
Lightweight Automated Testing with Adaptation-Based Programming

Alex Groce, Alan Fern, Jervis Pinto, Tim Bauer, Amin Alipour, Martin Erwig, Camden Lopez

School of Electrical Engineering and Computer Science

Oregon State University, Corvallis, OR

Email: alex,afern,pinto,bauertim,alipourm,erwig@eecs.oregonstate.edu,camden.lopez@gmail.com

Abstract—This paper considers the problem of testing a
container class or other modestly-complex API-based software
system. Past experimental evaluations have shown that for
many such modules, random testing and shape abstraction
based model checking are effective. These approaches have
proven attractive due to a combination of minimal require-
ments for tool/language support, extremely high usability,
and low overhead. These “lightweight” methods are therefore
available for almost any programming language or environ-
ment, in contrast to model checkers and concolic testers.
Unfortunately, for the cases where random testing and shape
abstraction perform poorly, there have been few alternatives
available with such wide applicability. This paper presents a
generalizable approach based on reinforcement learning (RL),
using adaptation-based programming (ABP) as an interface to
make RL-based testing (almost) as easy to apply and adaptable
to new languages and environments as random testing. We
show how learned tests differ from random ones, and propose
a model for why RL works in this unusual (by RL standards)
setting, in the context of a detailed large-scale experimental
evaluation of lightweight automated testing methods.

Keywords-software testing; reinforcement learning

I. INTRODUCTION

The problem of automatically generating tests for software

systems is long-studied and generally accepted as critically

important to the future of reliable systems. Manual testing is

expensive and, alas, often ineffective for discovering subtle

flaws in systems. While automatic generation of tests for

large, complex systems remains difficult, highly automated

methods for generating unit tests for small, critical modules

have recently gained considerable traction [1], [2], [3]. As

early as 2000, Haskell programmers began to incorporate

lightweight highly automated random testing as a frequently

used method for “quickly checking” a function’s correctness,

using the QuickCheck library [4].

Methods for automated unit testing can be categorized

in many ways, but perhaps the most important from the

point of view of practitioners, rather than researchers, is

how easy it is to incorporate modern automated methods

into their software development and QA practices. Concolic

testing [5] and model checking are powerful in principle,

but often impractical to apply. Model checking involves

capturing state for backtracking [6] or automated abstraction,

and concolic testing requires symbolic execution. The most

mature model checkers even for popular languages such as C

and Java [6], [7] are often difficult for experts to use on real-

world code, and non-expert users often cannot overcome the

challenges inherent in e.g., testing code that involves calls

to native code in JPF, dynamic memory allocation in SPIN,

or abstraction/search problems in any model checker [8].

A second problem with concolic testing and dedicated

explicit-state model checking is that a large amount of

research and development is required to build an effective,

efficient symbolic execution engine or backtracking model

checker. Even for Java, concolic engines tend to be semi-

stable research projects hard for non-experts to find and

install. Non-prototype dedicated model checkers or concolic

testers do not appear to be available for such languages as

Python, Perl, Ruby, Scala, OCaml, and Haskell. Of course, in

the long run, popular languages will probably be served by

popular methods; however, (1) code needs to be tested today,

not in the long run and (2) the rate at which new languages

are being introduced (and becoming popular) does not seem

to be decreasing. Consider the case of a programmer in

Python or OCaml, developing a new implementation of bi-

nomial heaps with custom modifications for her application.

If she wants to use automated test generation to save time

and find more bugs, what are her options?

A. The Value of Lightweight Methods

Fortunately, two useful automated testing methods are

available for almost any language: random testing (RT) [9]

and non-backtrackingmodel checking with shape abstraction

(SA) [3]. These methods require no support in the form of

special or symbolic execution environments. In fact, most

experienced programmers can code up a basic RT harness

or SA “model checker” with ease in almost any language.

We call such testing methods lightweight automated testing

methods. Such methods must meet three basic requirements:

(1) they must be easy enough to implement that they are

essentially available for all programming languages and

environments; (2) they must be easy enough to use that

programmers can quickly code up test harnesses for small,

moderate-complexity modules; and, (3) they must be fast

enough that tests can be quickly generated and examined, to

determine if testing is producing useful results. Experimental

results show that even simple versions of RT and SA can

be effective for many subject programs [2]. Unfortunately,

“many” does not equal “all,”: RT and SA perform poorly

for some subjects, and the set of alternative lightweight

methods is thus far almost empty. This paper shows that

testing based on adaptation-based programming [10] (ABP)

using reinforcement learning (RL) meets lightweightness

requirements, and evaluates ABP’s effectiveness experimen-

tally. The contributions of this paper are: (1) an in-depth

examination of ABP-based testing, showing how it satisfies

the requirements for a lightweight method, (2) an experimen-

tal evaluation of lightweight methods using realistic fixed-

duration testing, over more containers than previous studies,

using three hard-to-complete coverage measures, (3) a case

study applying ABP to a larger, non-container class example,

and (4) examination of the statistical structure of ABP and

random tests as a lead-in to (5) a consideration of why

ABP testing is highly effective in many cases, despite our

approach not satisfying the assumptions made by standard

RL algorithms. We provide practical advice for the software

developer aiming to use lightweight methods to improve

module reliability at low cost, in any programming language.

II. BACKGROUND: ADAPTATION-BASED PROGRAMMING

Adaptation-based programming (ABP) [11] is a an ap-

proach to programming that allows a programmer to ex-

ploit machine learning to “implement” difficult optimization

algorithms. Rather than writing a function to compute a

value, the programmer asks the ABP-library to “suggest”

a value, given a context (a formulation of the state of the

system/problem). The programmer rewards the ABP library

based on how good the suggestion was. ABP acts as a

friendly interface to a reinforcement learning (RL) [12]

algorithm that attempts to optimize expected reward. ABP

lets the programmer concentrate on problem definition, not

the underlying machine learning algorithm.

RL is an approach to the problem of learning controllers

that maximize expected reward in controllable stochastic

transition systems. Informally, such a system can be imag-

ined as a graph of control points with rewards possibly ob-

served on transitions. Each control node has an associated set

of actions that influence (perhaps only probabilistically) the

transition taken. An optimum controller for such a system

is one that selects actions at all control points such that

total reward is maximized. Program-like structures annotated

with control points are isomorphic to Semi-Markov Decision

Processes (SMDPs), widely used models of controllable

stochastic systems [13], [14]. The details of SMDP theory

are not essential to understand ABP: what is important is that

there are well-known RL algorithms for learning policies

(action choices based on a context indicating the control

point) for SMDPs based on repeated interactions.

