
MatchMaker:
A DSL for Game-Theoretic Matching

Prashant Kumar and Martin Erwig[0000−0002−7471−4554]

Oregon State University, Corvallis OR 97330, USA
{kumarpra,erwig}@oregonstate.edu

Abstract. Existing tools for solving game-theoretic matching problems
are limited in their expressiveness and can be difficult to use. In this pa-
per, we introduce MatchMaker, a Haskell-based domain-specific em-
bedded language (DSEL), which supports the direct, high-level represen-
tation of matching problems. Haskell’s type system, particularly the use
of multi-parameter type classes, facilitates the definition of a highly gen-
eral interface to matching problems, which can be rapidly instantiated
for a wide variety of different matching applications. Additionally, as a
novel contribution, MatchMaker provides combinators for dynamically
updating and modifying problem representations, as well as for analyzing
matching results.

1 Introduction

A large class of problems are instances of matching problems. Examples include
the assignment of children to different schools, students to universities and cam-
pus housing, doctors to hospitals, kidney transplant patients to donors, and
many others. In each of these problems, the participants in the matching pro-
cess typically have preferences over the entities they are matched to, and the
task is to find a matching that is, in some sense, optimal with respect to these
preferences. The importance of matching is also highlighted by the fact that the
2012 Nobel Prize in Economics was awarded to Lloyd S. Shapley and Alvin E.
Roth for their work on stable matching problems.

Despite its apparent usefulness, the actual software support for expressing
and solving matching problems is surprisingly limited in a number of ways. For
example, the currently available software tools for solving matching problems
are limited in expressiveness and often difficult to use. Almost all the available
matching libraries use strings to encode the matching problem, which affects
readability and maintainability of the encoded problems. Employing untyped
representations limits the options for checking the validity of the encoding and
producing meaningful error messages. As we will demonstrate, MatchMaker
leverages Haskell’s rich type system and its type class system to facilitate high-
level representations of matching problems that are readable, easily modifiable,
and provide good error checking.

Arthur Sunny Joseph Latha Darrius

City City City Mercy City

Mercy General City Mercy
Mercy General General

(a) Applicants’ hospital preferences

Mercy City General

Darrius Darrius Darrius

Joseph Arthur Arthur

Sunny Joseph

Latha Latha

Joseph

(b) Hospitals’ ranking of applicants

Fig. 1: Matching hospitals with applicants: a two-sided stable matching example.

MatchMaker already implements algorithms for a large class of matching
problems. More specifically, we implement bipartite stable matching with two-
sided preferences, bipartite stable matching with one-sided preferences, and same-
set matching problems with one-sided preferences. Together, these represent the
most important and widely applicable matching problems [16, 11, 7].

Our DSL makes the following main contributions. It:

– offers a high-level, type-safe, extensible representation for matching prob-
lems.

– defines a scalable mechanism for describing preferences based on function
definitions and abstract criteria.

– provides functions to analyze and compare the results of various matchings.

– is easily extensible to represent new matching problems.

The remainder of this paper is structured as follows. In Section 2, we introduce
stable bipartite matching problems with two-sided preferences and encode them
in MatchMaker with explicit preferences. In Section 3, we illustrate how to
represent preferences implicitly using Haskell’s abstract data types and func-
tions. In Section 4, we introduce combinators to update the existing matching
representations plus functions for comparing the results of two matchings. In
Section 6, we compare MatchMaker to other tools for matching. Finally, in
Section 7 we provide conclusions.

2 Bipartite Stable Matching With Two-Sided Preferences

Consider the task of assigning medical residency applicants to hospitals. Fig-
ure 1 shows an example taken from the National Resident Matching Program’s
(NRMP) website [12] in which five applicants apply to the three hospitals. Hos-
pitals and applicants list their preferences, and each hospital can accept at most
two applicants. The stable matching algorithm (also called delayed acceptance
algorithm [14, 4]) produces a match with the following two characteristics:

(1) Each applicant is assigned to only one hospital, and no hospital is assigned
more applicants than its quota.

