
Goal-Directed Debugging of Spreadsheets?

Robin Abraham and Martin Erwig
School of EECS, Oregon State University
[abraharo|erwig]@eecs.oregonstate.edu

Abstract

We present a semi-automatic debugger for spreadsheet
systems that is specifically targeted at end-user program-
mers. Users can report expected values for cells that yield
incorrect results. The system then generates change sugges-
tions that could correct the error. Users can interactively
explore, apply, refine, or reject these change suggestions.
The computation of change suggestions is based on a for-
mal inference system that propagates expected values back-
wards across formulas. The system is fully integrated into
Microsoft Excel and can be used to automatically detect and
correct various kinds of errors in spreadsheets. Test results
show that the system works accurately and reliably.

Keywords: Spreadsheet, Debugging, Static Analysis,
End-User Software Engineering.

1 Introduction

The widespread use of spreadsheets by end-user pro-
grammers has led to a situation where up to 90% of spread-
sheets have non-trivial errors in them [12]. This has gener-
ated considerable interest in the end-user-programming re-
search community to develop tools and systems that would
help end users develop correct spreadsheets. The ap-
proaches can be principally grouped into two categories:

(1) Detection of errors [13, 6, 2] and
(2) Error prevention [5]

The error-detection tools that are currently available are
limited in that they only do part of the work—they help
identifying the errors, but they do not really help in remov-
ing them. Most tools try to mitigate this problem by giving
additional fault localization information [14] and better er-
ror messages [11] to help the users correct the spreadsheets.
However, it would be even more helpful if the tools could
suggest and perform corrective changes that would rectify
the error in the spreadsheet.

Consider the spreadsheet shown in Figure 1, which
shows the monthly income versus expenditure figures. Col-
umnB has the descriptions for the different transactions on
the user’s bank account. ColumnC has the figures for the

∗This work is partially supported by the National Science Foun-
dation under the grant ITR-0325273 and by the EUSES Consortium
(http://EUSESconsortium.org).

various deposits made to the account, and columnD has
the figures for the withdrawals from the account. Column
E shows the current running balance that is updated after
each transaction. The user also likes to keep track of a sum-
mary of monthly expenditure. The summary categories are
in columnG, and the corresponding values are in columnH.
Finally, G8 has a formula that identifies the category under
which the maximum expense has occurred for the month.

Figure 1. Monthly Expenditure Sheet

At the end of January, the user notices two problems with
this spreadsheet. First, the summary figures for food-related
expenses is very high compared to previous months—the
user suspects the amount $899 in the spreadsheet is incor-
rect since it is usually less than $500. Second,G8 shows
Rent as the category under which the maximum expense
has occurred whereas it is obvious from the computed val-
ues that food-related expenses (expected outputFood) have
depleted the user’s bank account the most. To debug this
spreadsheet, the user would have to go over the formulas in
cellsG8 andH3 carefully to identify the error. If the prob-
lem is still unclear, the user would have to identify and go
over all the cells referenced by the formula in cellH3. In a
more complicated spreadsheet, this problem could be com-
pounded further if the cells referenced byH3 themselves
have formulas in them. This makes debugging a challeng-
ing and potentially error-prone activity.

In the approach presented in this paper, the user can spec-
ify the expected value of an erroneous cell. In case the user
does not know the exact output value, she can simply spec-
ify a range. For example, in the case discussed above, the
user might not know the correct output value forH3, and
could specify that some value less than 500 is the expected
output from the cell. The system uses this information to
infer possible value or formula changes to cells that impact

1

Figure 2. Gradebook spreadsheet

the value in the error cell. In the first step, only the cells that
directly influence the value of the erroneous cell are consid-
ered. The system uses a set of heuristics to rank the change
suggestions since they are not all equally likely. For each
of the cells under consideration, five suggestions with the
highest ranks are then presented to the user. The user can
then proceed in different ways.

(1) The user might choose toapplyany one of the presented
suggestions. This action would result in the spreadsheet
being modified according to the suggestion.

(2) The user might ask formoresuggestions. In this case,
the constraints are propagated backwards through the
sheet where possible, and more suggestions will be gen-
erated. All the suggestions will be ranked again on the
basis of the heuristics and the higher ranked ones are
presented to the user. If the constraints cannot be prop-
agated backwards, the system informs the user that no
more suggestions can be generated.

