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Abstract

We describe the design of a rule-based language for expressing
changes to Haskell programs in a systematic and reliable way. The
update language essentially offers update commands for all con-
structs of the object language (a subset of Haskell). The update
language can be translated into a core calculus consisting of a small
set of basic updates and update combinators. The key construct of
the core calculus is a scope update mechanism that allows (and en-
forces) update specifications for the definition of a symbol together
with all of its uses.

The type of an update program is given by the possible type changes
it can cause for an object programs. We have developed a type-
change inference system to automatically infer type changes for up-
dates. Updates for which a type change can be successfully inferred
and that satisfy an additional structural condition can be shown to
preserve type correctness of object programs.

In this paper we define the Haskell Update Language HULA and

give a translation into the core update calculus. We illustrate HULA
and its translation into the core calculus by several examples.
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1 Introduction

The dominant share of software development costs is spent on soft-
ware maintenance, particularly the process of updating programs
in response to changing requirements. Currently, such program
changes tend to be performed using a text editor, an unreliable
method that often causes many errors. In addition to syntax and
type errors, logical errors can be easily introduced since text editors
cannot guarantee that changes are performed consistently over the
whole program. Logical errors are especially dangerous because
they can remain undetected for a long period. At the same time,
these and other errors can cause a correct and perfectly running
program to become instantly unusable. It is not surprising that this
situation exists. The “text editor method” reveals a low-level view
of programs that fails to reflect program structure, relying instead
on sequences of single characters. The operation on programs of-
fered by text editors is basically just that of changing characters in
the textual program representation. Determining the consequences
of resulting changes as they affect software quality is further com-
plicated by a lack of tools.

We suggest viewing programs as abstract data types (ADTSs) and
performing program changes by applying well-defined ADT oper-
ations on the program. Employing these basic update ADT op-
erations, arbitrarily complex update programs can be written that
guarantee a high level of correctness for the resulting program. In
particular, update ADT operations can prevent—in addition to syn-
tax and type errors—certain kinds of logical errors, for example,
those that result from “forgetting” to change some occurrences of
an expression. Using string-oriented tools like awk or perl for this
purpose is difficult. Moreover, these tools cannot guarantee the dif-
ferent forms of correctness, since they have no knowledge of the
languages’ definitions, such as their grammar and scoping rules.

Update programs can be generic, that is, they can be applied to
different programs. Thus, they can be collected in libraries that fa-
cilitate the reuse of updates and serve as repositories for executable
software maintenance knowledge. In contrast, with the text edi-
tor approach, each update must be performed on its own. At this
point the safety of update programs shows an important advantage.
While the same or different errors can be made again and again
with the text editor approach, an update program satisfying certain
safety criteria will preserve the correctness of all object programs
to which it applies. In other words, the correctness of an update is
established once and for all. Program update operations can also be
integrated into program editors to offer safe high-level updates in
an interactive way.
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Viewing programs as abstract data types goes beyond the idea of
syntax-directed program editors because it allows a programmer
to combine basic updates into update programs that can be stored,
reused, changed, shared, and so on. The program update program-
ming approach has, in particular, two distinct advantages. First, we
can work on program updates offline, that is, once we have started
a program change, we can pause and resume our work at any time
without affecting the object program. Although the same could be
achieved by using a program editor together with a versioning tool,
the update program reflects the changes performed much better than
a partially changed object program that only shows the result of
having applied a number of update steps. Second, independent up-
dates can be defined and applied independently. For example, as-
sume an update u; followed by an update u, (that does not depend
on or interfere with uy) is applied to a program. With the editor
approach, we can undo u, and also up and u1, but we cannot undo
just uz. In contrast, we can undo each of the two updates with the
proposed update programming approach by simply applying only
the other update to the original program.

Our goal is not to replace text editors; many small or unstructured
updates can be effectively performed by just using an editor. We
rather want to extend the options programmers and software devel-
opers have in performing updates and structuring versions of their
software. In particular, we are planning to extend text editors like
Emacs or Vim by menus that offer interactive access to generic up-
date functions to provide a simple access to reliable program update
operations.

In this paper we describe an update language for the programming
language Haskell, but the presented concepts can be also applied to
other (programming) languages in similar ways. In the next sec-
tion we illustrate the idea of update programming by a small ex-
ample. Then after reviewing related work in Section 3, we discuss
the design issues of the update language in Section 4. The design
decisions lead to the definition of a small core calculus for express-
ing program updates, which is presented in in Section 5. In this
section we also comment briefly on the formal semantics and type
system of the core calculus and the type-safety result that is for lack
of space presented in a separate paper. In Section 6 we define the
syntax of the Haskell Update Language (HULA), and give a trans-
lation into the core update calculus. Conclusions given in Section 7
complete this paper.

2 Program Update Programs

Suppose a programmer wants to extend a module for binary search
trees by a size operation giving the number of nodes in a tree.
Moreover, she wants to support this operation in constant time and
therefore plans to extend the representation of the tree data type
by an integer field for storing the information about the number of
nodes contained in a tree. The definition of the original tree data
type and an insert function are as follows:

data Tree = Leaf | Node Int Tree Tree

insert :: Int -> Tree -> Tree
insert x Leaf = Node x Leaf Leaf
insert x (Node y 1 r) =
if x<y then Node y (insert x 1) r
else Node y 1 (insert x r)

The desired program extension requires a new function definition
size, a changed type for the Node constructor (since a leaf always

contains zero nodes, no change for this constructor is needed), and
a corresponding change for all occurrences of Node in patterns and
expressions. Adding the definition for the size function is straight-
forward and is not very exciting from the the update programming
point of view. The change of the Node constructor is more inter-
esting since the change of its type in the data definition has to
be accompanied by corresponding changes in all Node patterns and
Node expressions. We can express these coordinated changes in our
update language as follows.