As an example, to program tic-tac-toe in ABP, a program-

mer would allow the ABP library to suggest a move (e.g. a

number 1-9 indicating a board position) based on the current

board state (perhaps a simple string, e.g. ’X-XO-OO-X’),

and provide a positive reward if the moves suggested even-

tually resulted in a win (illegal moves might be negatively

rewarded). Each game would constitute one “episode” of

learning, since moves in previous games have no influence

on the reward for future games. Initially, behavior of the

ABP-based player would be essentially random. Over time,

however, the adaptive process (the library’s encapsulation of

all it has learned about the problem using the RL algorithm)

should improve its behavior. The programmer need not

even be aware of the concept of SMDPs underlying this

adaptation to the reward function.

III. ABP-BASED TESTING

The key insight of ABP-based testing is that a programmer

can take a similar approach to generating tests. Rather than

selecting moves in a game, she lets the ABP library select

methods to call and parameters for calls for the program

being tested (called the Software Under Test, or SUT).

In practice, the programmer essentially writes a random

testing harness, replacing calls to the RNG with calls to

the ABP library’s suggest method, using, e.g., a string

representation (via toString) of the SUT’s current state

as a context. Each test sequence from initialization to end

constitutes an episode. Figure 1 shows an example ABP test

harness for a SplayTree class, using a binary search tree

(a simpler to implement library with equivalent functional-

ity) as an oracle. In general, ABP-based testing supports all

the oracle methods that might be used in RT or SA. Notice

that the ABP-based testing harness is just a standard Java

program, making calls to a library implemented in Java. No

special compilation or execution environment is involved;

the ABP library’s interface is only slightly more complex

than that of a typical pseudo-random number generator. The

use of methods with a single integer parameter is simply

an accident of the example; an Adaptive (action variable)

can be based on any finite type (though, as in RT or SA, we

might expect poor results when the domain is too large). The

key question is: what can the programmer use as a reward,

in order to “encourage” the adaptive process to thoroughly

test the SplayTree code?

The example provides a concrete clue to the general

answer. After each test step, the harness checks to see

if the current SUT state has been previously seen during

testing. If not, it adds it to the set of visited states and

rewards the ABP library for exposing new behavior of

the SUT. In other words, the programmer can provide

rewards based on increases in test coverage. It is easy

to augment coverage instrumentation to not only record

statement/branch/path coverage, but to signal an appropriate

reward for new coverage. This gives the ABP’s adaptive

process an optimization goal that the programmer can hope

will correlate with effective testing, with little additional

complexity over that required in computing coverage in

the first place. Initially, in the absence of experience, ABP

import abp.*;

. . .

AdaptiveProcess test = AdaptiveProcess.init();

HashSet<String> states = new HashSet<String>(); // Store all states visited

Adaptive<String,TestOp>opChoice = test.initAdaptive(String.class,TestOp.class);

Adaptive<String,TestVal>valChoice = test.initAdaptive(String.class,TestVal.class);

for (int i = 0; i < NUM_ITERATIONS; i++) {
SUT = new SplayTree(); // Create an empty container at beginning of each test case

Oracle = new BinarySearchTree(); // Empty oracle container

String context = SUT.toString(); // The state is simply a linearization of the SplayTree

for (int j = 0; j < M; j++) {
TestOp o = opChoice.suggest(context, TestOp.AllVals); // Used just like pseudo-random number generator

TestVal v = valChoice.suggest(context, TestVal.AllVals).ordinal();

switch (o) {
case INSERT: r1 = SUT.insert(v); r2 = Oracle.insert(v); break;

case REMOVE: r1 = SUT.remove(v); r2 = Oracle.remove(v); break;

case FIND: r1 = SUT.find(v); r2 = Oracle.find(v); break;

}
assert ((r1 == null && r2 == null) || r1.equals(r2)); // Behavior should match

context = SUT.toString(); // Update the context

if (!states.contains(context)) { // Is this a new state?

states.add(context); test.reward(1000); } // Good work, AdaptiveProcess test, you found a new state!

}
test.endEpisode();

Figure 1. Adaptation-Based Programming in a Test Harness

A simple test harness for a SplayTree class, rewarding test operations that produce previously unseen states for the class. This code assumes toString produces a simple

linearization of the SplayTree contents (e.g., (0,(1,3,4),2). The AllVals fields of the enum classes TestOp and TestVal are sets with all values of the enum types.

chooses randomly, effectively duplicating RT. However, after

the adaptive process has observed a few rewards, the learned

policy will, with high probability (about 90% of the time),

take the actions with maximum predicted reward, and only

choose randomly 10% of the time. This alternation between

exploiting what has been learned and exploring with random

actions arises from the RL algorithm.

The ABP library used in this paper (http://groups.engr.

oregonstate.edu/abp), makes use of a popular reinforcement

learning algorithm called SARSA(λ) [12]. At the heart of

the algorithm is the notion of a Q value defined as follows: at

adaptive A, the Q value of context c and action a (QA(c, a))
is the expected sum of rewards seen by executing a in c and

following the optimal policy thereafter. Learning these Q

values allows us to pick actions optimally since the best

action is simply the one with the largest Q value. The

SARSA(λ) algorithm learns these Q values from experience.

This is done by executing the learning algorithm for a

number of episodes during which it updates the Q values at

every (context,action) pair that is encountered. The algorithm

follows an ǫ-greedy explore-exploit policy which means that

the best action is chosen (i.e. exploit) with probability (1−ǫ)
while an action is chosen randomly (i.e. explore) with the

remaining ǫ probability. The library uses a small (typical)

value of 0.1 for ǫ. Finally, the value of λ (∈ [0, 1]) controls
the extent to which a particular action is given credit for

future rewards. A large value of λ updates an action’s Q

value with rewards that occur long after the action is taken

whereas a small value of λ only updates the Q value with

rewards seen immediately after the action is taken. The ABP

library sets λ to the moderately high value of 0.75, allowing
test coverage that only results from a complex combination

of operations to be effectively taken into account.

