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Abstract—Producing precise and helpful type error messages
has been a challenge for the implementations of functional
programming languages for over 3 decades now. Many different
approaches and methods have been tried to solve this thorny
problem, but current type-error reporting tools still suffer from
a lack of precision in many cases. Based on the rather obvious
observation that different approaches work well in different
situations, we have studied the question of whether a combination
of tools that exploits their diversity can lead to improved accuracy.
Specifically, we have studied Helium, a Haskell implementation
particularly aimed at producing good type error messages, and
Lazy Typing, an approach developed previously by us to address
the premature-error-commitment problem in type checkers. By
analyzing the respective strengths and weaknesses of the two
approaches we were able to identify a strategy to combine both
tools that could markedly improve the accuracy of reported
errors. Specifically, we report an evaluation of 1069 unique ill-
typed programs out of a total of 11256 Haskell programs that
reveals that this combination strategy enjoys a correctness rate
of 79%, which is an improvement of 22%/17% compared to
using Lazy Typing/Helium alone. In addition to describing this
particular case study, we will also report insights we gained into
the combination of error-reporting tools in general.

I. INTRODUCTION

One of the major challenges faced by current implementa-
tions of type inference algorithms is the production of error
messages that help programmers fix mistakes in the code.
Cryptic, complex, and misleading compiler error messages
have been understood to be severe barriers to programmers,
especially novices, going back several decades (to the original
Hindley-Milner type system, even) [1], [2], [3], [4], and this
problem has continued to be acknowledged much more recently
[5], [6].

Expert programmers familiar with the way their compiler
performs type inference may develop some intuition for
recognizing error message patterns. Novice programmers,
however, might find some type errors—especially those using
type system jargon such as infinite types, or containing many
polymorphic type variables—to be more confusing than helpful.
Sometime these errors are not only complex, but even incorrect
or misleading. In particular, type errors sometimes include line
numbers which do not point to the actual error. In some cases,
this location is quite far away from the actual error source, or
even in the wrong file.

Quite a few solutions have been proposed to more accurately
locate type errors. One approach is to eliminate the left-to-
right bias of type inference [7], [8]. Another is to report
several program sites that most likely contribute to the type

inconsistency [9], [10] rather than committing to only one error
location. A related technique uses program slicing to determine
all the positions that are related to the type errors [11]. Finally,
constraint solving has been used to minimize the number of
possible error locations [12].

However, despite the considerable research efforts devoted
to this problem, and the improvements made, each of the pro-
posed solutions has its own shortcomings and performs poorly
for certain programs. Consider, for example, the following
function [10] that splits a list into two lists by placing elements
at odd positions in the first list and those at even positions into
the second.

split xs = case xs of
[] -> ([], [])
[x] -> ([], x)
(x:y:zs) -> let (xs, ys) = split zs

in (x:xs, y:ys)

Even though the type error in this definition is not hard to spot—
it occurs because the variable x in the second case alternative
is used as if it were itself a list rather than a single value [10]—
existing type inference systems have a hard time locating it
precisely.

When type checking this example, the Glasgow Haskell
Compiler (GHC) 7.6,1 which is the most widely used Haskell
compiler, produces a jargon-filled error message about being
unable to construct infinite types and points the programmer
to the very last line in the function.

The Chameleon Type Debugger [10], which represents the
more advanced error slicing tools, notes type mismatches in
three different lines, which still requires the programmer to
distill the information into an actual fix.

Helium [12] was designed to produce well-rounded results
that are more helpful than those from other tools. It suggests
changing the cons function (:) to the list append function
(++). This change would indeed fix the type error, but would
cause the types of the other two alternatives to change as well.
In general, it seems preferable to change the definition of a
function rather than the use of one and, if possible, to minimize
the effect of the change.

We have recently developed a new approach, termed lazy
typing (LT) [13], which improves type error messages for many
of these situations. For this particular example, LT identifies
the error as occurring in the expression x on the right-hand side
of the second case expression—exactly where we would hope.

1www.haskell.org/ghc/



The error message produced suggests that x is of polymorphic
type a, but should be of type [a], or “list of a”.

However, having seen so many different approaches one
might wonder whether any single approach will ever be able
to handle every conceivable type error properly. Consequently,
we ask the question of whether it is possible instead to
combine existing techniques together in complementary ways.
Strategically combined, this could allow a given tool to be
used in situations where it excels, and another tool where
it does not. To this end, we examine the specific case of
combining LT and Helium, and from that we extract principles
and recommendations for the general case.