(3) The user mightrejectone or more of the presented sug-
gestions. The system employs these rejected sugges-
tions as additional constraints in the further generation
of suggestions.

In the next section, we discuss how our system could help
users debug their spreadsheets. Section 3 presents formal
semantics of change inference and the heuristics we have
used to rank the suggestions generated by the system. In
Section 4, we describe in detail how the system generates
change suggestions. Some preliminary steps we have taken
to evaluate our approach are described in Section 5. We
present related work in Section 6. Conclusions and direc-
tions for future work are given in Section 7.

2 Beyond Debugging

The typical scenario of existing debuggers involves find-
ing out how input values have been used to cause a wrong
result to be computed. In our system, we invert the “debug-
ging question”: We determine how to change the input cells
or formulas so that the correct result will be produced. We

adopt an approach similar to the one described in [8, 15]
where the system allows the user to mark a bug and spec-
ify expected behavior of the system. In the Whyline sys-
tem, the users can ask “Why did...?” and “Why didn’t...?”
questions to inspect the runtime behavior of the program.
Whyline answers the “Why didn’t...?” questions by consid-
ering all possible runtime actions that did and did not hap-
pen. In our system, users provide constraints describing the
expected output values for the cells that are incorrect. This
extra information regarding the expected output is then used
as described formally in Section 3 to generate change sug-
gestions that are presented to the user.

Figure 2 shows a spreadsheet used to store the grades of
the students in a course.1

Column H checks to see if a student is “above aver-
age” (designated by 1) or “below average” (designated by 0)
compared to the class average for the course, computed in
cell G7. The user might notice that Amanda’s average score
is 80, which is above the class average of 75.2. Therefore,
the value inH2 should be 1 instead of 0. The value is in-
correct because the formula inH2 incorrectly comparesG2
with F7 instead ofG7. The user can specify the expected
value for H2 in the change-request mechanism (shown in
Figure 3) that can be invoked by right-clicking inH2 and
selectingDebug from the menu.

Figure 3. Specifying expected value in a cell

The system generates change suggestions based on the
input from the user. The generated suggestions are ranked
on the basis of the heuristics we will discuss in Section
3.2. The cell with the highest ranked change suggestion
is shaded orange, and all other cells for which change sug-
gestions have been generated are shaded yellow. In the cur-

1A similar Forms/3 spreadsheet with grade information for one student
was used in empirical studies aimed at testing effectiveness of fault local-
ization techniques [14].

2

rent example, suggestions are generated only forH2 in the
first step. The user can view the change suggestions by
right-clicking on the cell and selectingSuggestions from
the menu. The user can select or ignore change suggestions
from the list. We see in Figure 4 that the suggestion for
changingF7 to G7 is the second item on the list of possible
changes (of which only the five highest ranked are shown)
that would result in the formula inH2 evaluating to 1.

Figure 4. List of suggestions for H2

This change would correct the error in the spreadsheet.
If the user picks this change suggestion, she is presented
with the window shown in Figure 5 which allows her to
make modifications to the suggested formula (if necessary)
before applying it to the cell. Once the user clicksApply the
chosen change suggestion is performed and the spreadsheet
is error free. We see in this example that only 3 actions/steps
were performed by the user (specifying the expected value
for the cell with the error, selecting the change suggestion,
and applying the change suggestion) in correcting the error.
The cognitively difficult task of coming up with the correct
suggestion and entering it as the cell’s formula (ensuring
syntactic correctness) was taken care of by the system.

Figure 5. Applying the change suggestion

3 Change Inference

The basic idea of change inference is fairly simple:
Given a valuew, which represents the expected value for a
cell a, determine possible changes in the cell’s formula and
in formulas of referenced cells that would cause the actual
value computed for the cella to bew. In fact, we can con-
sider the more general problem of specifying a constraint
on the result value of a cell. Initially, these constraints can
be of the formωw whereω ∈ {<,≤,=,≥,>}. Propagation

of constraints across cell formulas requires to also include
and andor constraints. A particular challenge for change
inference is that, in general, many possible changes exist
and that we want to report to the user only a limited set of
the most promising or most likely changes.