con Node : {Int} t in
(case Node {s} -> Node {succ s}
| Leaf -> Node {11});
Node {1}

The update can be read as follows: the con update operation adds
the type Int as a new first parameter to the definition of the Node
constructor. The specification of how to change all pattern match-
ing rules that use the Node constructor follows after the keyword
in: Node patterns are extended by a new variable s, and to each
application of the Node constructor in the return expression of that
rule, the expression succ s is added as a new first argument (succ
denotes the successor function on integers, which is predefined in
Haskell). Leaf patterns are left unchanged, and occurrences of the
Node constructor within their corresponding return expressions are
extended by 1. As an alternative to the update to case expressions,
the rule Node {1} extends all other Node expressions by 1.

The shown update is safe in the sense that the produced object pro-
gram will be syntax and type correct. Notice that this property does
not only hold for the above example program, but for any type-
correct input program! An intuitive reason is that the changed type
of the Node constructor is accompanied by a corresponding change
of all uses of Node (in patterns and expressions). Type safety can
be ensured by a type system for the update language and structural
constraints on update programs; see Section 5. The application of
the update to the original program yields the following new object
program:

data Tree = Leaf | Node Int Int Tree Tree

Int -> Tree -> Tree
Node 1 x Leaf Leaf

insert ::

insert x Leaf
insert x (Node s y 1 r) =

if x<y then Node (succ s) y (imsert x 1) r

else Node (succ s) y 1 (insert x r)

With the shown definition the case update is applied to all case ex-
pressions in the whole program. In our example, this works well
since we have only one function definition in the program. In gen-
eral, however, we want to be able to restrict case updates to specific
functions or specify different case updates for different functions.
This can be achieved by using a further update operation that per-
forms updates on function definitions:

con Node : {Int} t in
fun ‘insert x y:
(case Node {s} -> Node {succ s}
| Leaf -> Node {1});
Node {1}

This update applies the case update and the update for extending
other Node expressions by 1 only to the definition of the function
insert. Uses of the function insert need not be updated, which is
indicated by the absence of the keyword in and a following update.
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We can add further fun updates for other functions in the program
to be updated each with its own case update. Although the shown
update is safe for the example program, it is not safe in general since
the extension of Node by the additional argument 1 is specified only
as part of the fun update for insert; uses of Node outside of the
insert function will not be changed. However, general type safety
can be recovered by adding as an alternative to the fun update an
update for all other Node patterns and Node expressions.

The backquote indicates that insert is a Haskell variable and not
a variable of HULA. Haskell variables are also called object vari-
ables since they are variables of the object language to be trans-
formed. In contrast, HULA variables are called meta variables
since these are variables that are used to bind Haskell objects; in
particular, meta variables will never appear in a Haskell program.
In case of doubt, variables will be regarded as meta variables, so
we need a syntactic means to prevent Haskell variables from being
interpreted as meta variables. We are using the backquote symbol
for this purpose. However, since meta variables can reasonably oc-
cur only at specific locations in an update program, we might omit
the backquote when it is clear from the context that a variable is
a Haskell variable. In particular, a meta variable has to be intro-
duced always on the left-hand side of a rule (otherwise it would
be unbound). Therefore, we can assume that unquoted variables
that occur the first time on the right-hand side of a rule are meant
to be object variables. The notions of “left”, “right”, and “rule” are
related to our notation in the following way: a{l/r}b is an abbrevi-
ation for the rule al b~»arb where the left part “I /" is optional, that
is, a{r}b is an abbreviation for ab~~arb and thus means to insert r
into the context ab. In the above example, {Int} t isan abbrevia-
tion for the rule t ~+ Int t, and Node {succ s} isan abbreviation
for the rule Node ~»Node (succ s). With the described syntactic
convention we can discern that in the first example t is a meta vari-
able since it is introduced on the left hand side of the rule, whereas
in the second example succ as well as s are object variables even
though they are not marked by a quote, because they are not intro-
duced on the left hand side of a rule and would thus be undefined
when regarded as meta variables. By the same rule we can identify
the variables x and y as meta variables. We also see the need for
using the backquote for insert: without the backquote insert
would be a meta variable and would match all function names in
the Haskell program and not just the function insert. Note that
we do not need a quoting mechanism for constructors like Node or
Leaf since we (currently) do not have constructors in the update
language. Therefore, constructors are always treated as object lan-
guage constructors.

3 Redated Work

In [7] we have proposed a language-based view of program updates.
That paper describes a general model of programs, updates, and the
preservation of arbitrary properties. It also discusses a way of en-
suring type correctness for the simply-typed lambda calculus that
is based on computing required and provided changes in type as-
sumptions. Performing program updates in a more structured way
is actually not a new idea. There exist a couple of program edi-
tors that can guarantee syntactic or even type correctness and other
properties of changed programs. Examples for such systems are
Centaur [5], the synthesizer generator [18], or CYNTHIA [28]. The
view underlying these tools are either that of syntax trees or, in
the case of CYNTHIA, proofs in a logical system for type informa-
tion. Viewing programs as abstract data types goes beyond the idea
of syntax-directed program editors because it allows a programmer
to combine basic updates into update programs that can be stored,

reused, changed, shared, and so on.