Note that in some sense our coverage-based approach to

rewards is “abusing” the basis of RL: the objective function

is changing with each episode, in that the probabilities of

reward for certain actions in certain states is decreasing with

time. The adaptive process will only receive a reward for

its first exploration of a new coverage element, whether

that element is a statement, a branch, a shape, a path, or

a predicate valuation. Experimental results indicate that this

unusual reward structure does not prevent the ABP library

from learning a policy that, over time, improves test suite

coverage. In Section VI we consider a possible explanation

for the success of ABP-based testing that takes this non-

stationary reward structure1 into account.

A. ABP as Lightweight Automated Testing

ABP satisfies our requirements for a lightweight auto-

mated test generation method. SARSA(λ) is a fairly easy

algorithm to implement in an afternoon in almost any

language — e.g., Sutton’s well known C++ and LISP imple-

mentations (http://webdocs.cs.ualberta.ca/∼sutton/tiles.html)

are each less than 500 lines, including quite numerous

comments. Crucially, RL requires no program analysis for

the SUT’s language. ABP is also roughly as easy to use

as RT, with the same few pitfalls (range of random values),

with the one addition that a suitable context must be devised.

We believe that for the kind of container-like modules where

lightweight methods are most effective, a string linearization

is likely to prove effective and is extremely easy to code.

We show in our experimental results that ABP can generate

1A stationary reward is one where the probability distribution over the
(typically random) reward seen due to performing the same action in the
same state is time-invariant.

useful test suites in as little as 30 seconds, providing

immediate feedback to a user. ABP is therefore lightweight;

is it also effective?

IV. EXPERIMENTAL METHODOLOGY

A. Subjects and Test Cases

Most of the SUTs included in the experimental results are

taken from the previous literature on test input generation; in

particular 13 subjects are taken from the work of Sharma et

al. [2] which combines subjects from several other studies.

Two additional popular container classes (a splay tree and

a chaining hash table) were added for this paper, both

from standard textbook implementations (one from Cormen,

Leiserson, Rivest and Stein’s second edition, and one from

Weiss’ Data Structures and Algorithms Analysis in Java.

For all methods, a test case largely follows a sim-

ple form: SUT = new Container(); SUT.m1(i1);
. . .; SUT.mM (iM); where ∀n : 0 ≤ in < N . In

some cases (e.g., heaps), some methods require two input

parameters, or the maintenance of a node vector from

which an input is selected (and deleted nodes are removed),

but in these cases a test case is still essentially simply a

sequence of method calls on the same container object.

The parameters M (the length of a test case) and N (the

range of input parameters) in all experiments are set at 200

and 20, respectively. These values derive from those used

in previous experiments with some of these SUTs [3], [2],

tuned for this paper to a “good” value experimentally. For

most container classes, 20 different input values are much

more than sufficient to expose all realistic faults, with the

exception of overflows, which are most effectively handled

by dedicated unit tests. In all cases, the coverage of a test

suite is the total coverage of all test cases executed, rather

than the maximum achieved by one test or set of tests.

B. Testing Methods

Random testing (RT) has recently been recognized as an

effective and easy to use method for testing API-based SUTs

such as container classes [1], [15]. In this paper RT simply

means selecting methods and parameters using a pseudo-

random number generator.

The framework for ABP-based testing (ABP) is almost

identical to that used for RT. Random selection of meth-

ods/parameters is replaced with a call to the suggest

method of an adaptive process, with the additional parameter

of a context. The adaptive process is rewarded for coverage

of a new branch, statement, path, or shape2. Experiments

were performed with a variety of contexts, defined by two

aspects: the representation of the state, and the representation

of the currently executing test case’s coverage. The container

state was in some cases represented as fully concrete (the

2We used essentially arbitrary rewards; the exact positive magnitudes
were experimentally determined to not be significant factors in performance.

result of toString), in some cases as a shape abstraction,

and in other cases as a shape abstraction annotated with

information on contained values (which might or might

not define actual positions, depending on the container).

Coverage options included no coverage information, counts

of coverage (# of statements/branches covered), or full

coverage information as which statements and branches the

current test case (not suite) had executed. These simple

contexts were not developed using any special knowledge of

ABP, RL, or SUTs. They are simply standard representations

familiar to the typical programmer, or standard, very easily

implemented (by a string crawl on toString results) ab-

straction approaches. The results reported below are, except

when noted, based on the configuration pairing a shape

abstraction without membership information and a count of

the current test case’s branch and statement coverage, which

we call ShapeCover. While this configuration did not always

perform best of the ABP approaches, it was consistently

effective, very often best, and provides a fair comparison

with other approaches.

Visser et al. introduced an explicit-state model checking

approach to test sequence generation based on shape ab-

straction (SA) [3], which Sharma et al. later exposited in

a form that did not depend on a model checking frame-

work [2]. Essentially, this approach performs a BFS over

test sequences, up to length M , with parameter range N ,

pruning the search tree based on the equivalence of the shape

of the SUT to any previously explored shape: only children

where the SUT’s shape has not been previously visited will

be expanded in each generation of the search. In practice,

theM was irrelevant in these experiments, as no exploration

managed to reach depth 200 of the search tree.

C. Evaluation Methods

The test suites generated by each method are evaluated in

terms of coverage metric. First, all SUTs are automatically

instrumented for branch and statement coverage by Code-

Cover, an open source tool. All methods obtained the same

(complete) branch and statement coverage for these SUTs.

Evaluation is therefore based on three much more difficult-

to-obtain coverages: path, shape, and predicate-complete

test coverage (PCT). Complete coverage of all paths and

shapes is often computationally intractable for even simple

SUTs with relatively small bounds; complete PCT coverage

is often more tractable, but still much more difficult than

complete branch or statement coverage. All coverage metrics

are independent: no subsumption relationships hold. Path

coverage (PA) is computed by modifying CodeCover instru-

mentation to add the current statement to a vector which is

cleared before each test step, allowing us to record unique

paths starting from top-level methods. The path information

is exact: no approximations are required, as the limit N

on items in the containers also imposes a bound on most

loops. The desirability of high path coverage is generally

agreed upon, and is a motivating factor for much work in

directed testing [5]. Shape coverage (SH), a measure that to

our knowledge has not been used in previous evaluations of

testing approaches, simply applies the underlying rationale

of the SA approach as a coverage metric: it is desirable

to cover many different shapes of a container, ignoring the

exact contents of the structures. Shape coverage is trivial

to compute given that we have code to compute the shape

abstraction — we simply maintain a set of all visited shapes:

coverage is the size of this set. The final coverage measure

is predicate-complete test coverage (PCT) [16] used in the

major previous comparisons of lightweight methods [3],

[2]. PCT measures how many combinations of all program

predicates are covered at all program points: it essentially

captures what portions of a Boolean abstraction have been

explored, and is not to be confused with simple decision

coverage. This paper adopts the same PCT coverage as used

by Sharma et al., except for the new SUTs, where a similar

instrumentation has been applied.