For the following discussion, we regard a spreadsheet
(s) as a mapping from addresses to formulas. The formula
stored at the addressa in s is obtained bys(a). The evalu-
ation of a formulaf to a valuev in the context of a spread-
sheets is written asf→→s v. For a spreadsheetswe are given
a target cellwith addressa and atarget constraintγ as de-
fined in Figure 6. Lambda abstractions are needed to define
constraint transformations.

γ ::= ωv | γ∧ γ | γ∨ γ | λx.γ
ω ::= < | ≤ | = | ≥ | >

Figure 6. Syntax of constraints.

Constraints effectively describe predicates on values, so
that the application of a constraintγ to a valuev, written
γ(v), yields either true or false. For example,[< 3∧ ≥ 1](2)
yields true. We assume that the formulaf that is stored in
a evaluates to a valuev for which γ(v) yields false, because
otherwise the cell computes a correct value, and no debug-
ging is needed.

We perform change inference in several steps: First, we
determine possible changes for a given target value. This
process is described in Section 3.1. After that we rank the
results by a heuristic to distinguish more likely changes
from less likely ones. Possible heuristics are described in
Section 3.2. Changes are suggested in chunks of decreasing
relevance according to the computed ranking.

3.1 Change Candidates

Change inference is performed by a functionδ, which is
formally defined in Figure 7. The generated change sug-
gestions are of the form{a : f γ} to express that the
(sub)formulaf that is contained in the cell with the address
a should be changed to a valuev for which γ(v) is true.

To illustrate the definition, let us consider a few example
cases. The simplest case is that a cell with addressa con-
tains a constant, sayv, but the target constraint isγ (with
¬γ(v)). In this case the only possible change is to change
the constantv to a valuew with γ(w) (as shown in definition
(1) in Figure 7).2 We will discuss later how a constraintγ is
converted into a value in the user interface.

If the cell a contains a formula, sayf (e1, . . . ,ek), which
evaluates tov, we have two possibilities to derive a change:
Either we can change the formula itself, or we can try to
“backpropagate” the target constraintγ to the different ar-
gumentsei . This approach depends on the operationf .

2To be precise, there are actually infinitely many possibilities, for ex-
ample, changingv to formulas, such asw+ 1− 1 or v+ w− v, but the
change to the constantw is obviously the simplest change among those. In
what follows we consider only fully evaluated suggestions.

3

δ(a,v,γ) = {a : v γ} (1)
δ(a, f (e1, . . . ,ek),γ) = ∪k

i=1δ(a,ei , f i(ei)(γ))∪{a : f (e1, . . . ,ek) γ} (2)
δ(a,↑a′,γ) = δ(a′,s(a′),γ)∪{a : ↑a′ ↑a′′|s(a′′)→→s v∧ γ(v)}∪{a : f (e1, . . . ,ek) γ} (3)

δ(a, if ptheneelsee′,γ) =

δ(a,e,γ) if p→→s T ∧e′→→s v∧¬γ(v)
δ(a,e′,γ) if p→→s F ∧e→→s v∧¬γ(v)
δ(a, p,= F)∪δ(a,e,γ) if p→→s T ∧e′→→s v∧ γ(v)
δ(a, p,= T)∪δ(a,e′,γ) if p→→s F ∧e→→s v∧ γ(v)

(4a)
(4b)
(4c)
(4d)

Figure 7. Change Inference

In general, we needk constraint transformationsf 1, . . . , f k

that can compute the change required for any argument that
causes the formulaf (e1, . . . ,ek) to evaluate to a value that
satisfiesγ. We write f i(ei , ...,ei−1,ei+1, ...,ek)(γ) to refer to
the constraint for theith argument off . This constraint is
always defined such that

f i(ei , ...,ei−1,ei+1, ...,ek)(γ) = γ′ =⇒
(∀v.γ′(v) =⇒ γ(f (ei , ...,ei−1,v,ei+1, ...,ek))

For example, for+ the two constraint transformations are
defined as follows.