The process of manipulating programs by other programs is usu-
ally called meta-programming [20]. However, existing meta-
programming systems, such as MetaML [21], are mainly concerned
with the generation of programs and do not offer means for ana-
lyzing programs (which is needed for program transformation). In
fact, in a recent overview only a few source-level program trans-
formations have been reported [27]. Among these, only software
rephrasing and refactoring [10] work on one and the same language.
Refactoring is an area of fast growing interest with a few existing
tools to perform refactoring automatically [19]. Refactoring (like
the huge body of work on program optimization and partial evalua-
tion) leaves the semantics of a program unchanged. Program trans-
formations that change the behavior of programs are also consid-
ered in the area is aspect-oriented programming [1], which is con-
cerned with performing “cross-cutting” changes to a program. For
instance, AspectJ [11] is a tool that can be used to deal with aspects
in Java programs. In [22] it is argued that modifications for legacy
software should be automated. Moreover, processes and tools are
described that can be employed for this purpose.

Our approach is based in part on applying update rules to specific
parts of a program. There has been considerable work in the area of
term rewriting to address this issue. Traditionally, rewrite systems
have considered the strategy in which rewrite rules are applied to be
more or less fixed. In theorem proving tactics have been introduced
to overcome the limitations of having only fixed strategies [16]. The
ELAN logical framework introduced in addition to a fixed set of
tactics a strategy language that allows users to specify their own tac-
tics with operators and recursion [3, 4]. Eelco Visser has extended
the set of strategy operators by generic term traversals [26], pattern
matching operators [23], and other rewrite strategies that are specif-
ically useful for language processing [24] and has put all these parts
together into a system for program transformation, called Stratego
[25]. These proposals allow a very flexible specification of rule ap-
plication strategies. Ralf Ldmmel and Joost Visser have developed
a series of transformation systems for Haskell (Tabaluga, Strafun-
ski) that are based on the idea of generalized fold operations [12].
TXL [6] is a rule-based language for describing program transfor-
mations. TXL can be customized to work with different languages,
which makes it a very general tool. However, since only the syntax
of the transformed languages is defined, transformations generally
cannot know about type or binding rules, which makes it difficult
to analyze transformations and to guarantee safety properties other
than syntactic correctness. In particular, none of the mentioned ap-
proaches except MetaML and CYNTHIA can guarantee type cor-
rectness of the transformed programs. From this point of view, it is
interesting to look at Bjgrner’s approach [2], who defines a simple
two-level lambda calculus that offers constructs to generate and to
inspect (by pattern matching) lambda calculus terms . In particular,
he describes a type system for dependent types for this language. It
is principally possible to write update programs in such a two-level
lambda calculus.

4 Design of an Update Programming Lan-
guage

From our experience we have found that the following three re-
quirements are crucial for an update (or meta) programming lan-
guage:

e Context-dependent substitutions.
e Combinations of basic updates.
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e Foolproof and convenient handling of bindings.

Context-dependent substitutions can be conveniently described by
rewrite rules. However, rules comprise only the basis of an up-
date language. In order to build more complex update programs we
need combinators for updates. Examples of indispensable combi-
nators are alternation to build alternatives of updates and recursion
to move updates to arbitrary places in a program. The handling
of bindings pertains in particular to high-level programming lan-
guages and leads to the concepts of fresh variables and scope up-
date, which we discuss in some more detail in the following.

The key idea of our approach to achieve a manageable update mech-
anism is to perform somehow “coordinated” updates of the defini-
tion and all corresponding uses of a symbol in a program (and possi-
bly an update of the symbol itself, which basically means to rename
the symbol). We therefore consider the available forms of symbol
definitions more closely. In general, a definition has the following
form:

letv=d ine

where v is a symbol (variable) being defined, d is the defining ex-
pression for v, and e is the scope of the definition, that is, e is an
expression in which v will be used with the definition d (unless hid-
den by another nested definition for v). We call v the symbol, d the
defining expression, and e the scope of the definition. If no confu-
sion can arise, we sometimes refer to d also just as the definition (of

V).

Obviously, 1et expression fit this schema of a definition, but also
[-redexes have the shape of a definition since a (non-recursive)
let v=d in e is just an abbreviation for (Av.e) d. Moreover, con-
structor definitions of data type definitions fit this schema with v
being the constructor name, d being the type of the constructor, and
e being the expression in which the constructor definition is visible.
Finally, a pattern/expression pair as found in function definitions or
case alternatives can also be viewed as a definition. We borrow
the term match rule from Standard ML [14] for this construct. In a
match rule, v is a constructor, d is empty, and e is the RHS. Since d
is empty, we essentially represent a match rule by a lambda abstrac-
tion Av.e. In all cases, possible parameters of v can be represented
by corresponding lambda-abstractions in d (or in e in the case of a
match rules).

In the next section we will define a general update operation that
can be used to update all different kinds of definitions.

Having identified the essential parts of an update calculus is not
sufficient to obtain a usable update language. Basically, we need
additional syntactic convenience. This is comparable to lambda
calculus, which is itself expressive enough, but is hardly ever used
as a functional programming language. In contrast, languages like
Haskell or ML provide a lot of syntactic sugar to make program-
ming more convenient. A more profound contribution of ML and
Haskell are their strong static type systems that help to spot pro-
gramming errors early. In fact, one of the motivating design criteria
for the proposed update language was a type system that can guar-
antee type correctness (at least to a certain degree) of the generated

Lin general, a pattern can contain subpatterns, but for simplicity
we assume here that this is not the case. In any case, subpatterns
can be always eliminated by introducing fresh variables and a corre-
sponding additional case expression on the RHS; see, for example,
the corresponding transformations described in the Haskell Report
[15].

object programs. For our update language we have identified the
following key issues that have considerably influenced the design:

e An economic notation for rules (factored rules)

e Keyword-based syntactic variants of scope updates for spe-
cific contexts

e A strong type system

The first two items have been incorporated into the syntax of the
update language to be defined in Section 6. The last item is briefly
discussed in the next section. A full account is given in a separate

paper [8].
5 TheCoreUpdate Calculus

The definition of the update calculus builds on an object language.
We use e to range over expressions of the object language and p
to range over patterns. Patterns comprise meta variables (m) and
expressions that do not introduce bindings.