In Section II, we introduce and explain the principles behind
lazy typing and expand upon Helium as a representative for
comparison. Section III evaluates Helium and LT separately
in order to specifically identify conditions under which each
is strong. Section IV discusses how Helium and LT can be
combined and evaluates the success of doing so. In Section V
we extract general principles for combining other type error
reporting methods and tools. Finally, we discuss related work
in Section VI and provide conclusions and general advice in
Section VII.

II. LAZY TYPING AND HELIUM

Here we examine LT and Helium in slightly greater depth.
This will help to illustrate the complementary nature of these
two techniques, and justify why we have selected these two
tools in particular to combine and discuss.

The motivating idea behind lazy typing is to better exploit
the context of expressions containing type errors. This context,
in principle, can support finding more accurate type error loca-
tions and also improve potential change suggestions provided
to the programmer [13].

We are able to exploit context information by delaying the
decision about the type of an expression until we can better
leverage the type information gathered from its context. In
cases where the expression turns out to exhibit a type error,
the availability of this contextual type information can help in
deciding what is wrong with the expression and therefore point
more precisely to the source of the type error.

The basic idea of this delaying strategy is to turn an equality
constraint between types, such as τ = τ′, into a choice between
the two types, which we write as A〈τ,τ′〉 [14]. Instead of
enforcing the constraint, which potentially causes an immediate
failure of type checking, we continue the type inference process
with the two possibilities τ and τ′. If τ 6= τ′, the inference will
eventually fail too, but at a later point when additional context
information is available. We call this strategy lazy typing.

By contrast, Helium is based on a constraint solving
approach. Helium can be roughly broken down into three phases.
In the first, constraints describing the program or expression
are gathered. The second stage reorders the type constraints
in a tree, which largely determines where Helium finds and
identifies the type error. Finally, the collection of constraints is
passed to a solver to type the code.

The differences between LT and Helium are indicative of the
diversity present among type checking and type error reporting

techniques. As might be expected, this variety present between
LT and Helium causes them to excel in quite different situations.
Consider the following type-incorrect function definition.

insertRowInTable :: [String] -> [[String]] -> [[String]]
insertRowInTable r t = r ++ t

This function takes two parameters, namely a data row
represented by a list of strings and a table in which to insert that
row represented as a list of list of strings. The implementation
then uses the (++) function, which appends two lists. This
causes a type error, however, because (++) has the type [a] ->

[a] -> [a] rather than [a] -> [[a]] -> [[a]].

LT types the expression before it considers the type
annotation. Because of this, the error is determined to be a
mismatch between the expression and the annotation, and no
suggestion is generated. Helium, on the other hand, assumes
the correctness of the type annotation and suggests changing
the implementation to use (:), which inserts a single value at
the front of the list, rather than (++). This will, indeed, fix the
type error, although it may not reflect what the programmer
had in mind.

However, introducing additional code to this example can
change the results dramatically and thereby illustrate some of
the practical differences between LT and Helium. Suppose we
add the following definition somewhere else in the file, which
tries to make use of our insertRowInTable function.

v = insertRowInTable ["Bread"] [["Beer"]]

LT is able to make use of this additional context to see that
this definition agrees with the original type annotation, and
so determines the error is most likely in the body of the
implementation, and it suggests to change (++) to something
of type [String] -> [[String]] -> [[String]]. Helium does not
account for the additional context and suggests the same change
as before. In this case, the additional context makes LT more
accurate, but not more so than Helium. However, consider the
case where, instead of the previous definition of v, we have
the following.

v = insertRowInTable [["Bread"]] [["Beer"]]

Here, LT sees that the function implementation and the
definition of v agree, while the type annotation does not.
Because of this, it suggests changing the type annotation to
[[a]] -> [[a]] -> [[a]].

By contrast, Helium continues to trust the type annotation
and produces two distinct type errors. The first is unchanged
from the previous examples while the second is to use a
character literal rather than a string, effectively changing the
type of the first parameter from [[String]] to [String].

Because Helium trusts type annotations in all cases, it
will typically produce the most useful error messages in cases
where that type annotation is indeed correct. When that type
annotation is the cause of the type error, however, LT tends to
produce more accurate error messages.

