflect this fact since a majority of the mutations are not re-
versed by GoalDebug. All of the uncorrected mutants are
created by the nine operators shown in Table 4. Moreover,
GoalDebug does not have any change inference mechanism
to reverse the errors seeded by the operators AOR, CRR,
LCR, NRE, NRS, and ROR. To extend GoalDebug’s scope,
it is important to include coverage for these classes of er-
rors. Moreover, we also would like to improve the system’s

5



δ(a, f(e1, . . . , ek), γ) = {a : f  f ′ | f ′(e1, . . . , ek)→→s v ∧ γ(v)} (5)
δ(a, f(e1, ..., c, ..., ek), γ) = {a : c ↑a′ | f(e1, ..., ↑a′, ...ek)→→s v ∧ γ(v)} (6)
δ(a,∧(e1, . . . , ek), γ) = {a : ∧ ∨ | ∨ (e1, . . . , ek)→→s v ∧ γ(v)} (7a)
δ(a,∨(e1, . . . , ek), γ) = {a : ∨ ∧ | ∧ (e1, . . . , ek)→→s v ∧ γ(v)} (7b)
δ(a, e1 r e2, γ) = {a : r  r′ | e1 r′ e2→→

s
v ∧ γ(v) ∧ r′ ∈ ({<,≤, >,≥, =, 6=} − {r})} (8)

δ(a, f(↑a1, ..., ↑an), γ) = {a : f(↑a1, ..., ↑an) f(↑a1, ..., ↑an, ↑a′) | ρ(s, a, ↑a′) ∧ f(↑a1, ..., ↑an, ↑a′)→→s v ∧ γ(v)} (9a)
δ(a, f(↑a1, ..., ↑an), γ) = {a : f(↑a1, ..., ↑a′, ..., ↑an) f(↑a1, ..., ↑an) | ↑a′ ∈ {↑a1, ..., ↑an} ∧ f(↑a1, ..., ↑an)→→s v ∧ γ(v)} (9b)

Figure 3. Extensions to Change Inference

coverage on errors seeded by the CRP, RFR, and RRR op-
erators.

From the preliminary evaluation, we identified two areas
in which GoalDebug could be improved: (1) The change
inference mechanism needs to be expanded to included a
wider range of error situations (see Section 4). The mod-
ification of the system could potentially result in a much
higher number of change suggestions being generated un-
der any given condition. This problem requires us to (2)
carry out enhancements to the ranking heuristics so that the
system performs better even with the higher number of gen-
erated suggestions (see Section 5). The goal of refining the
ranking heuristics is to ensure that the correct suggestions
are assigned high ranks to minimize the effort invested by
the users while debugging faults in spreadsheets.

4 Improving Change Inference
Since the original version of GoalDebug could handle

only the few formula-level mutations shown in Figure 1, a
substantial extension of the change-inference mechanism of
GoalDebug was required.

4.1 Extension of Change Inference

The function δ to generate change suggestions has been
extended as shown in the definitions given in Figure 3.

If a cell a contains a formula f(e1, . . . , ek), and the con-
straint on the cell is γ, GoalDebug would use definition (2)
to “back propagate” the constraint to the arguments of f , or
recommend replacing the entire formula with a value v that
satisfies the constraint. The extension, shown in definition
(5), also generates recommendations that replace the oper-
ator/function f with others that would result in the output
value v that satisfies the constraints on the cell. Note that
this definition is applicable to binary operators as well. This
extension is aimed at increasing GoalDebug’s effectiveness
against the mutations introduced by the AOR operator.

A constant in a formula that does not match the con-
straints can be replaced with another constant (as is done
to reverse the effect of the CRP operator), or with a refer-
ence to a cell whose formula evaluates to a value that sat-
isfies the constraints. (The reference can also be to an in-
put cell whose value satisfies the constraints.) This effect
is achieved by definition (6) and is aimed at reversing the
errors seeded by the CRR operator.