5.1 Update Operations

The update calculus is based on rewrite rules of the form I~»r
where | and r are patterns and where | is linear, that is, | does not
contain any variable twice. A rule I ~r is applied to an expression e
by matching | against e, which, if successful, results in a binding o
for the variables in I. The result of the update operation is a(r). To
ensure that o(r) is an expression, we require that MV(r) C MV(l)
where MV denotes the set of meta-variables contained in a pattern.
If | does not match e, the update described by the rule is not per-
formed, and e remains unchanged.

Complex updates can be built from rules by alternation, recursion,
and scope updates.

The alternation of two updates u1 and uy is written as us ; up. The
semantics of such an updates is that uq is tried to be applied first.
Only if uy is not applicable, the alternative update u, is tried.

Recursion is needed to move updates arbitrarily deep into expres-
sions. \We use a recursion operator | that causes its argument update
to be applied (in a top-down manner) to all subexpressions. Differ-
ent recursion strategies have been discussed in detail elsewhere (for
example, [26]). For the purpose of this paper, considering a simple
top-down strategy is sufficient, in particular, because recursion is
not offered explicitly to the user, but is applied implicitly in scope
updates (see below). Simple top-down recursion might not be ap-
propriate always and we might need other recursion operators to be
able to express certain updates, however, a detailed discussion of
this aspect is beyond the scope of this paper.

The scope update facilitates the change of each element of a def-
inition let v=d ine. The update of the symbol v is given by
a rule that can rename v; the updates for the definition and the
scope are given by arbitrary update expressions. We use the syn-
tax {v~V':uq}ue for an update that renames v to v/, changes v’s
definition by ug, and all of its uses by ue. (We also call v~V the
binding update, ug the definition update, and ue the use update.)
Whereas uq is only applied to the root of the definition, ue is al-
ways applied recursively. To account for recursive let definitions,
we apply ue also recursively to the result obtained by the update uq.
Two special cases of the scope update are obtained if either v/ or v
are missing: (1) The update {~»v=d }u introduces of a new binding
for the variable v and applies u; when {~~v=d}u is applied to an
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expression e, it creates the expression let v=d in e’ where ¢’ is the
result of applying u to e. Note that d can be omitted, in which case
the application of {~V}u to e yields Av.¢’. (2) The update {x~e}u
applies either to 1et expressions 1let v=d in €’ or lambda abstrac-
tions Av.e’. It deletes the binding or lambda abstraction for v and
applies u to the body €’. The expression e is required in the update
and is used to replace all possibly remaining occurrences of v in the
result obtained by u.

Surprisingly, we do not need an operation to generate fresh vari-
ables. Since fresh variables are needed only in two situations,
namely, when renaming variables or when creating new definitions,
we can integrate the generation of fresh variables into the semantics
for these update operations and do not need a separate combinator
for it. When an update {v~+w:uq }ue or {~»w=d}u is applied to an
expression e that does not contain the variable w, then w is literally
used in the updated expression. Otherwise, w will be renamed (for
example, by adding primes or numbers) until an unused variable is
found, and the renamed variable is used in u. It has repeatedly been
claimed that variable names do not really matter in program trans-
formations and meta-programming [20, 13, 17], but this is not true
in our application: when a programmer wants to specify a renam-
ing, she expects the chosen name to appear in the updated program.
Should the name already be in use, a related name should be chosen
(and possibly a comment should be inserted explaining the use of
the different variable) to make program updates transparent.

Finally, we also have a “no update” operation 1 that performs no
update at all and serves as a unit of the update language. The syntax
of updates is shown in Figure 1. In scope updates we use x to range
over object variables (v) and meta variables (m).

u = 1 Identity
| p~p Rule
| {x~x:u}u Change Scope
| {~v[=e]}u Insert Scope
| {x~e}u Delete Scope
| uju Alternative
| lu Recursion

Figure 1. Core update calculus.

Let us consider some examples. The renaming of a function would
be expressed by the scope update:

{‘f~ g}t g

Renaming the first parameter of a function £ can be achieved by a
nested scope update, such as:

{f~ fi{x~ ‘yil}x~ ‘yh

The “renaming” ‘f~- ‘f leaves the name of the function £ un-
changed. The update {x~> ‘y:1}x~ ‘y will be applied to £’s def-
inition and matches if £’s definition is given by a let expression
or a lambda abstraction. In either case the bound variable will be
matched by the meta variable x and will be renamed to y. The
use update x~- ‘y ensures that all uses of x in the body of the let
expression or lambda abstraction will be renamed to y, too. The
semantics ensures that y will be properly renamed should it conflict
with other already bound variables.

We sometimes use the following abbreviations to make core calcu-
lus expressions more readable:

e Trivial rules, such as ‘£ ~ ‘£, can also be written as ¢ f when-

ever it is clear from the context that the single symbol repre-
sents a rule.

e \We may omit “:1” from scope updates.

With these two syntactic simplifications, the function renaming, re-
spectively, function parameter renaming, can be written more con-
cisely as:

{‘f’“’“)‘g}‘f’\")‘g
and
{“£:{x~ ‘ylx~yh

5.2 Update Semantics

We define the semantics of updates by judgments of the form
[ulo(e) = €¢’. The semantics of rules and operations, such as al-
ternative and recursion, is straightforward and has been described
extensively in the literature on rewriting. Therefore, we describe
here only the semantics of scope updates. In the semantics rules we
make use of the following notational conventions.