D. Fixed Duration Testing

Rather than basing an evaluation on the effectiveness of

fixed-size test suites produced by each method, it is prefer-

able to allow each method to test each subject for a fixed

amount of time (including both generation and execution),

on the same hardware, using a common framework for all

coverage costs and SUT execution. This more realistically

represents actual testing practice: when using automated

test generation methods, a test engineer will usually have

a certain budget of time available for testing, and hope for

the best in terms of coverage and fault detection within this

budget [17]. Evaluation is therefore based on total coverage

obtained by each testing method, for each SUT, given 30

seconds, 30 minutes, and 1 hour in which to generate tests.

A budget of only 30 seconds represents a reasonable “quick

check” [4] for simple errors, such as might be performed

after every compile. Budgets of 30 minutes and 1 hour show

how much improvement in coverage can result from more

in-depth testing, and match the kind of “over lunch” budget

that is also critical for lightweight testing. A maximum heap

size of 6GB was used in all experiments.

For ABP, experiments actually included 6 different pos-

sible contexts for each SUT and time budget. Generating

results for 10 methods and 15 SUTs therefore required well

over 150 hours of computation at the one hour budget. This

prevented a useful investigation of mutant-kill rates for the

chosen methods, given the added costs of executing tests

over a sufficiently large set of mutants. Because results

depended on random values, each 30 second and 30 minute

experiment was actually performed 5 or more times, with

different seeds. There was no overlap in the rankings of

methods using different seeds: e.g, if ABP performed better

than RT, it performed better for all seed values for both

methods. The results shown therefore all come from using

a single seed for a particular time budget (different initial

seeds are used for each budget to avoid simply overlapping

the earlier testing). In general, seed had so little impact

even for 30 second budgets that running with one seed was

sufficient to establish results for larger testing budgets where

there was insufficient time to repeat experiments.

Basing experimental results on fixed durations poses a

danger: if one method is implemented more efficiently than

others, it will have a major advantage. Given that it is

difficult to implement RT particularly inefficiently, this may

produce results that favor RT. However, for lightweight

methods this is appropriate, as programmers will often have

to implement these methods themselves. Programmers of

varying abilities are likely to all implement RT in a fairly

effective fashion. Implementing SA, on the other hand,

requires considerably more expertise and effort, including a

correct clone method, if the cost of replay is to be avoided.

Similarly, programmers are likely to implement the simplest

hash-based version of, e.g, SARSA(λ). Nonetheless, in order

to adjust for overhead of replay as opposed to state storage

exploration in SA, all experiments used real time equal to

twice the reported time for SA, based on a comparison with

exhaustive testing and RT. No adjustment was used for ABP.

V. EXPERIMENTAL RESULTS

A. Ranking the Methods

Table I shows the results of testing a large number of Java

programs with all three compared techniques, for three (four

in some cases, as discussed below) different testing budgets.

These results summarize over 12 straight days of compu-

tation. In the table, X indicates that a particular method

obtained the highest coverage obtained by any method for

that SUT and amount of testing time. In some cases, more

than one method tied for best coverage; XX indicates

unique best coverage. × indicates unique worst coverage.

For all metrics other than PCT (which often reached best

coverage as quickly as 30 seconds), maximum coverage

increased significantly with more time spent testing. The

final three columns show the actual maximum coverage

obtained by any method, and the difference (∆) between
the maximum and second-best coverage value. The density

of Xand XXsymbols under the three sets of columns for the

three methods conveys a simple summary of the results: RT

performed well on a set of SUTs similar to those reported in

past work [3], [2]. ABP performed best on a slightly smaller

set of SUTs, and SA performed least well. Each method

performed best for at least one metric, for at least eight

SUT/time combinations. SUT/time combinations in bold (25

of 55 combinations, covering 9 of 15 SUTs) indicate that

ABP performed best for this configuration for at least one

metric. ABP performed at least as well for PCT coverage as

other metrics, even without an explicit reward. Looking more

closely at the results, we can observe that ABP performed

especially well on BinomialHeap, FibHeap, and HeapArray,

Table I
COVERAGE RESULTS

SUT + Time ABP RT SA Max Coverage(∆ vs. 2nd Best)

PA SH PCT PA SH PCT PA SH PCT PA SH PCT

AvlTree 30s × XX XX X × × X 314(144) 1073(722) 104(5)

AvlTree 30m ×1 XX XX X × × X 428(96) 16925(12005) 104(1)

AvlTree 1h X XX XX X × × X 442(99) 22668(15320) 104(0)

AvlTree 2h X XX XX X × × X 446(100) 27353(17980) 104(0)

BinomialHeap 30s XX XX XX × × × 233(54) 27(11) 304(8)

BinomialHeap 30m XX XX XX × × × 1378(523) 39(12) 327(12)

BinomialHeap 1h XX XX X × × × X 1735(620) 38(3) 327(11)

BinomialHeap 2h XX X × × × XX X 2528(780) 46(3) 327(11)

BinTree 30s × XX XX X × × X 1070(794) 3104(2111) 157(2)

BinTree 30m X XX XX X × × X 4487(3094) 122921(90605) 157(0)

BinTree 1h X XX XX X × × X 5657(3105) 224828(143751) 157(0)

BinTree 2h X XX XX X × × × 6897(4237) 385042(262435) 157(0)

ChainedHashTable 30s X XX XX X × × X 28(10) 6700(1240) 6(0)

ChainedHashTable 30m XX X XX X × × X 342(299) 386689(301362) 6(0)

ChainedHashTable 1h XX X XX X × × X 323(281) 787968(344720) 6(0)