While Helium and LT both suggest expression changes
in some circumstances, they do so in different ways. Helium
frequently makes use of what it calls sibling functions. Siblings
are pairs of functions which are in some way similar or offer
related functionality. Example of this include (:) and (++) as



already witnessed, as well as max and maximum which find the
maximum of two values and the maximum in a list of values,
respectively. Literals can also be considered siblings, such as
the string and character versions of a single letter ("c" and ’c’)
or the floating point and integer versions of a number.

In the following section we present a more detailed analysis
of the particular situations for which Helium and LT are
particularly strong and examine their overall success rates.

III. EVALUATION OF LAZY TYPING AND HELIUM

We are interested in leveraging the diversity of techniques
among type checking tools, but combining them most effectively
requires understanding the strengths and weaknesses of each.
For this reason, we begin by evaluating both Helium and LT
independently. This will then help to inform more general
conclusions about combining type checking tools in later
sections.

For evaluation purposes, we obtained a database of pro-
grams collected at Utrecht University in 2005 [15]. The full
collection contains 11256 real programs, written by first-year
undergraduate students learning Haskell. While each program
is unique, some are sequences of programs which the students
fix or improve over time. These are particularly useful, as some
of these sequences involve fixing type errors. We can therefore
use these fixed programs as oracles for correcting the earlier
programs. This provides a practical, realistic, and objective way
to evaluate and compare type checking techniques

We filtered the set of programs down to those which
contained type errors in earlier iterations of the same program.
To achieve this, we produced a script to run GHC on every
program. We kept those which contained type errors, but
omitted those which also contained other issues such as parsing
errors as those are outside the scope of this work. Additionally,
Helium allows for some extended, non-standard notation such
as the (*.) operation for multiplying floating point values. We
also excluded these programs, as LT does not support such
non-standard syntax. After this process, we were left with 1069
unique, ill-typed programs. Some programs contained more
than one type error, meaning we actually investigated 1133
separate type errors.

With this filtered database, we were able to run both our LT
prototype and the Helium compiler on each program in order
to compare the type error messages. The output of each was
compared against the changes made in the oracle programs.
The output of Helium/LT was deemed to be helpful and correct
when the output agreed with the fix actually applied by the
student programmer. This process was performed manually,
and took approximately 200 hours of work.

To more clearly demonstrate how we determined whether
an error message was deemed correct and helpful or not, let us
return the example from Section I, which is, in fact, a snippet
from one of the actual student programs [15]. The example is
reproduced below, and the remaining lines show five different
error messages of different kinds and for different locations.
These messages were produced by LT, Helium, and some other
tools; the purpose is to show some of the kinds of errors that
can be found.

insertRowInTable :: [String] -> [[String]] -> [[String]]
insertRowInTable r t = r ++ t

(1) Change (++) to (:).
(2) Change (++) of type [a] -> [a] -> [a] to

something of type [String] -> [[String]] -> [[String]].
(3) Change type annotation to

[[String]] -> [[String]] -> [[String]].
(4) The type of insertRowInTable is incompatible

with its signature.
(5) In the first argument of (++),

couldn’t match type Char with [Char].

For each type error message, we record the following
information: (a) Whether the suggestion or error actually helps
to repair the type error. Because some changes may technically
fix the type error but completely change the behavior of the
program, we used the oracle programs to ensure that the
suggestions agreed with the actual intent of the programmer.
(b) Whether or not it is an expression change suggestion.
Expression change suggestions are those which are specific,
code-based changes rather than more general messages (which
frequently only refer to types). For example, messages (1) and
(3) from above are deemed to be expression change suggestions
because they recommend specific code changes, while the
others are less specific and refer only to types. (c) When
appropriate, why a message does not help to remove the type
error. For example, if the true cause of the type error in the
above example is the type annotation, then the messages (1),
(2), and (5) are considered to be not helpful because they report
errors at the wrong locations. Additionally, message (4) would
also be considered unhelpful in this case. While technically
correct, it is vague and fails to suggest a way to fix the error.
Alternatively, if the true cause is the use of the (++) function,
then the messages (3) and (5) are considered unhelpful because
they point to wrong locations. Message (4) is still too vague,
suggesting no specific changes, and is therefore still considered
unhelpful. (d) Whether the type annotation is correct or not.