It has been observed in studies [21] that end users often
confuse logical connectors, that is, they use OR when they
mean AND and vice versa. The LCR operator has been in-
cluded in the mutation suite to model this class of errors.
The effect of the LCR operator can be reversed by the ex-
tension shown in definitions (7a) and (7b).

The ROR operator models the cases in which an end user
might chose the wrong relational operator, for example, in
an IF statement. Definition (8) reverses the effect of the
ROR operator by replacing the relational operator with any
of the others that would result in the conditional expression
satisfying the constraints.

While specifying the range for an aggregation formula,
users might accidentally include extra cells or omit cells that
they should have included. These errors are modeled using
the NRE and NRS operators, respectively. The current ver-
sion of the operators carry out the inclusion/exclusion of
only one cell for each error seeded. Definition (9a) reverses
the effect of a single error seeded by NRS. In this case we
need the additional check ρ(s, a, ↑a′) to ensure that the in-
clusion of reference ↑a′ in the formula in a does not intro-
duce a cyclic reference in s. The effect of the NRE operator
is reversed by definition (9b).

The RFR operator models errors that occur when users
pick incorrect references during the editing of formulas.
The original version of GoalDebug’s change inference for
references limited the suggestions to the immediate neigh-
borhood of the incorrect reference. This approach was
based on the assumption that such faults primarily arise
from mechanical errors (cases in which users accidentally
click the cells in the neighborhood of the one they intended
to click). The restriction to the cells in the neighborhood
has been removed in the new version of the system.

The RRR operator mutates references within contiguous
ranges in aggregation formulas. Like for the RFR operator,
the restriction to the cells within the neighborhood of the
references in the original formula has been removed in the
new version.

4.2 Evaluation of Change Inference

After incorporating the modifications described in Sec-
tion 4.1, we ran the new version of GoalDebug through the
evaluation steps described in Section 3. Once again, the
number of mutants that were not reversed by GoalDebug
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Sheet Operators: Uncorrected [Total]
AOR CRP CRR LCR NRE NRS RFR ROR RRR

Microgen 0 [6] 0 [3] 0 [4] 0 [1] 0 [0] 0 [0] 0 [16] 0 [3] 0 [0]
GradesNew 0 [18] 0 [4] 0 [25] 0 [1] 0 [0] 0 [0] 0 [123] 0 [10] 0 [0]
FitMachine 0 [9] 2 [6] 0 [11] 0 [1] 0 [0] 0 [0] 0 [41] 0 [6] 0 [0]
Digits 0 [62] 0 [17] 0 [43] 0 [0] 0 [0] 0 [0] 0 [152] 0 [19] 0 [0]
NetPay 0 [3] 0 [6] 0 [12] 0 [0] 0 [0] 0 [0] 0 [22] 0 [4] 0 [0]
Purchase 0 [14] 0 [4] 0 [29] 0 [0] 0 [0] 0 [0] 0 [91] 0 [15] 0 [0]
RandJury 0 [87] 0 [47] 0 [33] 0 [6] 0 [0] 0 [0] 0 [119] 0 [16] 0 [0]
Sales 0 [72] 0 [12] 0 [49] 0 [0] 0 [0] 0 [0] 0 [205] 0 [0] 0 [0]
Solution 0 [21] 0 [2] 0 [12] 0 [0] 0 [0] 0 [0] 0 [77] 0 [4] 0 [0]
Budget 0 [15] 0 [1] 0 [18] 0 [0] 0 [0] 0 [0] 0 [75] 0 [3] 0 [0]
MBTI 0 [43] 0 [24] 0 [35] 0 [16] 0 [0] 0 [0] 0 [120] 0 [5] 0 [0]
NewClock 0 [20] 1 [11] 0 [22] 0 [1] 0 [0] 0 [0] 0 [97] 0 [14] 0 [0]
GradesBig 0 [6] 1 [5] 0 [28] 0 [1] 23 [99] 0 [27] 0 [103] 5 [14] 73 [364]
Harvest 0 [0] 0 [0] 0 [5] 0 [0] 0 [40] 0 [18] 0 [24] 0 [0] 10 [134]
Payroll 0 [170] 0 [42] 0 [166] 0 [0] 0 [0] 0 [0] 0 [641] 0 [38] 0 [0]
Total 0 [546] 4 [184] 0 [492] 0 [27] 23 [139] 0 [45] 0 [1906] 5 [151] 83 [498]