FibHeap 30s × XX XX XX × × 620(324) 629(526) 115(6)

FibHeap 30m XX XX X × X × × 24584(16506) 2519(1933) 118(14)

FibHeap 1h XX XX X × × X × 51608(37025) 3571(2637) 118(14)

FibHeap 2h XX XX X × × X X 97481(72300) 4484(2943) 118(0)

FibonacciHeap 30s XX XX XX × × × 843(644) 247(54) 301(196)

FibonacciHeap 30m XX XX XX × × × 18522(14659) 5047(1343) 506(266)

FibonacciHeap 1h XX XX XX × × × 32099(24586) 8723(1614) 538(265)

FibonacciHeap 2h XX XX XX × × × 54995(39879) 15066(678) 569(256)

HeapArray 30s XX XX XX × × × 283(33) 344(256) 69(9)

HeapArray 30m XX XX X × X × × 3107(2486) 7991(6815) 71(6)

HeapArray 1h XX XX X × X × × 4532(3799) 13097(11921) 71(2)

HeapArray 2h XX XX X × X × × 6808(5975) 26253(22399) 71(1)

IntAvlTreeMap 30s XX XX XX × × × 385(173) 527(152) 225(14)

IntAvlTreeMap 30m X XX XX X × × × 624(111) 3113(526) 225(10)

IntAvlTreeMap 1h X XX XX X × × × 638(51) 3937(326) 225(0)

IntAvlTreeMap 2h X XX XX X × × × 641(12) 4823(247) 225(2)

IntRedBlackTree 30s XX XX XX × × × 513(300) 1079(720) 378(54)

IntRedBlackTree 30m XX XX XX × × × 708(173) 6943(2814) 379(4)

IntRedBlackTree 1h 2 XX XX XX × × × 755(139) 8713(2830) 379(2)

IntRedBlackTree 2h XX XX XX × × × 836(205) 10945(2716) 379(2)

LinkedList 30s × XX X XX X × X 1012(132) 191(147) 11(0)

LinkedList 30m XX X × × X XX X 5539(1862) 186(41) 11(0)

LinkedList 1h XX X × × X XX X 7063(2193) 187(5) 11(0)

NCLinkedList 30s × XX 3 XX XX × × 1005(203) 185(141) 21(7)

NCLinkedList 30m XX X × × X XX × 5296(1757) 187(46) 21(7)

NCLinkedList 1h XX X × × X XX × 6869(1683) 190(13) 21(7)

SLinkedList 30s × XX × XX × XX 699(81) 189(155) 67(4)

SLinkedList 30m XX X × × X XX X 3875(2240) 187(83) 67(0)

SLinkedList 1h XX ×4 × × X XX X 4999(2337) 192(61) 67(1)

SplayTree 30s × XX XX XX × × 602(408) 2361(1681) 262(18)

SplayTree 30m X XX XX X × × × 2408(957) 50870(22885) 262(3)

SplayTree 1h X XX XX X × × × 2969(1109) 79223(29803) 262(3)

SplayTree 2h × X XX XX X × × 3571(948) 124948(30218) 262(3)

TreeMap 30s × × XX XX XX × 461(238) 811(522) 355(22)

TreeMap 30m × XX XX XX × × 671(114) 5154(1006) 358(2)

TreeMap 1h XX XX XX × × 697(82) 6637(872) 358(2)

TreeMap 2h XX XX XX × × 798(117) 8733(69) 358(2)

TreeSet 30s × XX XX XX × × 537(292) 1172(747) 334(28)

TreeSet 30m 5 × XX XX X × × X 707(105) 6668(1429) 334(2)

TreeSet 1h 6 X XX XX X × × X 805(112) 8666(20) 334(0)

TreeSet 2h XX X XX X × × X 871(80) 11797(916) 334(0)

Notes: (1) ShapeMembersCover and ShapeMembers cover 104 PCT values, tying Random; ShapeCover only covers 103. (2) ConcreteCover, Concrete, and ShapeMembersCover

match Random at 279 PCT values, ShapeCover only reaches 277. (3) ShapeMembers covers 21 PCT values, tying with Random. ShapeCover only covers 16. (4) ShapeCover

alone covers only 66 PCT values, while all other methods cover 67. (5) Shape has the best path coverage (724 paths), while ShapeCover only obtains 602 paths. Random

performs best if we only consider ShapeCover for ABP. (6) Shape covers 8740 shapes, improving on Random, but ShapeCover only covers 8646, slightly lower than Random.

Names of some LinkedList classes abbreviated in order to fit table.

suggesting its strength lies in testing SUTs requiring more

complex input sequences. However, RT was by far the best

method for testing FibonacciHeap. ABP also generally did

better than RT for linked lists, arguably the simplest of the

containers considered. Linked lists were the only subjects

where SA also proved partially superior to RT and ABP.

It is going to be extremely difficult for any method to beat

RT at path and shape coverage for some SUTs: consider only

the insertion of a random permutation of 20 objects into an

AVL, binary, red-black, or splay tree.Most permutations will

produce different paths and shapes. RT, having essentially no

overhead, will produce permutations as rapidly as possible.

Adding find and delete operations does not change this

fact. Learning or state storage is highly unlikely to improve

on the coverage/second ratio of RT here. The more complex

approaches do eventually match the PCT coverage of RT in

most cases, with ABP only failing to reach maximum PCT

coverage in 3 of 15 SUTs.

B. The Effect of Testing Budget

One obvious question to consider is the improvement

gained by additional test budget. A large increase in cov-

erage between the 30 second test budget and the 30 minute

test budget would be expected. The budget itself is 60 times

larger, and for ABP, the adaptive process initially has no

information to guide its test generation. Nonetheless, the

increase in the best testing method’s PCT coverage only

averaged a factor of 1.05. For most of our SUTs, at least

one method reached the maximum observed PCT coverage

after only 30 seconds of testing. Path coverage, however,

increased by an average factor of 7.97, and shape coverage

by an average factor of 14.07 — far less than the 60-fold

increase in budget: the easiest paths and shapes to cover will

be explored very early in testing. When the test budget was

doubled from 30 minutes to 1 hour, both path and shape

coverage increased by an average factor of 1.3. Averages,

here, are somewhat misleading, given the wide variance in

rates of coverage increase. For example, with the linked

lists, there are only a small number of possible shapes, most

of which were covered by ABP in the first 30 seconds. In

contrast, RT almost doubled its coverage of the vast space of

binary search tree shapes when testing time was increased

from 30 minutes to 1 hour — coverage increased by a factor

of 1.83. ABP actually more than doubled its shape coverage

of binary search trees for the same budget increase: coverage

improved by a factor of 2.51, showing that RL had actually

managed to improve the quality of tests enough to overcome

the problem of having already covered the easiest targets.