+1(v2)(γ) = λx.γ(x−v2)
+2(v1)(γ) = λx.γ(x−v1)

Now if a cell contains the formula 3+ 5 but should eval-
uate to a value that satisfies the constraint> 11, +1 tells
to change 3 toλx.[> 11](x− 5) = λx.[> 6](x) = (> 6)
whereas+2 asks for the change of 5 toλx.[> 11](x−3) =
λx.[> 8](x) = (> 8). Both constraints can be converted by
the functionV (see below) into values (here, integer values
7 and 9, respectively) so that with either one of the inferred
changes we obtain formulas that correctly compute a result
that is larger than 11, that is, 7+5 or 3+9. In general, we
obtaink suggested changes for a function ofk arguments,
which leads to the formula employed in definition (2) of
Figure 7. In that formula the notationei represents the se-
quencee1, . . . ,ei−1,ei+1, . . . ,ek.

The third case to consider is when a formula is a refer-
ence to another cell. In that case, the change is inferred for
the referenced cell and its content. We can also change the
reference to any other cella′′ that evaluates to a value that
satisfiesγ, or we can replace the reference by the constant
itself. This case is covered by definition (3) in Figure 7.

Finally, we distinguish four cases for a conditional for-
mula depending on (i) whether or not the predicate is true
and (ii) whether or not one of the alternatives evaluates to
a value satisfyingγ. For example, consider that the cell
a contains the formulaf = if ptheneelsee′. If the condi-
tion p evaluates to true,f evaluates to its first alternative,
that is, f→→s v wheree→→s v with ¬γ(v). Therefore, reason-
able change suggestions can be obtained throughδ(a,e,γ).
Should in additione′ evaluate tow with γ(w), any change
that causesp to evaluate to false is also a reasonable change.

The two other cases are obtained by an analogous consid-
eration ofp evaluating to false ande evaluating tow with
γ(w). The four cases are summarized in definition (4) of
Figure 7.

We can observe that the functionδ propagatescon-
straintsthrough formulas while the system reportsvaluesin
the user interface. The change constraints that are derived
by δ will be converted, if possible, into values by a func-
tion V . BeforeV is applied, the constraint to be converted
is simplified as much as possible. For example,< 3∧ ≤ 1
can be simplified to≤ 1. After thatV can produce value
suggestions for constraints that do not contain∧ or∨.

V (ωv) = v for ω ∈ {≤,=,≥}
V (< v) = maxT{w | w < v}
V (> v) = minT{w | w > v}
V (γ) = γ

Note that maxT and minT are type-dependent maximum and
minimum functions. For example, maxT{w | w < 3} yields
2 if w is an integer, while it yields 2.99 if w is a floating
point value.3 In cases whenγ is a non-simple constraint, the
user is presented with a suggestion that is a textual descrip-
tion of the constraint itself. For example, the suggestion
{a : 7 ≥ 1∧ ≤ 3} is presented as “Change 3 to a value
between 1 and 3”. In general, these verbal descriptions are
quite difficult to read. An explanation component could be
added that tries to help the user come up with suitable val-
ues, but currently it is not clear how frequently non-simple
constraints really occur.

3.2 Heuristics for Selecting and Presenting
Change Suggestions

In general, the system generates many change sugges-
tions. We use a set of heuristics to rank the generated sug-
gestions from unlikely (ranked 0) to most likely (ranked 10).
We then use the cell-shading mechanism to direct the user’s
attention to the cell(s) with the highest ranked suggestion(s).
The heuristics used to rank the change suggestions are dis-
cussed in the following.

Formula changes.For ranking the suggestions for for-
mula changes, we use the idea of node equivalence classes

3The number of decimal places is currently fixed to 2. This should be
a user-definable parameter.

4

for formulas from [9]. A partial order on equivalence
classes can be defined based on a similarity measure be-
tween the original formula in the cell and the suggested
change. The greater the similarity, the higher the rank of
the corresponding change suggestion.

For example, two formulas are considered to becopy
equivalentif they are identical when the relative references
are compared in theR1C1 notation. Two formulas are
considered to bestructurally equivalentif they contain the
same operations in the same order. Copy equivalence im-
plies that the original formula and the suggested change
are more similar than would be the case if they were only
structurally equivalent. Therefore, if a change suggestion
recommends changing a formulaf to another oneg that
is copy-equivalent tof , the change suggestion is ranked
high. On the other hand, if a change suggestion recom-
mends changing a formulaf to another oneg that is only
structurally equivalent tof , this suggestion would be ranked
lower. Even lower ranked are changes to structurally non-
equivalent formulas. In our system, this can only happen
in form of value changes, that is, a formula is changed to a
value. For example, a changeA2+2 to 5 would only receive
a very low ranking.