Table 5. GoalDebug’s effectiveness at correcting mutations after enhancements

was compared against the total number of mutants gener-
ated (which remains the same as in the evaluation described
in Section 3). The new effectiveness scores are shown in
Table 5. Figure 4 shows comparisons of these scores with
those from the old system in Table 4. For each of the mu-
tation operator, the percentage coverage of the old system
(in yellow/lighter shade) is shown against and the coverage
of the new system (in blue/darker shade). The extensions to
the change inference mechanism has increased the ability
of GoalDebug to recover from a much wider spectrum of
errors as can be seen from the plot.

Figure 4. Comparison of coverage%

5 Improving Ranking Heuristics
Since the extension of change inference cause the gener-

ation of significantly more change suggestions, the ranking
heuristics have to be improved for the system to be effec-
tive.

5.1 Extensions to the Ranking Heuristics

Similarities in spreadsheet formulas have been exploited
in consistency checking [19] and testing of spreadsheets
[10]. The frequency of occurrences of cp-similar regions
has been shown by the analysis carried out on the EUSES

spreadsheet corpus as reported in [16]. The corpus has 4498
spreadsheets collected from various sources. Out of the
1977 spreadsheets that have formulas in them, 1797 have
cp-similar regions. Furthermore, among the spreadsheets
that have cp-similar regions, there are on average 5.2 re-
gions per spreadsheet, with an average of 13.1 regions in
spreadsheets that have at least 1 region, a maximum of 414
regions in a spreadsheet, and 23845 regions in total in all
the spreadsheets taken together.

We define spatial similarity as the similarity of formulas
in spatially co-located cells. In some cases, cells with simi-
lar formulas are not in the immediate spatial neighborhood
of each other. Such situations might arise when the cells
under consideration are fulfilling similar conceptual roles
in different regions of the spreadsheet. To express this idea,
we define conceptual similarity as the similarity of formu-
las in cells that are not spatial neighbors. The extensions
to the original ranking heuristics are aimed at exploiting the
spatial and data flow information in the spreadsheet.

Refinement of the original heuristics. One problem
with the original ranking heuristics is that the different kinds
of change suggestions are treated on an equal footing. For
example, a change suggestion that recommends changing a
reference r1 in a formula f to a reference r2 (resulting in
formula f ′) is ranked solely on the basis of the Manhattan
distance between r1 and r2 and the similarity between for-
mulas f and f ′. It does not take into account the structure
of the formulas in the other cells within the spreadsheet.

In the new heuristics for ranking formula changes, the
ranks have three components which are considered for the
overall ranking.

1. The similarity (as described in Section 2.1) between
the original formula and the suggested new formula.

2. The number of formulas in the spreadsheet that are
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similar to the suggested formula.
3. The Manhattan distance of formulas in the spreadsheet

that are similar to the suggested formula from the cell
the change suggestion is applicable to.

This approach has been adopted to allow the spatial and
conceptual neighbors to induce a higher ranking for a for-
mula that is similar to the others within the spreadsheet.

Unit checking. The UCheck system [1, 6] performs
automatic consistency checking of spreadsheet formulas
based on labels to detect what we call unit errors. By inte-
grating UCheck with GoalDebug, we rank unit-correct sug-
gestions higher than other changes that were not unit cor-
rect. This integration allows us to add a level of checking to
the change suggestion process. Change suggestions are also
type checked to ensure that applying any of the change sug-
gestions will not introduce type errors in the spreadsheet.

Impact analysis. We also rank suggestions based on the
number of cells that would get affected by applying a par-
ticular change. For example, assume that cells c1, c2, and
c3 have references to cell c4, whereas the output of cell c5 is
only used by c6. Therefore, any change to the formula in c5
would be preferred over a change to the formula in c4 since
it has lower impact on other cells within the spreadsheet.