This information allows us to separate all messages into
one of three error categories, which will help with the analysis.
The categories are based on level of concreteness, which is also
roughly analogous to usefulness. The least concrete category
of error messages are those we call fault location messages.
Typical type error messages have two components, namely
the location in the source code (such as a line and column
number) at which the error was determined to occur and the
message itself, which explains why code at that location caused
a type error. This category is only concerned with the former. In
particular, this category is concerned with those error messages
which provide a misleading fault location for the type error.
Regardless what kind of type error has occurred, or what the
suggestion is, if the oracle programs determine that the message
produced an incorrect fault location, it belongs to this error
category. Therefore, if an error message meets the criteria for
both this and another category, then this category takes priority.

At the second level, slightly more concrete than fault loca-
tion messages, we have type change suggestions. Type change
suggestions are those which produce vague recommendations
for changing the types of definitions in the code. A good
example of this is message (2) from above. It follows the
form “change X of type T1 to something of type T2”, which is
common for type change suggestions. Type change messages
can be either correct or incorrect as well.

Finally, the most concrete category of error message is that



Overall Expression change (EC) Type change (TC) Fault location (FL)
Co Co/N Ne Ne/N Ce Ce/Ne Nt Nt /N Ct Ct /Nt Nl Nl /N

Lazy typing 645 56.9% 252 22.2% 249 98.8% 579 51.1% 396 68.4% 302 26.7%
Helium 703 62.0% 309 27.3% 298 96.3% 673 59.4% 405 60.2% 151 13.3%
LT/H Oracle 1010 89.1% 506 44.7% 505 99.8% 605 53.4% 505 83.5% 22 1.95%

Fig. 1: Evaluation results for different type-checking approaches applied to ill-typed programs. The left-most columns, labeled
“Overall”, show the number of cases in which type errors are fixed (Co) and the percentage of programs this represents (Co/N).
The Ne, Nt , and Nl columns show the total number of programs determined to be of kind expression change, type change, or fault
location, respectively. The Ce and Ct columns report the number of expression change and type change suggestions, respectively,
that actually fix the error. The remaining columns show derived ratio information. The third row (LT/H Oracle) denotes results
obtained by always using the better output from either LT or Helium, serving as a theoretical maximum.

which we call an expression change suggestion, also described
above. It suggests a specific change in the source code of the
program, such as applying a different function or changing a
type signature in a particular way. Like type change suggestions,
expression change suggestions can be either correct or incorrect.

These three error categories together partition all of the
error messages. This will be useful in analyzing which kinds
of errors Helium and LT handle well and which they do not.

Figure 1 presents the results of running LT and Helium
separately on each of the 1133 type errors in our database,
broken down by the aforementioned classification scheme. The
third row (LT/H Oracle) presents a theoretical maximum that
could be achieved by always using the better output from either
LT or Helium. That is, if LT produces a message which points
to the wrong location for a given type error, but Helium has a
correct type-change suggestion for that same error, then we say
that the LT/H Oracle has the correct type-change suggestion
and ignore the LT failure.

From these data we can observe a number of things. LT
produced useful and correct error messages in 57% of all cases
and Helium did so in 62% of all cases. Also, although neither
tool produces a high ratio of expression change suggestions,
those that are produced tend to be accurate. Type change
suggestions account for the biggest partition of all error
messages. Helium produces type change suggestions for more
cases than LT, but suffers from slightly lower precision. Finally,
LT produces more error messages than Helium that fall into the
fault location category. Speculatively, this could be because LT,
unlike Helium, does not always trust type annotations. Since
the example programs in which the type annotations are correct
outnumber those in which the annotations are incorrect, Helium
gains an advantage by trusting them.

Both tools are substantially more effective in locating type
errors and suggesting changes than common Haskell compilers.
For the sake of comparison, a recent study showed that GHC
produces useful error messages in approximately 20% of
cases [16]. Helium provides useful feedback in more cases
than LT, though not by a wide margin. More importantly, both
Helium and LT still offer substantial room for improvement,
as neither produces strong error messages in all situations.

What is not obvious from the data, however, is that LT
and Helium do not completely overlap in the programs for
which they are successful. The different approaches are strong
in different situations. This means that, with a hypothetical
oracle, a programmer that simply runs both LT and Helium and

automatically selects the better of the two suggestions would
receive helpful suggestions in 89% of the cases. This LT/H
Oracle information is shown in the third row of Figure 1.