Nonetheless, RT improved on ABP’s 1 hour shape coverage

by over 143,000 shapes. It appears possible that, given a

large enough testing budget, ABP would eventually improve

on random testing. In contrast, in most cases where ABP was

better than RT, the coverage increase factor for ABP was

larger than the improvement for RT: ABP was increasing

its lead (e.g., for heap arrays, the respective factors of 30

minute to 1 hour improvement in path/shape coverage were

1.45/1.64 for ABP and 1.18/1.39 for RT). The few cases

where this relationship did not hold appear to be cases (shape

coverage for BinomialHeap and the linked list structures

mentioned above) where ABP-based testing had (almost)

reached maximum attainable coverage with a small budget.

While coverage often increased significantly from 30

minutes to 1 hour, the best testing method never changed

as a result of the additional half hour of testing (in some

cases, an additional method became tied on PCT). In order

to see if another increase in budget would result in any

changes, additional experiments, using only the ShapeCover

configuration for ABP, were performed with a 2 hour testing

budget, for those SUTs where RT was outperforming ABP

on both path and shape coverage, or vice-versa, with a

1 hour budget. For the TreeMap and TreeSet classes, this

additional doubling of test budget allowed ABP to improve

its shape coverage sufficiently to better that obtained by RT.

For BinomialHeap, SA discovered 3 more shapes than ABP.

For all cases where ABP-based testing was superior at 1

hour, the difference between ABP and RT increased: ABP’s

learning widened the gap.

C. Single-Test Case Rewards

A modification of the ABP approach considered above

is to base the reward on coverage per test-case rather than

cumulative coverage by suite: i.e., to optimize for the “best”

length M test case, rather than for the best suite. This

approach properly respects episode boundaries: one learning

interaction does not change the probability of reward in a

future interaction. This approach not only always lowered

the effectiveness of ABP in producing good whole-suite

coverage, but frequently lowered the best single test case

coverage produced. At least for the SUTs studied in this

paper, a “universal” reward approach seems to be superior

to per-test-case rewards, even if producing a single very

effective test case is the goal of testing.

D. Testing An HTML Parser

As a preliminary experiment in applied lightweight meth-

ods to systems larger than typical container classes, we

applied ABP, RT and SA to an HTML parser included in

the Lobo project (http://lobobrowser.org), a pure-Java web

browser specialized to support Rich Internet Application

(RIA) languages. The parser code itself (our testing target) is

about 975 lines of code, supported by a much larger HTML

document class and other infrastructure. We measured cov-

erage only over the code we were targeting, the scanning

and parsing engine. The choices in this experiment were no

longer API calls but tokens, including 15 core tags, brackets,

etc., obtained by a simple static scan of the parsing code,

as is common in RT practice when randomness at the level

of complete fuzz is unlikely to be productive. In order to

show how well ABP can work when essentially no effort is

put into context definition, we used the actual string to be

parsed as our context, and at each “step” of testing extended

the string by one choice and re-parsed.

In our experiments, covering maximum “document” sizes

of 15, 25, 50, 100, and 200, test times of 5 minutes, 30

minutes, 1 hour, and 2 hour, and a number of random seeds,

ABP and RT were essentially tied in terms of statement

and branch coverage, the winner in each experiment varying

seemingly at random; SA, due to a large branching factor

and low shape equivalence, never generated long enough

tests to find interesting behavior, and is ignored in the

following results. Even with 2 hours of testing, the best

method (by one branch and four statements guarded by that

branch) changed with the chosen random seeds and test

length, with no clearly superior method. In our container

class results, RT usually worked better than other methods

for very small test budgets (30s); here, ABP improved by 8

branches and 8 statements for some seeds and test lengths.

In all experiments, even when ABP missed the “hard to hit”

branch, it improved on RT for path and shape coverage by

a factor of at least 2x (e.g., 48,871 paths vs. 18,421 and

51,550 shapes vs. 18,496). Even more surprisingly, in more

than three quarters of our experiments ABP executed more

tests than RT — presumably purely random input tends to

produce more inputs that take a long time to parse (this

“slowness” was not correlated with branch/statement wins).

It is hard to generalize from one limited case study, but it

appears that ABP can explore some behaviors that RT does

not explore, even for a slightly more real-world program.

E. Threats to Validity

One threat to construct validity is the use of fixed duration

testing. The test code (other than actual generation) and

execution environment (actual machine, OS, load, etc.) were

held constant, but the implementations are possibly ineffi-

cient. The primary threat to external validity is obviously that

these results are almost completely from container classes,

and difficult to extrapolate to other kinds of programs.

VI. EXPLAINING ABP’S EFFECTIVENESS

Consider two test suites for the BinomialHeap class, each

produced with a 20 minute test budget. RT produces 1,357

test cases of length 200, while ABP-based testing can only

execute 659 test cases due to the overhead of learning and

other factors. Nonetheless, the ABP and RT both cover 179

statements and 44 branches, and ABP improves on RT in

all other metrics: 1,112 vs. 704 paths, 40 vs. 25 shapes, and

327 vs. 310 PCT values.