User confidence. We assign a level of confidence to the
generated change suggestions based on how the user spec-
ifies the expected value for a cell. For example, if the ex-
pected value in B3 is equal to 80 and the expected value in
E7 is less than 90, we assume that the user is more confi-
dent about the expected outcome for B3 than for E7. Ev-
erything else remaining the same, the change suggestions
generated from the constraint on the expected value of B3
would be ranked higher than those generated from the con-
straint on the expected value of E7. In other words, the
confidence level can not only be used for ranking, but also
to resolve conflicts while propagated constraints from dif-
ferent sources are encountered.

Exploiting data flow information. When the user indi-
cates that the output of a cell is incorrect, the source of the
failure could be a fault in some cell upstream in the data-
flow chain from the marked cell, or the fault could be in the
marked cell itself. This question can be resolved by seek-
ing more input from the user by shading the cells upstream
and asking the user if the values in those cells are correct.
Once a cell that has a fault has been isolated, the changes
suggested for the formula in that cell should be ranked the
highest. Moreover, the change suggestions generated for
those cells already marked as correct should be ranked re-
ally low—we do not filter these out, just in case the user
made a mistake. This approach helps minimize the number
of suggestions generated by trying to first locate the fault.
This approach is also very effective in cases in which mul-
tiple faults lead to the common point of failure that is iden-
tified and marked by the user.

5.2 Evaluation of Ranking Heuristics

We have four possible configurations (old and new ver-
sions of the change-inference system and ranking heuris-
tics) that can be considered to evaluate the ranking heuris-
tics. However, as can be seen from Table 4, the extended
change inference system reverses the effect of all the differ-
ent classes of mutants, whereas the old version of change
inference was only effective for a small subset of possible
mutants. Therefore, to evaluate the new ranking heuris-
tics, for each of the mutants reversed by the new change-
inference mechanism, we compare the rank assigned by the
old version (RankO) of the ranking heuristics against the
rank assigned by the new version (RankN).

The Wilcoxon test showed that the new ranking heuris-
tics perform significantly better than the old ones (p <
0.001). Ideally, the correct change suggestion should be
ranked within the top five ranks, thereby minimizing the ef-
fort the user would have to expend to locate it. The dif-
ference in ranks assigned by the two techniques is more
important at high ranks than at low ones. For example, a
difference of 5 between ranks 1 and 6 is more important
than between ranks 100 and 105. To account for this aspect,
we also ran tests on the reciprocals of the ranks generated
by the two techniques. Again, the Wilcoxon test showed
that the new ranking techniques perform significantly better
than the old ones (p < 0.001).

Operator p
AOR < 0.001
CRP < 0.001
CRR < 0.001
LCR 0.008
NRE 0.036
NRS 0.005
RFR < 0.001
ROR < 0.001
RRR < 0.001

Since the mutation operators reflect
different kinds of errors that can
occur in formulas, we also com-
pared the performance of the rank-
ing heuristics for each operator. The
new heuristics are significantly bet-
ter than the old ones for all operators
as illustrated by the p-values shown
on the left. Due to space constraints,

we unfortunately cannot show the boxplots.
The cumulative coverage percentages across ranks for

the new heuristics (in dark red) are compared against those
for the old (in light blue) in Figure 5.

With the new heuristics in effect, the top ranked sugges-
tion corrects the mutations in 59% of the cases, the top two
suggestions correct the mutations in 71% of the cases, and
so on. Putting the numbers in perspective, out of the 3988
mutants considered, the suggestion that corrects the muta-
tion is ranked in the top five in 80% of the cases with the
new ranking heuristics as opposed to only 67% of the cases
with the old version of the system.

6 Related Work
The WHYLINE system, implemented in the Alice en-

vironment, allows users to ask “Why...?” and “Why
didn’t...?” questions about expected program behavior [18].
The system uses static and dynamic analyses of the program
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Figure 5. Cumulative coverage of ranking
heuristics

to help the user locate the cause of the error, which is sim-
ilar to the idea of GoalDebug. Empirical evaluations have
shown that users debug errors up to 8 times as fast with
WHYLINE than without, even though WHYLINE does not
produce change suggestions.