Reference changes.Since our primary focus is on user-
generated quantitative errors, we rank the change sugges-
tions that deal with changes to references based on their
Manhattan distance from the original reference. In the ex-
ample shown in Figure 2, the erroneous reference in the for-
mula in H2 points toF7. The suggestion for changing the
reference toG7 or E7 receives a higher rating than the sug-
gestion for changing it to, sayD7, sinceG7 andE7 are only
one cell away fromF7 whereasD7 is 2 cells away. This
heuristic is based on the assumption that the introduction of
the incorrect reference is primarily the result of a mechani-
cal error (clicking an incorrect cell to select the target). This
makes closer cells more likely suggestions.

Value changes. Generating specific values in change
suggestions is hard in some cases since the system might
not have enough constraints to do so. Therefore, value
suggestions generally specify acceptable ranges. We rank
value suggestions on the basis of their types. For example,
a change suggestion that recommends changing an integer
value to a float would have a lower rank than a suggestion
that recommends changing an integer value to some other
integer value. A naive way to get the expected target value
in a cell is to replace the formula within the cell with the
target value. Even though such suggestions are generated
by the system, they are given very low rank.

In addition to the heuristics discussed above, the system
also performs some additional checks to ensure that the gen-
erated suggestions are reasonable and correct. For example,
performing any of the generated suggestions would not in-
troduce a circular reference in the spreadsheet.

4 Change Inference Example

In this section we take a closer look at how the change
suggestions are generated by the system. In the Gradebook
example shown in Figure 2, the user specifies that the ex-
pected value in cellH2 is 1. This information is stored in the
system as a constraint on the value in the cell. The formula
in the cell isIF(G2>F7,1,0). From the semantics of change
inference shown in Figure 7, we see that rule (4) needs to
be applied. Since the conditionG2>F7 evaluates to false,
we might consider applying rule (4b) or (4d) for generat-
ing change suggestions. But we see thate in this case is 1,
which is the expected value. Therefore, we apply rule (4d),
which produces the union of the change suggestions gen-
erated by the recursive callsδ(H2,G2>F7,= T) (changes
that make the predicate evaluate to true), andδ(H2,0,= 1)
(changes that make the false branch of the function evalu-
ate to the expected value). Forδ(H2,G2>F7,= T), rule (2),
that isδ(a, f (e1, . . . ,ek),γ) can be used, wheref is the log-
ical operator>. The set of generated change suggestions is
the union of the following sets.

(1) δ(H2,↑F7,< 80): Changes to the referenceF7 that
would give some value less than 80 as the result.

(2) δ(H2,↑G2,> 83.6): Changes to the referenceG2 that
would give some value greater than 83.6 as the result.

(3) {H2 : G2 > F7 = T}: Effectively replacing the pred-
icate withT (see functionV). This suggestion is ranked
very low.

δ(H2,↑F7,< 80) invokes rule (3) and results in the follow-
ing suggestions.

(4) δ(F7,AVERAGE(F2:F6),< 80): This change sugges-
tion recommends that the formula inF7 should be
changed so that the computed value in the cell changes
from 83.6 to some value less that 80. In the first step,
this is simply stored as a system-generated constraint
and does not generate any concrete change suggestions.
When the user rejects the suggestions generated at the
first level, or explicitly asks for more suggestions, the
propagated constraints are used to populate the change-
suggestion queue.

(5) {H2 : ↑F7 ↑a′ | s(a′)→→s < 80}: These suggestions
give rise to all the addresses of the cells that have values
less than 80 (for example,E7, G7, D7, C7, etc.).

(6) δ(H2,↑F7,< 80): This change suggestion recommends
replacing the reference to cellF7 with some value less
than 80.

The case forδ(H2,↑G2,> 83.6) is similar to the case dis-
cussed above.

Once the change suggestions have been generated, the
system ranks them on the basis of the heuristics described in
Section 3.2. The suggestions are then presented to the users
when they ask for it. In the example shown in Figure 4, the

5

suggestions generated from step 5 above include the change
that would remove the error from the sheet, that is replacing
reference toF7 in the formula inH2 with reference toG7.
Consider a scenario in which the user does not notice this
suggestion right away and instead decides that the first sug-
gestion (changingF7 to E7) is incorrect and rejects it. The
system would convert this additional information to a new
constraint that would filter out all change suggestions that
would recommend changingF7 to E7 for the cellH2. The
system would also use propagated constraints (for exam-
ple, the one shown in item 4 above) to generate new change
suggestions (so that they can take the place of the sugges-
tions that have been rejected by the user). The complete set
of suggestions are then ranked once again according to the
heuristics and then presented to the user.