Of particular interest are the LT/H Oracle expression
change suggestions. Helium and LT combine for a total of
561 such suggestions, of which only 56 occur for the same
program. This means that, while Helium and LT can only
make expression change suggestions in 27% and 22% of the
examples, respectively, the LT/H Oracle can improve this to
an impressive 45%. Since the accuracy of expression change
suggestions is so high, this is a promising statistic. This increase
in expression change suggestions comes with a cost, however, in
that the maximum number of possible type change suggestions
is actually reduced from those that Helium itself is capable
of producing. This occurs because many of the type change
suggestions that Helium and LT are able to produce separately
become expression change suggestions when using the LT/H
Oracle. Finally, we can observe that the number of unhelpful
error messages pointing to the wrong source code location can
be reduced remarkably using the LT/H Oracle. This should not
be a surprise given the increases elsewhere.

Unfortunately, however, we cannot rely on the LT/H Oracle.
Simply applying both techniques and producing two error
messages is not always helpful since the programmer will
not know which tool to trust when they disagree. Instead, we
need a way to determine which of the two approaches is most
likely to be correct in a given situation.

IV. INTEGRATING LAZY TYPING AND HELIUM

We have seen that LT and Helium could potentially be
combined to produce useful error messages in up to 89.1% of
our test cases. Of course, this figure represents the theoretical
best case, which could be achieved by someone who knows in
advance what the correct answer is. The interesting question is
how we could possibly integrate the two tools to automatically
produce error messages that improve on both tools.

As mentioned previously, the high success rate of the
theoretical combination is largely due to Helium and LT being
strong in different situations. That this is true is witnessed
by the fact that, of the 703 type errors correctly identified by
Helium and the 645 identified by LT, only 338 are correctly
found by both.

Following the results in Figure 1 and the corresponding
analysis in Section III, we have derived a strategy to combine
LT and Helium that consists of the following three rules.



Lazy Typing
EC ¬EC

3 7 3 7

Helium
EC 3 51 0 67 180

7 3 5 7 9

¬EC 3 76 2 - -
7 119 15 - -

Fig. 2: A breakdown of the cases in which LT or Helium (or
both) made an expression change suggestion (EC). Note: ¬EC=
TC∨FL.

• If either LT or Helium provides an expression change
suggestion, accept it. If both suggest expression changes,
prefer the suggestion from LT.

• Otherwise, if LT suggests that the type annotation is wrong,
use the suggestion made by LT.

• Otherwise, use the suggestion made by Helium.

The motivation for the first rule can be gained by examining
Figure 2. This table shows two rows for expression (EC)
and non-expression (¬EC) changes by Helium, and two
such columns for LT. Each row/column is further split into
correct (3) and incorrect (7) cases. This leads to 12 possible
combinations. The four empty cells are coincidental and show
situations with no expression change suggestions, which are not
relevant. The remaining cells show the number of programs in
which that combination of suggestions occurred. For example,
the cell with the value 7 tells us that there are 7 cases in which
Helium made an incorrect expression change suggestion while
LT made a correct non-expression change suggestion.

Please note that there may seem to be a discrepancy between
the values in Figures 2 and 1. This occurs because in Section
III the fault location category took precedence over the others,
i.e. some expression change suggestions were categorized in
fault location. In the current Section we discuss all expression
change suggestions, even those that were previously categorized
as fault location.

From the table, we can extract several specific reasons to
justify always trusting expression change suggestions. (1) There
is only minimal overlap in these cases. Out of the 534 cases
in which either Helium or LT makes an expression change
suggestion, only 59 of them are shared. (2) Expression changes
are typically accurate, and a tool that trusts them will often
deliver correct error messages. We can see that trusting Helium’s
expression change suggestions rather than LT’s non-expression
change suggestions only leads to 7 cases in which we could
have done better. Similarly, trusting LT’s expression change
suggestions over Helium’s non-expression change suggestions
only leads to 2 situations in which we could do better. (3) In
only very few cases do both tools have different expression
change suggestions. There are only 3 such cases, all of which
occur where LT is correct and Helium is incorrect. This
directly supports preferring LT in cases where both produce
an expression change suggestion. (4) There is little overlap
between correct expression changes and correct non-expression
changes when compared to correct expression changes and
incorrect non-expression changes. We can see that Helium
expression change suggestions provide useful error messages

Lazy typing
3 7

Helium 3 38 2
7 81 19

Fig. 3: A comparison of correctness for LT and Helium type
error messages for programs that LT determines to have wrong
type annotations.

in 180 cases where LT would provide an incorrect message.
In the other direction, LT provides correct expression change
suggestions in 119 cases where Helium provides an incorrect
non-expression suggestion.