2

(2) The resulting match is stable.

This stability condition is described in the delayed acceptance algorithm as the
match not having a blocking pair, which is a pair of a hospital and an applicant
currently assigned to different partners but who prefer each other more than
their current assignment. The presence of such pairs undermines the effective-
ness of the matching process, as these pairs can make private arrangements,
leaving behind their partners assigned by the matching algorithm. Roth and
Sotomayor show an example of an unstable matching mechanism for matching
doctors to hospitals in Birmingham and Newcastle used in the 1960s and 1970s
[16, Chapter 5]. The instability of the outcome led to doctors and hospitals enter-
ing private negotiations outside the matching process, which left many doctors
without a position and many hospitals without a resident. This culminated in
the abandonment of the mechanism. Gale and Shapley [4] showed that a special
property of bipartite matching markets is that stable matchings always exist.

Let us try to match hospitals with applicants, taking into account their pref-
erences and quotas. Consider the preference list of Darrius. He prefers City
Hospital the most, and City Hospital also ranks him the highest amongst the
candidates. It is easy to deduce that Darrius will end up at City Hospital. Now,
if we look at the preference list of Sunny, we see that she considers only City
and Mercy for her residency. However, Sunny is not included in Mercy Hospital’s
rankings, so she cannot be assigned there. Her first option, City Hospital, does
rank her third. However, notice that the two people ranked above her, Darrius
and Arthur, have listed City as their first choice. If they are assigned the two
positions, then Sunny is left without an offer, as Mercy is the only hospital in
her preference set that also ranks her.

Could we have accommodated Darrius at Mercy Hospital, leaving room for
Sunny at City Hospital? Although this does lead to Sunny getting accommodated
at City Hospital, it results in instability in the matching process due to the
formation of a blocking pair between Darrius and City Hospital. Darrius still
prefers City Hospital to Mercy Hospital, and City Hospital still prefers Darrius
to Sunny. In other words, they both benefit from forming their own match,
leaving behind their assigned matches.

In this section, we demonstrate how to represent this example in Match-
Maker and generate a stable matching. To motivate the different design choices,
it is instructive to look at the formal model of stable matching.

2.1 Modeling Stable Matching

A two-sided stable matching problem between applicants and hospitals is a 6
tuple (A,H,PA, PH , QA, QH) where A = {a1, . . . , am} and H = {h1, . . . , hn}
represent the finite disjoint sets of applicants and hospitals, respectively [16].
The preference of each applicant a ∈ A is represented by an ordered list of
preferences P (a) on set H. Similarly, the preference of each hospital h ∈ H
is represented by an ordered list of preferences P (h) on set A. The set of all
preference lists is captured by the functions PA : A → H∗ and PH : H → A∗.

3

import qualified Data.Map as M

type Capacity = Int

forall :: Capacity -> a -> Capacity
forall c _ = c

class (Bounded a,Enum a,Ord a) => Set a where
members :: [a]
members = enumFromTo minBound maxBound

quota :: a -> Capacity
quota = forall 1

data Rec b c = Rec {unRec :: M.Map b c}
data Info a b c = Info {unInfo :: M.Map a (Rec b c)}

data Rank = Rank {unRank :: Int}

class Preference a b c | a b -> c where
gather :: Info a b c

type Ord2 a b = (Ord a, Ord b)
type Preference2 a b c d = (Preference a b c,Preference b a d)

info :: Ord2 a b => [(a,[(b,c)])] -> Info a b c
choices :: Ord2 a b => [(a,[b])] -> Info a b Rank

data Match a b = Match {unMatch:: [(a,[b], Capacity)]}

ranks :: (Set2 a b,Norm c,Weights a) => Info a b c -> Match a b

twoWay :: (Preference2 a b c d,Set2 a b,Norm2 c d) => Match a b

twoWayWithCapacity :: (Preference2 a b c d,Set2 a b,Norm2 c d) => Match a b

twoWayWithPref :: (Preference2 a b c d,Set2 a b,Norm2 c d) => Info a b c ->
Info b a d -> Match a b

Fig. 2: Definitions for encoding and storing preferences in MatchMaker.