What difference in the suites produces these cov-

erage differences? Test cases for BinomialHeap con-

sist of calls to insert, delete, extractMin, and

decreaseKeyValue. The insert and delete meth-

ods each take one integer parameter (limited to 20 values in

Table II
CALL DISTRIBUTION, ABP TEST SUITE FOR BINOMIALHEAP

Call % of All Calls

Complete Test Suite

insert(0) 46.4%

delete(0) 10.7%

decreaseKeyValue(0,0) 10.1

extractMin() 7.9%

insert(1) 1.5%

delete(1) 0.27%

decreaseKeyValue(14,14) 0.24%

decreaseKeyValue(18,15) (+ 70 others) 0.0015%

decreaseKeyValue(6,1) (+ 130 others) 0.00076%

1st Quarter of Test Suite

insert(0) 60.4%

decreaseKeyValue(0,0) 7.69%

delete(0) 6.66%

extractMin() 5.88%

4th Quarter of Test Suite

insert(0) 34.6%

decreaseKeyValue(0,0) 13.6%

delete(0) 12.65%

extractMin() 9.55%

our test configuration), the extractMin method takes no

parameters, and decreaseKeyValue requires two integer

parameters. Both suites cover almost the same range of

API calls: RT calls each possible combination of method

and input value at least once; ABP also calls insert and

delete (and extractMin) with all possible values, but

only calls decreaseKeyValue with 315 of the 400 pos-

sible inputs. The distribution of calls, however, is very differ-

ent. The RT suite is, of course, essentially evenly distributed

— roughly 1/4 of calls are to extractMin, with the 40

possible insert and delete calls each appearing at a rate

of 1.19%-1.29% of the time, and decreaseKeyValue

calls all around 0.07%. Table II shows that the ABP suite

is radically different in distribution, with almost half of all

calls made to insert(0), and the 4 most frequent calls

accounting for over 75% of all calls. Can we then view

ABP as “RT with an automatic biasing of probabilities”?

This is not the case: the frequency of insert is highest

in the first tests executed, and lowest in the final tests. ABP

degrades its bias towards behavior as it repeatedly explores

it without obtaining new coverage. Unlike the Nighthawk

genetic algorithm approach, ABP-based testing does not

seek a most-fit mix of method calls, but continually shifts

its bias as it gains (or fails to gain) reward.

Moreover, ABP testing is not stateless. More than 83%

(551 of 659) of ABP test cases begin with a call to

insert(0). The frequency of such first-step calls is 86%

in the first quarter of tests, falls to 80% and 82% in the next

two quarters, but returns to 87% in the final tests. It does not

matter which value is given to insert (though we would

expect it to be one also frequently given to delete and

decreaseKeyValue), but it is true that future coverage

is maximized in a test that begins with insert. The 10%

chance of exploration ensures that the ABP suite does call

each of the other functions occasionally in the first step of

a test case, thus covering the functions on an empty heap.

Groce and Visser [18] proposed the use of structural

heuristics in software model checking as an alternative to the

more common practice of heuristics derived from a property

to be checked. A prominently featured heuristic in this

work was the branch counting heuristic which gave heuristic

priority to (1) states covering an uncovered branch followed

by (2) states reached without taking any branches followed

by (3) states covering an already-taken branch, in order of

how many times the branch has been taken (fewer visits

= higher priority). The idea was to focus model checking

on portions of a state space that had been less frequently

explored, which proved useful for finding a flaw in a real-

time operating system kernel. We believe ABP and structural

heuristic model checking both bias exploration towards parts

of a state space that have been covered least and naturally

degrade the bias towards certain actions or states as the state

is repeatedly explored. ABP-based testing is thus in a sense

one hybrid between random (backtrack-free) search (RT)

and heuristically guided backtracking search. The middle

ground is RL, which is backtrack free, but updates a local

estimate of action value based on feedback. In a stationary

reward, finite, setting, all three methods are expected to

converge to the same complete exploration. ABP has some

key advantages over structural heuristic model checking.

ABP is lightweight, not requiring backtracking. ABP uses

RL to maximize a reward based on a complex mix of diverse

metrics (or custom rewards) rather than using a fixed heuris-

tic based on a simple coverage metric. The explore-exploit

paradigm, by imitating RT 10% of the time, avoids local

minima that may easily trap model checking. Pure testing

in place of backtracking model checking also allows us to

exploit abstract state-space representations in the context

without missing some states due to unsoundness. The failure

of rewards based on single-test coverage observed above is

likely an artifact of losing the benefits of decaying reward: a

10% exploration rate is not enough to overcome the tendency

to repeatedly execute any “good” test. We speculate that

ShapeCover performs so well partly because the coverage

count allows the policy to combine this essential global

decay with a single-test decay of expected reward (e.g.,

calling insert less towards the end of each test).

VII. RELATEDWORK

The problem of generating test input sequences for soft-

ware systems is long-standing and widely studied. Recent

work on lightweight methods has focused on random test-

ing [9] and shape abstraction [3], [2]. The one previous work

on using reinforcement learning specifically in software

testing, to our knowledge, is that of Veanes et al. [19],

which considered only model-based online testing of re-

active systems, and provided limited experimental results

on a single toy robot model. More importantly, the reward

considered was based on a planning-type problem, with

the robot collecting cans (a standard example in the RL

literature [12]). The present paper builds on our initial brief

introduction of the idea of using coverage metrics as a basis

for reward [10] in RL for testing. The general idea of

“learning” tests has also been studied. Andrews et al. [20]

used genetic algorithms to generate data for random unit

testing in the Nighthawk tool. ABP is similar to Nighthawk

in that both approaches learn how to construct test cases

rather than learning an ideal set of test cases. The primary

algorithmic difference (beyond the use of RL vs. genetic

algorithms) is that ABP learns what method to call and what

input to provide based on a context, while Nighthawk learns

overall method weights to optimize random test generation.

The critical difference between ABP and search

based [21] testing is that search-based or evolutionary testing

(by genetic programs or other means) considers the fitness

of individual tests, and has as its goal a set of good tests.

ABP is more like aggressive random testing, in that each

individual test is not expected to be high-quality; the goal is

to produce many tests quickly to cover an SUT’s behaviors,

not to generate an efficient small test suite for regression.

The policy in ABP is not a recipe for good tests, but an

evolving description of a “search frontier”, biased against

producing coverage of already-covered behavior. Another

critical difference between the present work and previous

efforts is the focus on a learning-based method that is

(nearly) as easy to apply as RT, allowing programmers to

essentially “drop it in” when RT is ineffective.

Adaptive random testing (ART) [22] modifies traditional

RT by sampling tests and only executing the test most

“distant,” as determined by a distance metric over inputs,

from all previously executed tests. The choice of a distance

metric in ART is a burden on a test engineer, similar to

our requirement that the test engineer choose a context. It

seems likely that in many cases devising a distance metric

will be harder than devising a context. ART has been shown

to be only effective under fairly limited circumstances for

real world programs [23], in part due to the overhead of

computing distance metrics. While ABP also imposes an

overhead on testing, it is able to provide benefits that go be-

yond avoiding oversampling, by actually learning structure.