Finally, we can see that out of the 534 expression change
cases, there are only 38 cases which would be improved by the
oracle solution, namely those in which either both expression
change suggestions are incorrect (5) or only one is made and
it is incorrect (that is, 7+9+2+15 = 33).

To justify the second rule of our strategy, we need to exam-
ine information about the correctness of the type annotations
in our programs. Unfortunately, we cannot simply rely on type
annotations being correct. This rules out the use of Helium for
these cases, which automatically trusts them. Fortunately, LT is
reasonably accurate at finding incorrect type annotations. The
program database contained 264 incorrect annotations and LT
identified 243 of them. Out of the 1133 total type errors, LT
produced 21 false negatives and 40 false positives, producing
an acceptable margin of error in deciding the correctness of
type annotations.

We can extract yet more information to justify our second
rule from the table in Figure 3. Of the messages produced
for the 264 incorrect type annotations, 140 do not contain an
expression change suggestion from either tool. The other 124
are therefore handled by application of the first rule and so
are not relevant here. Figure 3 presents a breakdown of these
examples by whether or not LT and Helium have correct type
change suggestions. We can observe that there are 38 cases
in which both approaches are correct, 81 cases in which LT
is correct and Helium is incorrect, and only 2 in which LT is
incorrect and Helium is correct. This argues strongly in favor
of preferring LT in cases where programs are reported to have
incorrect type annotations.

To summarize the justification for the second rule, it
correctly handles 119 out of 140 possible cases. There are only
2 programs in our database which the oracle would improve
upon, where Helium is correct and LT is not. In the remaining
19 cases, neither Helium nor LT produces a correct message,
and so no strategy will succeed.

The third rule in our strategy proves the most difficult. We
have no syntactic way of distinguishing these cases, and neither
tool produces special error messages for particular cases.

Figure 4 presents a breakdown of how LT and Helium
perform on the remaining 459 cases. We observe that in 106
cases both tools produce useful error messages and in 75 cases
the choice is irrelevant as both are incorrect. Of the remaining
cases, 97 favor LT while 181 favor Helium. This suggests that
our combined approach should default to favoring Helium in all



Lazy typing
3 7

Helium 3 106 181
7 97 75

Fig. 4: A breakdown of type error messages from LT and
Helium for programs with correct type annotations and no
expression change suggestions.

Overall Correct Fault location Other error
Rule 1 534 496 31 7
Rule 2 140 119 14 7
Rule 3 459 287 58 114
Sum 1133 902 103 128

Fig. 5: Effectiveness of the rules in the LT/H strategy.

remaining cases, simply because it is more likely to be correct
for these situations. As a consequence of this, our strategy fails
to produce useful error message in 172 cases.

By using these three rules, we have produced a strategy for
integrating LT and Helium that always selects only one error
message, eliminating the problems faced by a naive combination.
From the user’s perspective, this combination works just as
Helium or LT would as a standalone tool except that it produces
useful error messages in more cases than either.

Figure 5 summarizes the effectiveness of the LT/H strategy
and the individual rules. For each, we present the number of
cases that satisfy the condition of that rule, the number of
programs for which the tool that the rule selects is able to
suggest a useful type error fix, the number of cases in which
the corresponding tool produces an unhelpful fault location,
and all remaining possible mistakes. Overall, LT/H produces
correct error change suggestions in 902 cases, representing
79.4% of our program database. It produces 103 total type
error messages that provide an unhelpful fault location. In
the remaining 128 cases, LT/H produces some other kind of
unhelpful error message, for example, a type change suggestion
at the correct fault location but with the wrong target type.

Finally, Figure 6 summarizes the overall performance of
LT/H. In it, we categorize each type error message according
to the classification scheme described and used in Section III.
LT/H is able to achieve a correctness rate of 79.4%, improving
substantially on Helium and LT as separate tools, which
achieved 62.0% and 56.9%, respectively. From this we can
conclude that the LT/H strategy is indeed effective.

V. GENERAL STRATEGIES FOR COMBINING TOOLS

By reflecting on the process that we used to identify the
LT/H strategy in Section IV, we can extract guidelines that
apply to the general case of combining type error reporting (or
other static analysis) tools.