Each hospital h is also assigned a positive integer Q(h), also called its quota,
that represents the maximum number of applicants it could admit. Similarly,
each applicant is also assigned a quota. This information is collected in the two
functions QA : A → N and QH : H → N. For the applicant-hospital matching
problem, it is obvious that applicants have a quota of 1, since they can work
at only one hospital. However, in other examples of matching problems with
two-sided preferences, both the sets can have quotas greater than 1.

Amatching is a relation µ ⊆ A×H that satisfies the following two conditions:
(1) ∀a ∈ A : |µ(a)| ≤ QA(a) and ∀h ∈ H : |µ(h)| ≤ QH(h) and (2) (a, h) ∈ µ ⇒
a ∈ P (h) ∧ h ∈ P (a). The first condition ensures the matching satisfies the
quota restrictions, and the second condition ensures consistency. In our current
example that means that a hospital is in an applicant’s match only if they are
in each other’s preference list.

The formal model guides the design of our DSL, which we demonstrate with
the help of our example next.

2.2 DSL Representation of Matching Problems

4

The first step in encoding our example is to represent the two sets to be
matched as Haskell data types.

data Applicant = Arthur | Sunny | Joseph | Latha | Darrius
data Hospital = City | Mercy | General

The definitions and type signatures of various data types, type classes, and
functions used in this section are summarized in Figure 2.

To store the preferences of the applicants and hospitals we use two map-
pings: Rec and Info, which is a collection of Recs, represented as a mapping1.
Specifically, Info Applicant Hospital Rank maps every applicant to a record
Rec Hospital Rank, which maps hospitals to their ranks as specified by the
applicant. Similarly, the ranking of applicants by hospitals is represented in
Info Hospital Applicant Rank, where the individual preferences of each hospi-
tal are recorded in the mapping Rec Hospital Rank.

We define Functor instances of the Rec and Info types in Figure 4. We use
these instances to define their corresponding zap functions (also in Figure 4),
which are useful for creating combinators like zipInfo that we later use in the
paper.2 It can be thought of as a generalization of the zip function, where in-
stead of just combining two functorial structures (like lists), we can combine any
number of functorial structures using corresponding functions.

The multi-parameter type class Preference a b c provides an interface for
specifying preferences. An interesting aspect of the class definition is the func-
tional dependency specification, which signifies that types a and b uniquely de-
termine type c. The gather function of the type class captures the preference of
elements of set a for elements of set b using a type c and stores it in the mapping
Info a b c. The smart constructors info and choices are used to construct the
preference mappings from list of tuples.3

To keep the number of class constraints manageable in Figure 2, we use a
Haskell language extension called ConstraintKinds, which allows us to define
class constraints more succinctly using type synonyms. For instance, instead
of using (Ord a, Ord b) as the class constraint, we can use its type synonym
Ord2 a b. We have similar definitions for Norm2, Set2 and Preference2 a b c d.

Our current example requires two-sided specification of preferences. This en-
tails two instance definitions of the Preference class, one for hospitals and one
for applicants. However, before presenting those definitions, we discuss a partic-
ular design choice for the type class. One question is whether we should have
simplified the definitions of the Info mappings and consequently the Preference

class by removing their last type argument and hard-coding the Rank in the def-
initions instead. This would mean that the rank of an item is specified by the
position of that item in a list. While this does simplify the design, the constraint

1 The mappings are represented by the Data.Map.Map data type from the standard
containers package of Haskell

2 Thanks to the one of the reviewers for suggesting the use of zap.
3 We mostly show only the type signatures and present implementations only when
they contribute to a better understanding. For the complete code, see https://

github.com/prashant007/MatchMaker.