The set p contains variables that are bound by enclosing expres-
sions. For example, suppose we apply an update u recursively to
the expression Av.e, which means to apply u to e (and possibly to
its subexpressions). In that case p will be extended by v to ensure
that fresh variables (which might be introduced by u) are differ-
ent from v to prevent them from being illegally bound by enclosing
binders like “Av.”. We use the notation v)sw to express the fact that
w is a variable that is fresh with respect to the expression e and the
environment p. This is a variable that is neither bound in e nor is
contained in p. If v has this property, it will be chosen, otherwise an
appropriate name will be constructed. x:=v means that (the object
or meta variable) x matches the (object) variable v under the substi-
tution 0. There are two possible cases: (i) x is an object variable.
In this case, x must be equal to v to match v and o is empty. (ii) x is
a meta variable, say m. In this case, x always matches v under the
substitution 0 = {m — v}. Finally, we write u[x := v] for the update
u with all occurrences of x replaced by v.

In Figure 2 we show three rules that define the semantics of scope
updates: (i) for a scope-changing update applied to a 1et expres-
sion (the application to B-redexes and lambda abstractions is sim-
ilar), (ii) for an insert-scope update yielding a 1et expression (the
case when the defining expression is missing is similar and yields
a lambda abstraction), and (iii) for a delete-scope update applied to
a let expression (again the application to a lambda abstraction is
similar).

x5V o0O))E%w P/ =pU{w}
uy = (ugx:=v))[X :=w]  ug= (ue[x:=V])[x :=w]

[luia]p’([ua]]p’(d)) =d [luie]lp’ (e)=¢

[{x~X":ug}uulp(let v=d ine) = let w=d" in€

vigw  [uv = wllpuqwy (e) =€’
[{~v=d}u]y(e) = let w=d in¢’

x=V LU= V];vesex)lp(e) =€
[{x~ex}ulp(let v=d ine) =¢

Figure 2. Semantics of scope updates.

Note that the freshness precondition in the first rule requires that
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w is fresh with respect to e and d, that is, w must not be bound in
either expression. A complete semantics definition can be found in

8.
5.3 TypeChange System

The type system for the update language is designed to find all pos-
sible type changes (d) that an update can cause to an arbitrary ob-
ject program. If these type changes cover each other appropriately,
the update can be regarded to be safe with respect to preserving the
type correctness of object programs. A simple type change is given
by a pair of types and is written as t~t’. For typing the alternation
combinator we also need alternative type changes, which are writ-
ten as s~s'|t~t’. So in general, a type change can be thought of as
a set of simple type changes. To obtain a precise description of type
changes that can occur through the use of recursively performed
updates, we have to qualify types and type changes by what we call
type contexts. For brevity we ignore type contexts in the follow-
ing discussion because the ideas of type-change inference, normal
form, and safety of updates can be also illustrated without them. A
detailed description of type contexts and their use in the description
of type changes can be found in [9].

Type-change judgments are of the form A>u :: & where A is a
set of type-change assumptions, which are basically of the form
x~x' i t~t’ and express the fact that x is renamed to x” and that
the type t of x is changed to t’. (We also have assumptions vy t
for newly introduced variable and x :, t for variables to be deleted).
We can define projection onto the left or right part of a type change
assumption (written as A, and Ay) which both yield sets of ordinary
type assumptions (such as x : t and x’ : t’) that can be used by the
type inference of the object language. Then we can define the type
change for update rules and scope updates as shown in Figure 3.

Apke it N et

RUL
Ave~se tast

Avud  Avu ¥ 6=¢%

ALT
A>u; U gen(d,9)

A XX tast/ DUg sttt A XX tast/ DUy 5 O

CHG
A {x~x"1ugtuy 2 8
Aw:t>u o

INS

Av {~>whu i t50

Figure 3. Type change system (excerpt).

The first rule RUL shows that the type-change system is built on the
type system of the object language: to determine the type change of
an update rule, we have to determine the types of the rule’s left-hand
side and right-hand side with respect to the corresponding projec-
tions of type-change assumptions.

The notation t& used in the rule INS denotes the extension of a
type change’s result type by a new argument type t. For a simple
type change we have: t-ps~s' =s~t — §'; for a type alternative
we get: t—-0|8 =t-pd|t0.

The relationship 3= & expresses that one of the type changes is an
applicative instance of the other, which is true if argument and re-

sult type of one type change are applicative instances of argument
and result type of the other type change, where a typet is an applica-
tive instance of type u if u =t or u = s — t (for some type s). Two
updates that have applicative-instance compatible type changes can
be considered well typed in an alternative because one update has
just a more specific, but compatible, type change than the other. The
expression gen(d,d’) then selects the more general of the two type
changes as a representative type change for the alternative update.

The Hindley/Milner type system for lambda calculus has the strong
property that well-typed programs cannot produce a runtime type
error. A corresponding property for the type-change system of the
update calculus is that updates for which a type change can be in-
ferred do not produce object programs containing type errors. To
ensure this kind of safety, we need an additional structural con-
straint on updates which we will describe next.

The structural constraint consists of two parts:

(i) An update of the definition of a symbol that causes a change
of its type or its name is accompanied by an update for all the
uses of that symbol. This rule prevents ill-typed applications
of changed symbols as well as unbound variables.

(ii) No use update can introduce a non-generalizing type change,
that is, for each use update that has a type change t~-t'|3 we
require: t’ - t, that is, t is a type instance of t’. This condition
prevents that changed symbols break the well-typing of their
contexts.