In the following, we use A and B to refer to two arbitrary
tools to be combined, and we use ABs to denote the combination
with respect to strategy s. In cases where the strategy is
irrelevant to the discussion, we may simply drop s.

For a given combination of tools ABs, there are two primary
factors that affect its performance. First, both A and B have
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Fig. 6: Performance of the LT/H approach

inherent limitations which will naturally restrict the performance
of ABs, regardless of the strategy used. This occurs in cases
when neither A nor B is able to produce a helpful error message.
Even a perfect oracle cannot improve this situation, as was
the case in our running example. See Figure 1, which shows
the inherent limitations of both Helium and LT, as well as the
LT/H Oracle.

The second factor affecting the performance of ABs is
simply the number of cases in which our strategy is able to
select the strongest tool for the situation. Unlike the LT/H
Oracle, it is possible that the strategy’s selected approach is
the weaker of the two, resulting in cases we refer to as being
misclassified.

In our running example, LT/H, there are 9 misclassified
cases out of those handled by rule 1, which always trusts
expression change suggestions. Rules 2 and 3 produce 2 and 97
misclassified suggestions, respectively. In total, then, LT/H
produces 108 misclassified suggestions. Together with the
123 cases for which Helium and LT both produce incorrect
suggestions, this sums to 231 cases in which LT/H produces
an unhelpful message. This result can also be calculated from
Figure 5.

From these data, we can conclude that, while the specific
limitations of A and B are important, the strategy s is the most
important aspect. In order to derive an effective general strategy,
the first task must be to label the problem cases and classify
them into categories, treating each separately. This enables the
analysis of the problem in parts, maximizing the performance
of s for each of the problem cases. Without understanding
these problem cases, it is difficult to do better than by random
chance.

In the case of LT/H, we were able to classify all cases into
three different error categories: cases for which at least one tool
produced an expression change suggestion, cases for which LT
reported an incorrect type annotation, and all other cases. If,
like this, problem cases can be divided into categories, then
we can apply two principles that we call category analysis and
category-wise method analysis (hereafter just method analysis)
to help decide how to handle them.

Category analysis considers the manner in which the



individual problem cases are classified into categories most
effectively. Individually, A and B might classify a single case
into different categories, and so care needs to be taken when ABs
choosing between them. For example, for some of the programs
we evaluated, Helium reported an expression change suggestion
while LT reported an incorrect type annotation and made a
type change suggestion. In this case, according to the category
analysis principle, we should choose the category that has the
highest probability of producing a correct result. Returning
again to Figure 1, we can see that expression changes have
a substantially higher accuracy rate than any other category,
and so we chose to give preference to the expression change
whenever one is produced.

In this example we have the good fortune to see that
both tools are accurate when producing an expression change
suggestion. This might not always be the case, however. In a
different situation, we would derive a different strategy to take
advantage of the strengths of the tools. In general, however,
the category analysis principle offers guidance for making this
determination.

Method analysis is the principle which guides the selection
of a tool or technique for a given category. We assume that
category analysis has already been applied, and thus that each
problem case has been assigned to a category. As an example,
we decided that, in the case where LT reports an incorrect type
annotation (and no expression change suggestion is made by
Helium) to always trust LT, as the data suggests this is more
likely to be correct. Intuitively, the principle is to maximize
the correctness rate for each of the categories.

This principle works particularly well when there are many
small categories, as well as when two tools have high accuracy
and correctness for disparate sets of categories. By the same
logic, method analysis is less effective when two tools have
similar performance for a single category, or when categories
are large. This is also demonstrated by the LT/H example. Our
strategy does well for the second category, which contains
the programs that correspond to LT reports about incorrect
type annotations, because LT handles this case much better
than Helium with relatively few false positives. However,
the category of all remaining programs is large and Helium
outperforms LT by only a small margin, which means our
strategy is not as effective. Of the programs that fall into the
third category, LT/H misclassifies 21% of them, accounting for
nearly all of the misclassifications.

One way of addressing this situation is to further refine the
analysis and break down the large categories into several smaller
categories. Unfortunately, this finer-grained analysis requires
additional information, which may not always be available for
the given tools. One possibility for the LT/H example would be
to identify cases in the third category for which Helium only
reports a unification failure.2 We leave this for future work.