Spreadsheet testing is closely related to debugging. In
the WYSIWYT system users can indicate incorrect output
values by placing a 7 in the cell. Similarly, they can indi-
cate that the value in a cell is correct by placing a X [26].
When a user indicates one or more program failures during
this testing process, fault localization techniques [27] direct
the user’s attention to cells with possible errors. However,
WYSIWYT provides no help with regard to how to change
erroneous formulas. It might seem that the GoalDebug anal-
ysis subsumes the analysis of WYSIWYT since providing
an expected value that is different from the current cell
value implies that the current cell value is wrong. How-
ever, this is not the case since, in contrast to GoalDebug,
WYSIWYT also collects user input about correct cell val-
ues and employs this information in the fault localization
analysis. Therefore, each system has something to offer to
the other.

There are several spreadsheet analysis tools that try to
reason about the units of cells to find inconsistencies in for-
mulas [1,6,7,9,13]. The tools differ in the rules they employ
and also in the degree to which they require users to pro-
vide additional input. The original proposal in [13], which
modeled the unit structure essentially with and and or units
arranged into an is-a unit hierarchy, was extended by [7] to
include an additional has-a hierarchy. The approach of [9]
is focused on reasoning about dimensions. All these ap-
proaches require the user the annotate the spreadsheet cells
with additional information. In contrast, the UCheck sys-
tem [6], by exploiting techniques for automated header in-
ference [1], can perform unit analysis fully automatically.
However, none of these approaches provide any further help
to the user to correct the errors once they are detected.

Other approaches aimed at minimizing the occurrence of

errors in spreadsheet include code inspection [22], auditing
[19,28], and adoption of better spreadsheet design practices
[17, 25, 31]. Again, none of these approaches offer support
for debugging.

7 Conclusions and Future Work
In this paper we have described an evaluation we carried

out of our spreadsheet debugger for end users. Guided by
the results of our evaluation, we made improvements to the
change inference system so that GoalDebug can work with
a much wider range of end-user errors. We also made re-
finements to the ranking heuristics employed by the system
so as to minimize the effort expended by the users in locat-
ing the correct change suggestion to apply. Further evalua-
tions have shown that the coverage of the system has been
increased substantially and that the new ranking heuristics
are significantly better than the old ones. The overall effec-
tiveness of the system is quite promising.

In future work, we plan to investigate further possibilities
of enhancing the ranking heuristics, in particular, the idea of
employing model information about the spreadsheet. The
use of unit inference to rank suggestions was one example,
but there are other possibilities yet to be explored. For ex-
ample, the notion of spreadsheet templates summarize the
very expressive structural aspects of spreadsheets [11, 12].
We have already shown that automatic template inference
can be performed with high precision and reliability [4].
It would be interesting to see how much template confor-
mance of suggestions can further improve the effectiveness.

Moreover, we would like to carry out user studies to eval-
uate if end users can use the system effectively. The data
from these studies would be invaluable in designing refine-
ments to the system interface. There is the inherent risk
that users might not heed their own judgment and simply
trust the system to be correct and go with one of the highest
ranked suggestion always. At the other extreme, we have
a situation in which the user might lose trust in the system
and ignore the suggested changes altogether (or not invoke
the system at all).

Finally, since testing and debugging are complementary
activities, we are interested in merging GoalDebug with
the testing environment like WYSIWYT (preferably cou-
pled with an automatic test-case generation system like
AutoTest [3]). One particularly interesting aspect, as far
as GoalDebug is concerned, is the following idea. Analyses
of data collected during empirical studies have shown that
some users place 7 orX based on whether the formula (and
not the value as expected by the designers of the system)
is right or wrong [24]. Users placing X based on the cor-
rectness of the formulas in the spreadsheets would provide
important information to the GoalDebug system since we
can simply filter out all the change suggestions that recom-
mend changing the formulas marked as correct by the user.
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Even in cases in which users only indicate the correctness
of a value we can use this information to assign a low rank
to change suggestions for the formula in that cell.
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