We say that an update for which a type change can be successfully
inferred and that satisfies these two conditions is in normal form.
We can prove that any scope update in normal form preserves the
type correctness of generated/transformed object programs; see [8,
9].

Let us illustrate type-change inference and the normal form by two
update examples.

First, we consider an update that generalizes a (value or function)
definition by adding a parameter and by replacing an expression in
the definition by this parameter. Uses of the function are extended
by an application to the abstracted expression.

{f:{ %}l ‘x}Emf 1
We use the following two abbreviations in the inference:

A ={‘f~‘f : Int~>Int->Int}
Dy = {“f~‘f ;I Int~>Int->Int, ‘x r Int}

Now we can conclude according to rule RUL that:
A1~ ‘x o Int~Int
Using this fact, we can apply the rule INS to obtain:
Ap>{~‘x}1~s ‘x i Int~ Int->Int
Again, by applying rule RUL we get:
Aip fas‘f 1 Int~Int

Now we can take the last two facts as premises for the rule CHG,
which provides us with the following conclusion.

Io{f:{~mx}l x}f~f 15 Int~Int

We further claim that this update is in normal form, which can be
seen as follows. Condition (i) is fulfilled since the type change
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for £ is accompanied by the use update ‘f~+‘f 1, whereas condi-
tion (ii) is satisfied since the type change for the use update is just
Int~»Int.

As a more complex example we consider the introductory example
from Section 2 expressed as a core calculus expression u:

{Node:t~>Int->t}
({Node} ({~ ‘s}Node~+Node (‘succ ‘s));
{Leaf }Node~>Node 1);
Node~+Node 1

How this expression can be derived from the HULA update will be
demonstrated in Section 6.2. To formally infer the type change for
this update, we have to extend the presented type-change system in
several ways. First of all, we need a rule to deal with constructor
updates, which should be of the following form:

A,C1mCo i tpmtodu 2 0

CON
A {Cy~>Co:itg~totu 1 0

Second, the case update is translated into the core calculus as a
change update for constructors. This works fine with the semantics,
but the type-change system needs some modification to deal with
this situation.

As we see in the above example, there are two nested updates for
constructor Node, where the inner resulted from the case update.
This update should be handled by the type-change system differ-
ently than other scope updates, because the type change for the
constructor has already been explicitly introduced by the rule con.
It is easy to syntactically identify such updates since the definition
update is always 1. Therefore, we can introduce a specialized type-
change inference rule for this case:

AC)=t3d  Apu:itpd

cHE Ax{C:l}u:: o

This rule expresses the expectation that the type change inferred
for a constructor used in a match rule agrees with the type change
explicitly given for the constructor in the type-change environment.

In the following discussion we abbreviate the type-change environ-
ment {Node~>Node :: a~~Int->a} by A. We use uc to abbreviate
the alternative ({Node} (. ..);{Leaf}Node~>Node 1) and uj for
Node~»Node 1.

According to CHG’, we can infer the following type changes for the
two alternatives:

A {Node} ({~ ‘s}Node~+Node (‘succ ‘s)) :ia~a
A {Leaf }Node~»Node 1 :: a~va

By applying rule RUL, we also have:
Ap>Node~~Node 1 i a~~a
By applying ALT twice, we can infer:
AbUc;Ug = a~a
Finally, we can apply rule coN and obtain:
gpu il a~a

This update is also in normal form because (i) the type change for
Node is accompanied by the rule Node~+Node 1 in the use update
and (ii) the type change for u is a~~ a.

6 TheHaskell Update Language

We define the syntax of the update language in Section 6.1. The
translation into the core calculus is described in Section 6.2.

6.1 Syntax

The update language builds on the core calculus, in particular, rules
and alternation are reused. For syntactics convenience we intro-
duce specialized notations for scope updates and use an economic
notation for rules. The general syntactic schema of all scope update
constructs is:

cat bind : def in use

cat marks the syntactic construct to be updated (for example, con
for a constructor or fun for a function definition), bind denotes the
symbol whose definition and use is being updated and a possible
renaming. In general, symbols can introduce bindings for local
variables. Therefore, the bind part also allows the update of these
bindings by renaming symbols or constructors or introducing new
or deleting existing symbols. The : separates the updates for the
bindings from the update of the definition for the updated symbol.
Finally, the keyword in introduces the update of uses for the up-
dated symbol. This update can be empty. We define that the use
part extends as far as possible. The binding update is given by a
rule whereas the definition and use part of an update can be given
by an arbitrary update expression. In practice, bind will be just a
name (seldom a renaming) and sometimes followed by an insertion
of locally defined variables. Moreover, in most cases, def and use
are given by alternatives of rules or other scope updates. A special
syntax is used for case updates since these require a list of binding
and use updates (without definition updates).

The prevailing part of most updates consists of rules. To make up-
date programs well readable we have therefore thought about what
would be the most convenient rule notation. Traditionally, rules are
written like I~ r (see also Section 5). In many cases rules are used
to provide context for adding, deleting or replacing a syntactic ob-
ject, which means that quite frequently parts of | are repeated inr.
We have therefore chosen the notation a{l/r}b as an abbreviation
for alb~sarb. Thus {x/y} means replace x by y. This interpreta-
tion was chosen because we obtain as special cases {x/} meaning
“delete x from the context” and {y} meaning “insert x into the con-
text”, while {x/y} still reads like a rule. We say that such a rule
is completely factored if x and y do not have a common prefix or
suffix.