In summary, developing a strategy for combining tools
comes down to two principles: category analysis and category-
wise method analysis. Category analysis assigns a category for
each problem case while method analysis decides which tool
to use for each category. Increasing the number of categories

2An example of a unification failure is Occurs check: cannot
construct the infinite type: a0 = [a0].

will complicate the former while improving the precision of
the latter.

We have employed a common machine learning cross-
validation technique [17] to verify the effectiveness of our
method-combining strategy and rules. First, we randomly
divided the programs into two groups, using one half to derive
rules based on our principles, which were then evaluated on the
other half. We repeated this technique using one-third of the
programs to derive rules, tested on the remaining two-thirds.
In both cases, we derived the same set of rules discussed
previously (Section IV). Moreover, the correctness ratios were
both within 79.4±0.32%, a difference of no more than 0.32%
compared to the original result.

A. Threats to Validity

There are three main threats to the validity of this work.
First, all sample programs share a single data source. This could
lead to a homogeneous programming style with a proclivity
for avoiding or making certain types of errors. Until additional
data sets are available, this is difficult to work around. Second,
despite efforts to make a neutral and representative choice, it is
possible that the combination of LT and Helium represents an
anomalous case. Since we have not yet had the opportunity to
perform an evaluation of other tool combinations, we cannot
generalize the results. Finally, the coding of error messages
was performed by one researcher, which could potentially lead
to errors.

VI. RELATED WORK

The challenge of accurately reporting type errors and
producing helpful error messages has received considerable
attention in the research community. Improvements for type
inference algorithms have been proposed that are based on
changing the order of unification [8], [7], suggesting program
fixes [7], and program slicing techniques [11] to find all
program locations involved in type errors. The discussion
of technical and behavioral differences among disparate ap-
proaches is widely available in [12], [10] and in our technical
report of LT [13]. We will therefore instead focus our discussion
on the work most related to our own, as well as that which
was not covered by these summaries.

The most recent approaches to debugging type errors are
[16], [18], and [19]. The idea of [16] is to find all possible
changes that would fix a given type error, and then to use
heuristics to order those changes according to likelihood of
being correct. Although that idea is potentially more powerful
than LT, the approach does not offer the same diversity as that
between Helium and LT, making it a poor choice for studying
strategies for combining diverse tools. The idea of [18] is
to generate a constraint graph for type inference problems.
Rather than reporting all constraint satisfaction errors, however,
Bayesian reasoning is applied to detect the most suspicious
constraint, which is then reported to the user. One downside
of this approach is that errors are only reported in terms
of constraint satisfaction issues, which is rather low level
and makes error messages quite difficult to understand. The
approach described in [19] extends the work in citeCE14popl by
taking the programmer’s intentions into account when producing
change suggestions. These intentions are elicited in the form
of type annotations.



Seminal takes the unique approach searching for a well-
typed program that is similar to the ill-typed one by creating
mutations of the original program and applying heuristics
[20]. This search-based approach is both an advantage and
a disadvantage. In some cases it is able to make correct
change suggestions where other tools fail, but is prone to
exotic suggestions in others.

Like LT, Johnson and Walz’s unification-based approach
also uses contextual information to help locate faults more
accurately [2]. While LT resolves conflicts under the directive
of ensuring the overall program is well-typed, their approach
uses “usage voting” to resolve conflicts, in which the most
common successful unification result is used.

Muşlu et al. investigated providing programmers with
information about the consequences of suggested error fixes
[21]. In order to speculatively apply them, this work relies
on error suggestions having already been generated. Such an
approach could, however, be used to supplement the suggestions
LT provides users.

A number of previous works have shown success in
combining multiple, complementary techniques or tools in
order to utilize the strengths of both or to mitigate weaknesses
[22], [23], [24], [25]. Using these examples as justification,
we adopt a similar method and apply it to the domain of
generating type error messages. In addition to identifying an
effective combination (LT and Helium), we make the additional
contribution of extracting general strategy-creation techniques
that can be applied to any combination of type-error reporting
tools.

VII. CONCLUSIONS

We have successfully improved the accuracy of two type-
checking approaches by combining them into one tool. We did
so by a careful analysis of the situations in which the individual
tools succeed or fail. Reflecting on this approach we have also
identified a general strategy for exploiting the diversity in tools
to craft tools that are more powerful than the sum of their
parts.

In future work we plan to investigate the combination of
other type debugging tools, and also to refine the evaluation
to more error categories. Additionally, we plan to investigate
other general tool-combining strategies.
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