5

to relate the items being matched in just one way also limits the expressivity
of the domain. The advantages of our design choice become apparent in Section
3 where we instantiate the third argument of Info and Preference with richer
types than Rank that allow agents to implicitly rank other agents, which eases
the cognitive burden and effort in defining preference lists.

The ranked preference lists of applicants for hospitals can be specified with
an appropriate instance of Preference type class using the choices function as
shown below. The infix operation --> is simply syntactic sugar for building pairs.
In this representation, rankings are based on positions. For example, the fact that
City precedes Mercy in the preference list of Sunny means that she prefers City
to Mercy.

instance Preference Applicant Hospital Rank where
gather = choices [Arthur --> [City],

Sunny --> [City,Mercy],
Joseph --> [City,General,Mercy],
Latha --> [Mercy,City,General],
Darrius --> [City,Mercy,General]]

The ranked preference lists of applicants for hospitals can be similarly encoded.

instance Preference Hospital Applicant Rank where
gather = choices [Mercy --> [Darrius,Joseph],

City --> [Darrius,Arthur,Sunny,Latha,Joseph],
General --> [Darrius,Arthur,Joseph,Latha]]

Finally, to encode the quota information, we define a type class called Set with
quota as a member function as shown in Figure 2. We also define a function
members that can list all the elements of a set. The function forall is used to
assign the same quota to every member of the set to be matched.

The instances of Set for the Applicant and the Hospital types are shown
below, where each hospital is assigned a quota of 2 and each applicant is assigned
a default quota of 1.

instance Set Applicant
instance Set Hospital where quota = forall 2

2.3 Generating Stable Matchings

In general, a matching problem can have multiple stable matchings. However,
two of them are especially significant. For our problem, these are the hospital-
optimal stable match and the applicant-optimal stable match. (Sometimes the
adjective “stable” is omitted for brevity.) In a hospital-optimal match, hospitals
do as well as they possibly can. While not intended, the structure of the matching
problem entails that a stable match where hospitals perform their best is also
a stable match where applicants perform their worst [16, Chapter 2, Corollary
2.14]. Similarly, in an applicant-optimal match, applicants perform their best
and hospitals their worst. Interestingly, the NRMP program was shown to be
hospital optimal [21] before it was changed to be applicant optimal in 1997 [15].

A stable match can be computed with the function twoWayWithPref, which
takes two preference encodings of the Info type and yields a value of type
Match a b that stores all the elements of set b matched to an element of set a. The

6

overloaded value twoWay triggers the computation by inferring the Info arguments
from its type annotation. For example, the annotation Match Applicant Hospital

generates the applicant-optimal matching.

> twoWay :: Match Applicant Hospital
{Sunny --> [], Darrius --> [City], Latha --> [General], Joseph --> [General], Arthur --> [City]}

Similarly, Match Hospital Applicant generates a hospital-optimal matching.

> twoWay :: Match Hospital Applicant
{City --> [Arthur,Darrius], Mercy --> [], General --> [Latha,Joseph]}

We can observe that the two matchings are the same. However, this need not
always be the case. The DSL also provides a function twoWayWithCapacity to find
the remaining quotas in a matching. The next example shows that General and
City have exhausted their quotas of applicants, whereas Mercy’s quota of 2 is
untouched, since no residents have been assigned to it.

> twoWayWithCapacity :: Match Hospital Applicant
{City --> [Arthur,Darrius] : 0, Mercy --> [] : 2, General --> [Latha,Joseph] : 0}

2.4 The Role of Type Classes in the DSL Design

After examining a problem encoding in our DSL, we can now discuss an impor-
tant aspect of the DSL’s design: the use of type classes. In our opinion, the type
classes enhance the clarity of the encoding that is generated as well as guide
users during the encoding process. Using the twoWayWithPref function, which is
the function for matching we would use in the absence of a type class, would
require users to encode hospitals’ and applicants’ preferences without guidance
from the DSL, making it more challenging. Our DSL explicitly sets user expec-
tations, as shown below, with the first instance gathering hospitals’ choices for
applicants using ranks, and the second doing the reverse.