ART has usually been applied to numeric problems where

distance metrics are fairly natural, rather than API calls in

lengthy sequences, the natural domain for ABP.

VIII. ADVICE TO PRACTITIONERS AND FUTURE WORK

In general, the experimental data does not support a claim

for dominance for either RT or ABP. Both methods are

useful for different subjects, with ABP better for 7 of our 15

subjects. It seems reasonable to propose using both methods

if sufficient test budget is available; the gain in terms of

testing for running both RT and ABP with a 30 minute

budget, at least once, then using the best of the two methods

in the future, surely outweighs the cost of 30 minutes of

compute time, and the same harness can easily be used for

both methods. For very small test budgets RT is best: it

almost always outperformed other methods for a 30 second

budget, and other studies have shown that RT bests even

model checking for small budgets [24]. When testing small

library-style SUTs like container classes, we would choose

ABP as our first test case generation method in cases where

we expect that RT will tend to redundant tests, or where

inputs are more complex than a call plus one parameter

(e.g., heaps), unless context is hard to define. ABP appears

to be a good replacement for the previously recommended

SA approach in most cases where RT is not particularly

effective: whenever there is a suitable shape to use as a

basis for abstraction, that shape looks likely to be better used

as an ABP context. In short, ABP extends the set of truly

lightweight automated testing methods, making improved

reliability available at low cost for programmers working in

environments without concolic testing or model checking.

We plan to apply ABP to more complex SUTs, given

its success on the HTML parser. Appropriate contexts for

ABP in more complex software systems pose an interesting

challenge, where the literature of unsound abstractions in

model checking may provide insight. Unfortunately, the

unbiased comparison made possible by automated context

representations for container classes will be impossible:

context quality is likely to be a key factor for complex SUTs.

However, “toString” based contexts such as those used here

are likely to be effective for many of the small, simple

(but hard to code correctly) modules where lightweight

automated testing is most desirable. While our current ap-

proach to ABP-based testing clearly “works,” it is likely that

context and reward tuning will be useful, just as feedback

can considerably improve the effectiveness of RT [1]. Most

importantly, it is highly likely that the RL algorithm used

by ABP can be tailored to the structure of the test input

generation problem, incorporating the non-stationary reward

into learning, allowing programmers to obtain better results

simply by using learning designed for software testing.

ACKNOWLEDGMENT

The authors would like to thank Darko Marinov, Milos

Gligoric, Jamie Andrews, and Willem Visser for helpful

discussions related to this work. A portion of this research

was funded by NSF grant CCF–1054786.

REFERENCES

[1] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in International Conference
on Software Engineering, 2007, pp. 75–84.

[2] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Marinov,
“Testing container classes: Random or systematic?” in FASE,
2011, pp. 262–277.

[3] W. Visser, C. Păsăreanu, and R. Pelanek, “Test input gen-
eration for Java containers using state matching,” in ISSTA,
2006, pp. 37–48.

[4] K. Claessen and J. Hughes, “QuickCheck: a lightweight tool
for random testing of haskell programs,” in ICFP, 2000, pp.
268–279.

[5] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed au-
tomated random testing,” in Programming Language Design
and Implementation, 2005, pp. 213–223.

[6] G. J. Holzmann, The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley Professional, 2003.

[7] “JPF: the swiss army knife of Java(TM) verification,” http:
//babelfish.arc.nasa.gov/trac/jpf.

[8] A. Groce, G. Holzmann, R. Joshi, and R.-G. Xu, “Putting
flight software through the paces with testing, model check-
ing, and constraint-solving,” in International Workshop on
Constraints in Formal Verification, 2008, pp. 1–15.

[9] R. Hamlet, “Random testing,” in Encyclopedia of Software
Engineering. Wiley, 1994, pp. 970–978.

[10] A. Groce, “Coverage rewarded: Test input generation via
adaptation-based programming,” in IEEE/ACM International
Conference on Automated Software Engineering, 2011, pp.
380–383.

[11] T. Bauer, M. Erwig, A. Fern, and J. Pinto, “Adaptation-
based programming in Java,” in ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, 2011, pp.
81–90.

[12] R. Sutton and A. Barto, Reinforcement Learning: an Intro-
duction. MIT Press, 1998.

[13] D. Andre and S. Russel, “State abstraction for programmable
reinforcement learning agents,” in National Conference on
Artificial Intelligence, 2002.

[14] S. Mahadevan, “Agent reward reinforcement learning: Foun-
dations, algorithms, and empirical results,” Machine Learn-
ing, vol. 22, no. 1, pp. 159–195, 1996.

[15] A. Arcuri, M. Z. Z. Iqbal, and L. C. Briand, “Formal analysis
of the effectiveness and predictability of random testing,” in
International Symposium on Software Testing and Analysis,
2010, pp. 219–230.

[16] T. Ball, “A theory of predicate-complete test coverage and
generation,” in FMCO, 2004, pp. 1–22.

[17] J. H. Andrews, A. Groce, M. Weston, and R.-G. Xu, “Random
test run length and effectiveness,” in Automated Software
Engineering, 2008, pp. 19–28.

[18] A. Groce and W. Visser, “Heuristics for model checking Java
programs,” Software Tools for Technology Transfer, vol. 6(4),
pp. 260–276, 2004.

[19] M. Veanes, P. Roy, and C. Campbell, “Online testing with
reinforcement learning,” in Formal Approaches to Software
Testing and Runtime Verification, 2006, pp. 240–253.

[20] J. Andrews, F. Li, and T. Menzies, “Nighthawk: A two-
level genetic-random unit test data generator,” in Automated
Software Engineering, 2007, pp. 144–153.

[21] P. McMinn, “Search-based software test data generation: A
survey,” Software testing, verification, and reliability, vol. 14,
pp. 105–156, 2004.

[22] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive random
testing,” in Adv. in Computer Science, 2004, pp. 320–329.

[23] A. Arcuri and L. Briand, “Adaptive random testing: An
illusion of effectiveness,” in International Symposium on
Software Testing and Analysis, 2011, pp. 265–275.

[24] A. Groce and R. Joshi, “Random testing and model checking:
Building a common framework for nondeterministic explo-
ration,” in Workshop on Dynamic Analysis, 2008, pp. 22–28.