5 Evaluation of the System

During empirical studies to evaluate the effectiveness of
fault-localization techniques [14] in the WYSIWYT system
[13], it was observed that subjects make many wrong de-
cisions (oracle mistakes) while performing their tasks [10].
Oracle mistakes are incorrect decisions made by users dur-
ing testing. In this section, we show how our system can
prevent many of these mistakes.

Two spreadsheets, seeded with errors, were used in the
studies. The first one, shown in Figure 2, computes the
grades for the students in a course, and the second sheet,
shown in Figure 9, computes the payroll figures for an em-
ployee. The subjects start with a sheet in which all the input
cells have been set to zero. As part of the task description,
the subjects are also given two test cases for each spread-
sheet, and an informal specification of the spreadsheet that
explains how the different output values are to be computed.
Two sample test cases for the Payroll sheet are shown in Ta-
ble 1. The test cases specify sample input values and ex-
pected output values. The subjects then have to come up
with additional test cases, inspect the output and decide if
it is correct or not.4 If the output is incorrect, the users can
indicate that to the system by placing a✗ in the cell. Simi-
larly, correct output values can be indicated by putting aX
in the cell. The WYSIWYT fault localization mechanism
then uses the user feedback to shade the cells depending on
their fault likelihood.

We now take a look at how the user could go about de-
bugging the Payroll sheet using our system. After entering
the input values from the test cases, the user might notice
that the value in the cellT2 is incorrect. More precisely,
the expected value according to the test case is 5887 while
the value currently in the cell is 5587. The user can specify

4The Forms/3 system, in which the WYSIWYT approach has been im-
plemented, has an automatic test-case-generation mechanism called “Help
me test” (HMT) described in [7]. The studies we are discussing in this
section did not involve the use of the HMT system—the users had to come
up with the test cases by themselves based on their understanding of the
spreadsheet specifications.

Name Joe Mary
Marital Status S M
Allowances 1 5
Gross pay 6000 8000
Gross pay YTD 54000 72000
Pre-tax child care 0 400
Life insurance policy amount 10000 50000
Health insurance premium 390 480
Dental insurance premium 18 39
Life insurance premium 5 25
Employee insurance cost 413 544
Employer insurance contribution 300 520
Net insurance cost 113 24
Adjusted gross pay 5887 7576
Federal income tax withheld 551.80 607.80
Social security tax 372 496
Medicare tax 87 116
Total employee taxes 1010.80 1219.80
Net pay 4876.20 6356.20

Table 1. Sample test data for Payroll sheet
this to the system by bringing up the debugging interface as
described in Section 2. The system generates the change
suggestions, and the cell with the highest ranked change
suggestion is shaded orange as shown in Figure 8. Notice
that for this cell only one suggestion—the correct one—is
generated.

Figure 8. Change suggestion for cell T2

The original (incorrect) formula inT2 was D2-F2-U2.
The system recommends that the reference toU2 be re-
placed with a reference toW2. The part of the spreadsheet
specification provided to the user that explains how “Ad-
justed Gross Pay” is to be computed is shown below.
“Pre-tax deductions (such as child care and employee in-
surance expense above the employer’s insurance contri-
bution) are subtracted from Gross Pay to obtain Adjusted
Gross Pay.”
We see that the suggestion generated by the system is cor-
rect since the formula should reference the net insurance
cost to the employee (computed inW2) and not the total
insurance cost before the employer’s contribution has been
deducted (computed inU2). If the user applies the sugges-
tion, the formula inT2 is changed toD2-F2-W2, and the
computed value in the cell will be 5887 (the expected value
according to the test case).

Further comparison of the spreadsheet output with the
test case values reveals that the cellL2 has the value 538.9
whereas the expected value is 551.8. When the user pro-

6

Figure 9. Payroll spreadsheet

vides this information to the system, the suggestions shown
in Figure 10 are generated for the cellJ2.