instance Hospital Applicant Rank where
gather =

instance Applicant Hospital where
gather =

Moreover, the declaration twoWay :: Match Applicant Hospital provides an easy
way for users to specify that they want an applicant-optimal match. In contrast,
without the type class users must call the twoWayWithPref function with the
arguments infoApplicant and infoHospital and consider input order, which can
yield different results. Finally, as we will see later, original preference encodings
(Info values) can evolve over time. Having the initial preference list determined
by an instance declaration (of the class Preference) improves clarity; otherwise,
users would need to rely on naming conventions to identify starting preference
lists.

7

3 Representational Ranking

The encoding of the NRMP example in the previous section is not ideal, partic-
ularly when the number of applicants or hospitals to be ranked becomes large.
Instead of ranking through ordered lists, it’s often more practical to use a func-
tion that computes ranks based on attributes of the elements being ranked. For
example, a hospital might prefer to rank candidates using weighted criteria, such
as MCAT scores, interview performance, prior experiences, and whether their
previous degree is from their hospital. Each candidate’s score can be generated
using a formula, and the reciprocal of this score can be used to determine their
rank. Different hospitals may assign various weights to these criteria, with some
even omitting certain factors. MatchMaker facilitates this form of ranking. To
this end, we define a data type AInfo for storing the relevant applicant data.

data AInfo = Appl {examScore :: Double,
experience :: Double,
interviewScore :: Double,
sameSchool :: Bool }

Similarly, a candidate might prefer to specify the ranking of hospitals implicitly
based on the livability of the city the hospital is in, reputation of the programs
and their personal desire to attend a particular program. Again, these criteria
are assigned appropriate weights. The applicants’ model of hospital preferences
is captured by the data type HInfo, defined as follows.

data HInfo = Hptl {hospitalRank :: Rank,
cityLivability :: Int,
desirabilityScore :: Double}

Next we need to express the information in a form that supports the computation
of preference lists.

3.1 Normalization and Weighting of Criteria

To generate rankings, we normalize values of a representation type to num-
bers using the type class Norm. Figure 3 shows the definition of this type class as
well as some of its instances. The primary purpose of this type class is to trans-
form an element of type a into a number between 0 and 1. For straightforward
types like Rank and Bool, we can create a direct instance of this type class. Note
that the Norm instance for the Rank type, which represents relative preferences,
conveys that a numerically lower rank corresponds to a higher preference, and
vice versa.

In most cases, a constant is required for normalization. For instance, to nor-
malize an exam score of 80, we need to know the maximum possible score.
Assuming this to be 100, the score can be normalized as 80

100 = 0.8. To han-
dle this, we introduce a new data type BoundedVal for managing normalization
with a bound. The outOf function is utilized to create a BoundedVal value for
normalization. We represent this normalization as 80 `outOf` 100.4

4 Thanks to one of the reviewers for recommending the use of the BoundedVal data
type, which enables our norm function to be total.

8

class Norm a where
components :: a -> [Double]
components _ = []

norm :: a -> Double
norm = sum . components

instance Norm Bool where
norm x = if x then 1.0 else 0.0

instance Norm Rank where
norm (Rank r) = 1/fromIntegral r

instance Norm Double where
norm v = v

instance Norm Int where
norm v = fromIntegral v

data Polarity = Pos | Neg

class Valence a where
valence :: a -> Polarity
valence _ = Pos

instance Valence Int
instance Valence Double
...

data BoundedVal a = a `OutOf` Double

outOf :: (Norm a,Num a,Valence a) =>
a -> Double -> Double

outOf x y = norm (x `OutOf` y)

instance Valence NDouble where
valence (ND _) = Neg

instance (Valence a, Num a,Norm a) =>
Norm (BoundedVal a) where

components (x `OutOf` y)
| valence x == Pos = [norm x/y]
| otherwise = [y/norm x]

class Weights a where
weights :: a -> [Double]
weights _ = [1.0]

class Weights a =>
Preference a b c | a b -> c where
gather :: Info a b c

Fig. 3: Support for Representational Rankings in MatchMaker.