The syntax of the Haskell update language HULA is defined in Fig-
ure 4 and is built on top of the syntax for the manipulated object
language Haskell. We require Haskell variables (hvar) to be pre-
fixed by a backquote ¢ so that we can use names that begin with
a lowercase letter as meta variables (mvar), which are variables
in HULA. Hence, the syntactic Haskell categories of expressions
(exp) and types (type) are extended to contain quoted variables. \We
combine the adjusted Haskell expressions and types in the HULA
syntactic category pat and both kinds of variables as well as Haskell
constructors (hcons) in the category sym.

6.2 Trandation into the Update Calculus

The translation of HULA into the update calculus is defined by the
function 7, which uses four auxiliary functions Z,/D and 7,/ U
that deal with the translation of scope updates. The definitions for
all these functions are shown in Figure 5.
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T(p<I/r}p)

T(catr:ug in Ue)

T(catr:ug)

T(casery =>ug | ... | rp=>up)
T(ug ;5 up)

(W)

Tp({x/X'3r*{igdry...rf5_1{in}r};, ug, Ue)
Tu(DX/X¥redindry . orf_ {indry, Ue)

D({x1/%)} ... xn/ X} Ug)
Uxa/x ¥ Axn/Xp}, Ue) =

plp'~pr'p

TD(V:Q—(UdL‘T(Ue))

T (r, Z(Ug), 1)

Tu(ry, T(ug)) 5 ... 5 Tu(rn, Z(Un))
T(ug); T(u2)

T(u)

{x~oX 1 D(r* {sin}D(r, . {~in} D(r},ug))) Hue
{XsX b U(r*, {~ig}U(rg, ..., {~in} U(r}, Ue)))

XX b XX i ug
n
{XgwxX] o XX e

Figure5. Trandation of HULA into the core calculus.

upd m= rule factored rule

| catbind:upd [inupd]  scope updates

| casemrule { | mrule} case update

| upd ; upd alternative

| (upd) grouping
mrule = bind -> upd match-rule update
rule := chng { chng } update rule
chng = {pat/pat} replacement

| {pat[=pat]> insertion

| pat no change
bind = ren{ren} binding update
ren n={sym/sym} renaming

| {sym} new symbol

| sym keep symbol
pat ‘= exp|type Haskell objects
sym := mvar | hvar | hcons variables, constructors
cat = data|con|fun scope categories

Figure 4. Syntax of the Haskell update language.

The translation of rules and alternatives is rather obvious. The
translation of scope updates (and case updates) is complicated by
the fact that our rule notation allows the notation of a sequence of
nested rules in a linear form (since a rule is given by a sequence of
chng’s). Each such sequence of elementary rules has to be trans-
lated into a nested scope update of the core calculus.

We can distinguish two kinds of elementary rules: (i) insertion
rules and (ii) replacement and no-change rules, where a no-change
rule like x is just an abbreviation for the identity replacement
rule {x/x}. According to this classification we can regard a
binding update as a sequence of insertion rules each separated
by a (possibly empty) sequence of replacement rules, written as
r{ig}ri...r5_¢{in}ry. This view is used in the definition for the
functions 7 and 7g;.

The function T3 is used for translating scope updates, whereas
Tz, is used for translating case updates. The two functions differ
in how they promote definition (ug) and use updates (ue) along a
sequence of elementary rules: T3 creates recursively nested def-
inition updates by successively translating elementary rules; 7
moves ug downward along the nested rules and leaves ue on the
top level. In contrast, 7¢; creates a recursively nested use update; it

leaves ug on the top level and moves ue downward the nested rules.

The shown translation assumes that rules are completely factored
and that the proper distinction between object and meta variables
has already been made. We also assume that no-change rules have
been expanded into corresponding identity replacements and that
keep-symbol rules have been expanded into identity renamings.

To understand how these functions work, it is best to look at some
examples. The following update adds a parameter to the function
definition for £ and an argument to all calls to £:

fun ‘f {x} : e in ‘f {3}

First, we expand the keep-symbol binding update £ into the re-
naming {‘£/‘£} and the no-change rule e into the identity replace-
ment {e/e}. We also identify x as an object variable so that we can
use ‘x in the following translation. Note that the ‘£ in the use up-
date is not expanded because it is parsed as a part of the factored
rule ‘£ {3} that will be translated by 7.

Now the translation into the core calculus proceeds as follows:

T(fun ‘f {‘x} : e in ‘f {3})=
T(fun {‘£/f} {‘x} : {e/e} in ‘£ {3})=
Tp({£/£} {‘x},2({e/e}), 7(‘£ {3}))

At this point we can apply the first translation rule twice to ob-
tain 7({e/e}) = e~e=:uq and Z(‘f {3}) = ‘£~ ‘f 3 =:Ue.
We continue by applying the definition for 75, where x and x’ both
match ‘£, r* is empty (€), i1 matches {‘x}, and r}; is also empty
(we have n = 1). With D(e,u) = u we obtain:

Tp(L £/ £} {*x},Ug,Ue) =

[“Es £ D(e, (> x) DIe, Ug)) e =
{“f~fi{~‘xfUgtUe =
{‘ffi{m‘x}ere}fr f 3=
{“f:{~‘x}le}f~f 3

This example demonstrates how nested binding updates used in
scope updates are translated into nested definition updates. The
translation is what we expect because the intention was to extend
£’s definition by a new parameter, and this is exactly what the re-
sulting core-calculus expression achieves.

To understand the need for the functions 77; and U, consider the
translation of the following case update.

case Node {s} -> Node {1}
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Again, we first expand the binding update and identify object vari-
ables so that we can apply the translation.