Figure 10. Change suggestion for cell J2

No suggestions are generated forL2 in the first stage
sinceL2 has the formulaIF(C2=”S”,J2,K2), and the value
in C2 is “S”. The formula inJ2 is IF(I2<119,0,(I2-248)*0.1).
The highest ranked suggestion recommends that the value
248 be changed to 119. The relevant part of the spreadsheet
specification that explains how the federal income tax with-
holding is computed is shown below.
If single and the adjusted wage is not greater than$119, the
withholding tax is$0; otherwise the withholding amount is
10% of (adjusted wage -$119).
Again, the highest ranked suggestion generated by our sys-
tem is correct since the amount to be deducted from the ad-
justed wages of a person who is single is $119 and not $248
as is in the formula. The user can apply this suggestion, and
the cell is evaluated to the expected correct value 551.8.

The numbers for the incorrect testing decisions made by
the users of the WYSIWYT system are shown in Table 2.
We see that the subjects made 154 oracle mistakes in the
Gradebook task and 381 oracle mistakes in the Payroll task.
We also see from the data that there were 81 instances dur-
ing the Gradebook task and 68 instance during the Payroll
task when the subjects edited formulas that were actually
correct and introduced errors in the spreadsheets. Our sys-
tem would not have protected the subjects from these mis-
takes. On the other hand, we also see from the data that
there were 373 instances in the Gradebook task and 293 in-
stances in the Payroll task when the subjects pinpointed the

cells with errors correctly but then went on to make incor-
rect changes to the formulas in the cells. Our system would
have prevented all these errors.

Gradebook Payroll
Number of subjects 51 51
Total errors 154 381
Errors on values 144 168
Errors on formulas 10 213
Formula-edit errors
Correct to incorrect 81 68
Incorrect to incorrect 373 293

Table 2. User mistakes during debugging

To summarize, in cases in which the subject incorrectly
identified a correct cell as incorrect, our system would not
be very helpful. It would simply generate change sugges-
tions that compute the target value specified by the subject.
Unfortunately, this problem cannot be avoided or overcome
as long as the user has the last word on whether a cell is cor-
rect or incorrect. However, for the other cases in which the
user correctly identifies an error cell, our system generates
the suggestions that correct the error, and performs them
accurately, which avoids a whole class of errors. Moreover,
for the cases discussed above, the correct change sugges-
tions are ranked highest.

6 Related Work
The main focus of research into reducing the incidence

of errors in spreadsheets has been on testing [13] and con-
sistency checking [6, 4, 1]. We have also been working on
an approach that avoids formula errors in spreadsheets by
generating correct spreadsheets from a predefined specifi-
cation [5].

The “data validation” tool in Microsoft Excel allows the
user to specify the acceptable values for a cell. The system
warns the user whenever there is a violation and is useful
in keeping track of potential errors in the spreadsheet. It
does not really help with debugging per se since Excel does
not do any reasoning with the user-specified allowed val-
ues. The “trace error” feature in Excel allows the user to
incrementally step through the spreadsheet dataflow graph

7

and inspect predecessors and dependents of cells. This tech-
nique tends to be tedious and error prone in large and com-
plex spreadsheets.

In the “interval testing” technique described in [3], users
can enter allowed ranges of values for cells. The system
uses this information to calculate allowed intervals on cells
that are dependent on those for which the ranges have been
specified by the user. In case of conflict, heuristics are used
to determine the “most influential faulty cell”. The propaga-
tion of intervals over some functions (for example, if state-
ments) is not trivial and has not been addressed in [3]. In the
approach discussed in [4], the system generates a set of as-
sertions based on assertions entered by the user. The system
warns the user when there is a conflict between the system-
generated assertions and the user-specified assertions for a
cell. The feedback about the conflict in assertions only indi-
cates that there could be an error, either in the user-specified
assertions themselves, or in the cell formula. In our system,
the information provided by the user about the expected
value in a cell can be considered as a user-specified asser-
tion. The system then back-propagates this information as a
series of constraints on the values of the cells that contribute
to the value in the cell with the error. These constraints are
then used to generate change suggestions.

7 Conclusions and Future Work

We have shown that user input of expected values can be
exploited to automatically suggest and perform corrective
actions to effectively remove errors from spreadsheets. We
have also demonstrated that this approach can help to avoid
many errors that users make during the debugging process.