Occasionally, an attribute may have negative valency, indicating that a lower
value of the attribute is considered more favorable than a higher value. In Figure
3 we define a type class Valence along with a data type Polarity. Using this type
class, we can specify the desired valency of a type. For negative valence double
values, we define a data type NDouble and its corresponding normalization. Note
that the positions of the numerator and denominator are switched compared to
the Norm instance of the Double type.

The type class Norm also offers a components function, which provides a list
of normalized values corresponding to the various arguments of a constructor of
an abstract data type. As shown in the class definition, once we have defined
components for a data type, the normalized values can be easily deduced from it.

With the help of norm and outOf, we can define the normalization for the
applicant and hospital preference representations as follows.

instance Norm AInfo where
components (Appl e x i c) = [e `outOf` 800, x `outOf` 10, i `outOf` 10, norm c]

instance Norm HInfo where
components (Hptl h c d) = [norm h, c `outOf` 10, d `outOf` 5]

However, before we compute preferences using the normalization of representa-
tion types, we need to address the situation where applicants or hospitals may
weight criteria differently. To that end, MatchMaker provides a class Weights,
shown in Figure 3, which can be used to assign different weight profiles for various
criteria corresponding to different constructors of type a. This type class is then
placed as a class constraint in the definition of the Preference type class (shown
in Figure 2), which specifies that the first type argument of the Preference class

9

instance Functor (Rec b) where
fmap f (Rec m) = Rec (fmap f m)

instance Functor (Info a b) where
fmap f (Info m) = Info (fmap (fmap f) m)

zapRec :: Rec a (b -> c) -> Rec a b -> Rec a c
zapRec (Rec fMap) (Rec xMap) = Rec (M.intersectionWith ($) fMap xMap)

zapInfo :: (Ord a,Ord b) => Info a b (c -> d) -> Info a b c -> Info a b d
zapInfo (Info i1) (Info i2) = Info (M.intersectionWith zapRec i1 i2)

zipInfo :: (Ord2 a b) => Info a b c -> Info a b d -> Info a b (c,d)
zipInfo i1 = zapInfo (fmap (,) i1)

zipInfo2 :: (Ord2 a b) => Info a b c -> Info a b d -> Info a b e -> Info a b (c,d,e)
zipInfo2 i1 i2 i3 = zapInfo (fmap (\x (y,z) -> (x,y,z)) i1) (zipInfo i2 i3)

completedWith :: Ord a => (b -> c -> d) -> Info a b c -> Info a b d
completedWith2 :: Ord a => (b -> c -> d -> e) -> Info a b (c,d) -> Info a b e

Fig. 4: Combinators for combining Info values and generating them from profiles.

should also be a member of the Weights class. This allows us to generate rank-
ings for various hospitals and applicants using different distributions of criteria
weights.

The weight distributions of the criteria for various hospitals and applicants
are specified as instances of the Weight class. We observe that Mercy assigns
greater importance to exam and interview scores than to previous work experi-
ences compared to other hospitals. Furthermore, unlike other hospitals, Mercy
gives some weight to whether or not applicants have previously studied there.

instance Weights Hospital where
weights Mercy = [0.3,0.3,0.3,0.1]
weights _ = [0.2,0.2,0.6,0.0]

For applicants we assume that they all use the same weights for the various
criteria.

instance Weights Applicant where
weights = forall [0.2,0.2,0.6]

3.2 Representational Rankings in Action

Now we can derive a rank from preference representations. Specifically, we
can replace the third argument of the Preference type class, Rank, with AInfo and
HInfo, allowing us to record the preferences for hospitals and applicants, respec-
tively. Before we look at the actual preference encodings of applicants, note that
values of some criteria remain unchanged for different applicants. For example,
rankings of the hospitals and the livability of the cities they are located in are
not applicant dependent but intrinsic to the hospitals and cities themselves. We
can exploit this fact to factor out this shared information, which can then be
used by all applicants. The function hProfile constructs a hospital/city profile
for each hospital as a partial HInfo value with fixed ranking and livability score