T(case Node {s} -> Node {1})=
T(case {Node/Node} {‘s} -> Node {1}) =
T7;({Node/Node} {‘s},T(Node {1}))

The first rule for 7 gives 7(Node {1}) = Node~»Node 1, which
we abbreviate by u. Next we apply the definition for 77;. Here x
and X' match Node, r* is empty, i; matches { s}, and r}, is also
empty (again, n = 1). With U(g,u) = u we can continue:

T7;({Node/Node} {‘s},u) =
{Node~~Node:1}U(e, {~ s} U(g,u)) =
{Node~»Node:1}{~‘s}u=
{Node~»Node:1} ({~ ‘s}Node~+Node 1) =
{Node} ({~ ‘s}Node~~»Node 1)

This example demonstrates that nested binding updates used in
case updates are translated into nested use updates, which makes
sense since the symbols introduced in match rules have no defini-
tion. Instead the use of the introduced symbols in the right-hand
side of the match has to be updated. This is accomplished by the
resulting core-calculus expression.

As a slightly larger example we consider how the update from Sec-
tion 2 is translated by T'into a core calculus expression. As we did
in the previous examples, we first expand the binding update and
identify object variables:

con {Node/Node} : {Int} t in
(case {Node/Node} {‘s} -> Node {‘succ ‘s}
| {Leaf/Leaf} -> Node {11});
Node {1}

We abbreviate the case update by u¢ and the alternative update for
Node extensions by ug, that is, we consider the translation of the
update con {Node/Node} : {Int} t in Uc; Us. We obtain:

T(con {Node/Node} : {Int} t in Uc; Ua) =
Tp({Node/Node}, T({Int} t),7(Uc; Ua)) =
Tp({Node/Node},t~»Int t,7(Uc; Ua))

The rule for case yields for T{uc):

T7;({Node/Node} {‘s},T(Node {‘succ ‘s}));
T7({Leaf /Leaf}, T(Node {1}))

Similar to the previous example, this expression can be further
translated to:

{Node} ({~ ‘s}Node~+Node 1);
{Leaf }Node~~Node 1

Therefore, we obtain for Z(uc; ua) the following core calculus ex-
pression.

({Node} ({~ ‘s}Node~+Node 1);
{Leaf }Node~~Node 1);
Node~»Node 1

We can now complete the translation of the complete con update as
follows.

T(con {Node/Node} : {Int} t in Uc; Ug) =
Tp({Node/Node},t~~Int t,Z(Uc; Ua)) =

{Node~~Node:t~»Int->t}
({Node} ({~> ‘s}Node~+Node (‘succ ‘s));
{Leaf }Node~»Node 1);
Node~Node 1

By abbreviating the trivial rule Node ~~ Node, we finally obtain:

{Node:t~>Int->t}
({Node} ({~ ‘s}Node~»Node (‘succ ‘s));
{Leaf }Node~+Node 1);
Node~+Node 1

7 Conclusionsand Future Work

In this paper we have introduced an update language for Haskell
called HULA. HULA is based on combinators to build complex
updates from basic rewrite rules. An important safety property of
HULA is that when a type-safe update in normal form is applied to a
type-correct program, it produces another type-correct program. In
terms of Milner’s slogan, type-safe updates will not compile wrong.

HULA is still limited in its current form. Some of the extensions
we plan to work on in future are:

Supporting full Haskell. Currently, we deal only with a subset of
Haskell. For example, the treatment of type classes requires an ex-
tension of the notion of type change. Then type safety requires also
kind safety of updates. Kind changes can be formalized similarly to
type changes. There are other issues, such as the treatment of mod-
ules, that should be supported, too. Extensions of HULA have to be
supported by the core calculus, which might also require extensions
in some cases. For example, we have seen that although HULA up-
dates for constructors and case expression can be translated into
core calculus expressions that are handled well by the semantics,
the type-change inference requires new rules.

Generic updates and update libraries. Looking at the introductory
example, we can observe a certain general pattern: a constructor is
extended by a type, all patterns are extended at the (corresponding
position) by a new variable, and expressions built by the construc-
tor are extended either by a function which is applied to the newly
introduced variable (in the case that the expression occurs in the
scope of a pattern for this constructor) or by an expression. Such a
generic update could be written once and stored in an update library,
so that constructor extensions as the one for Node can be expressed
as applications of such a general operation. Assuming the generic
operation is called extCon, the Node update can then be expressed

by:
extCon Node Int succ 1

which would have exactly the same effect as the update shown in
Section 2. In order to facilitate such update functions, HULA has
to be extended by function definitions and applications. The up-
date function extCon could then be implemented, for example, as
follows.

extCon c t f e = con ¢ : {t} u in
(case ¢ {x} > ¢ {f x}
| _ -> ¢ {e});
c {e}

Even such an innocent-looking generalization might raise some dif-
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ficult issues for the type system. For example, instead of the con-
structor Leaf that was used in the original update program in the
second match-rule update, we have to use a wildcard symbol (_)
in the generic update. Whereas Leaf has one particular type, the
wildcard has to range over many different constructors of different

types.

Conditional type safety. The normal form to guarantee type safety
is rather strict so that many useful program updates would not be
classified as type safe. It seems that this problem occurs, in particu-
lar, for some generic updates. However, in many situations, “com-
plete” type safety is not mandatory. Instead, a form of conditional
type safety is sufficient. The second example from Section 2 is not
type safe because the update does not update any Node outside the
insert function. But, it is safe as long as the object program con-
tains only the insert function. The notion of conditional safety in
the sense that type safety is preserved only for object programs that
satisfy some constraints (such as containing certain functions) is not
as strong as unconditional safety, but it is more widely applicable
and is still much better than having no information at all.

Improved implementation. We currently have a stable implementa-
tion of the core calculus in Haskell. This prototype is to be extended
to full HULA and full Haskell. For improved efficiency, we also
want to consider translating HULA into a rewriting system, such as
Stratego.
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