The current system has several limitations that we will
address in future work. For example, complex constraints
cannot be communicated very well to the user. Moreover,
the current system does not produce good suggestions for
cases in which a cell has an incorrect value due to faults in
two or more cells it has references to. In order to keep the
number of generated suggestions small, we always propa-
gate constraints only along one argument at a time. One
approach to make the system more flexible is to work with
more than one initial constraint and then consider different
cell orderings for constraint propagation.

Another improvement would be to integrate the system
with the UCheck system [1] we have developed based on the
work described in [6]. This integration would allow the de-
bugger to generate unit-correct suggestions, thereby adding
an additional layer of consistency checking to the debug-
ging process, and further reducing the number of generated
suggestions.

Finally, we will look into ways to integrate automatic
change suggestions with the WYSIWYT system since test-
ing and debugging are complimentary actions.

References
[1] R. Abraham and M. Erwig. Header and Unit Inference for

Spreadsheets Through Spatial Analyses. InIEEE Int. Symp.
on Visual Languages and Human-Centric Computing, pages
165–172, 2004.

[2] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi.
A Type System for Statically Detecting Spreadsheet Errors.
In 18th IEEE Int. Conf. on Automated Software Engineering,
pages 174–183, 2003.

[3] Y. Ayalew and R. Mittermeir. Spreadsheet Debugging. In
European Spreadsheet Risks Interest Group, 2003.

[4] M. M. Burnett, C. Cook, J. Summet, G. Rothermel, and
C. Wallace. End-User Software Engineering with Asser-
tions. In 25th IEEE Int. Conf. on Software Engineering,
pages 93–103, 2003.

[5] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmans-
berger. Automatic Generation and Maintenance of Correct
Spreadsheets. In27th IEEE Int. Conf. on Software Engineer-
ing, pages 136–145, 2005.

[6] M. Erwig and M. M. Burnett. Adding Apples and Oranges.
In 4th Int. Symp. on Practical Aspects of Declarative Lan-
guages, LNCS 2257, pages 173–191, 2002.

[7] M. Fisher II, M. Cao, G. Rothermel, C. Cook, and M. M.
Burnett. Automated Test Case Generation for Spreadsheets.
In 24th IEEE Int. Conf. on Software Engineering, pages
141–151, 2002.

[8] A. J. Ko and B. A. Myers. Designing the Whyline: A Debug-
ging Interface for Asking Questions about Program Behav-
ior. In Conference on Human Factors in Computing Systems,
pages 151–158, 2004.

[9] R. Mittermeir and M. Clermont. Finding High-Level Struc-
tures in Spreadsheet Programs. In9th Working Conference
on Reverse Engineering, pages 221–232, 2002.

[10] A. Phalgune, C. Kissinger, M. Burnett, C. Cook, L. Beck-
with, and J. Ruthruff. Garbage In, Garbage Out? An Empir-
ical Look at Oracle Mistakes by End-User Programmers. In
IEEE Int. Symp. on Visual Languages and Human-Centric
Computing, 2005. To appear.

[11] S. Prabhakarao, C. Cook, J. Ruthruff, E. Creswick, M. Main,
M. Durham, and M. Burnett. Strategies and Behaviors
of End-User Programmers with Interactive Fault Localiza-
tion. In IEEE Int. Symp. on Human-Centric Computing Lan-
guages and Environments, pages 203–210, 2003.

[12] K. Rajalingham, D. R. Chadwick, and B. Knight. Classifica-
tion of Spreadsheet Errors.Symp. of the European Spread-
sheet Risks Interest Group (EuSpRIG), 2001.

[13] G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A Methodology for Testing Spreadsheets.ACM
Transactions on Software Engineering and Methodology,
pages 110–147, 2001.

[14] J. Ruthruff, E. Creswick, M. M. Burnett, C. Cook, S. Prab-
hakararao, M. Fisher II, and M. Main. End-User Software
Visualizations for Fault Localization. InACM Symp. on Soft-
ware Visualization, pages 123–132, 2003.

[15] B. T. V. Zanden, D. Baker, and J. Jin. An Explanation-
Based, Visual Debugger for One-Way Constraints. In17th
Annual ACM Symp. on User Interface Software and Tech-
nology, pages 207–216, 2004.

8