10

information but still unassigned desirability scores of type DScore (which is a
type synonym for Double).

hProfile :: Hospital -> DScore -> HInfo
hProfile Mercy = Hptl (Rank 2) 9
hProfile City = Hptl (Rank 1) 10
hProfile General = Hptl (Rank 3) 8

Next, we represent the desirability scores of hospitals for the different applicants
in the form of an Info value. Of course, it may be the case that applicants use
different sources for getting the ranking and livability information, resulting in
non-uniform rankings of hospitals and livability scores of cities. In such a case,
we could have two additional Info values, one each for rank and livability, similar
to what we have for the desirability scores. However, for our current example we
consider them to be uniform.

desirability :: Info Applicant Hospital DScore
desirability =
info [Arthur --> [City --> 3],

Sunny --> [Mercy --> 4,City --> 3],
Joseph --> [Mercy --> 1,City --> 5,General --> 4],
Latha --> [Mercy --> 5,City --> 1,General --> 1],
Darrius --> [Mercy --> 5,City --> 5,General --> 4]]

We can combine the fixed and variable criteria values to generate the overall
representation of applicants’ preferences using the completedWith combinator.
As the type of completedWith (shown in Figure 4) indicates, it takes a function
with output type d and an Info value with type c as its third type argument
representing the value type of the variable criterion. It returns as output a com-
pleted Info value for matching set a with respect to b using the type d.

instance Preference Applicant Hospital HInfo where
gather = hProfile `completedWith` desirability

We can represent the preferences for hospitals in a similar way. Again, we begin
by defining the profile of applicants aProfile for the fixed information, which
includes the applicants’ exam scores and their work experience.

aProfile :: Applicant -> IScore -> SStatus -> AInfo
aProfile a = case a of

Arthur -> Appl 700 2
Sunny -> Appl 720 2
Joseph -> Appl 750 1
Latha -> Appl 650 5
Darrius-> Appl 790 2

This leaves applicants’ hospital-dependent attributes, such as interview scores
IScore and prior student status SStatus at a hospital, to be filled in by the
individual hospitals. The interview scores of applicants at various hospitals are
recorded again in a corresponding Info value.

interview :: Info Hospital Applicant IScore
interview = info

[Mercy --> [Joseph --> 8,Darrius --> 9],
City --> [Arthur -->10,Sunny --> 9,Joseph --> 4,Latha --> 6,Darrius--> 10],
General --> [Arthur --> 9,Joseph --> 8,Latha --> 5,Darrius --> 10]]

Similarly, the student status of applicants at a given hospital is also represented
by an Info value.

11

school :: Info Hospital Applicant SStatus
school = info

[Mercy -->[Joseph --> False,Darrius --> True],
City -->[Arthur --> True,Sunny --> False,Joseph --> False,Latha --> False,

Darrius --> False],
General -->[Arthur --> False,Joseph --> True,Latha --> False,Darrius --> False]]

Finally, we can combine the applicants’ profiles with their interview scores and
student status information to generate an Info value with complete information
about students. We do this by first “zipping” together interview and school

using the zipInfo function, which results in an Info value where the interview
score and school status information for every candidate is paired up. The function
zipInfo is analogous to Haskell’s zip function in that it has the effect of pairing
Info values. We also provide functions zipInfo2, zipInfo3, and so on, for combin-
ing multiple Info values, corresponding to Haskell’s zip2 and zip3. The function
completedWith2 is a function which takes as input a profile with two unassigned
fields and an Info value that contains these variable values and produces a com-
pleted Info value. We provide different variants of the compeletedWith function
to join multiple Info values.

instance Preference Hospital Applicant AInfo where
gather = aProfile `completedWith2` (interview `zipInfo` school)

This completes the specification of applicant and hospital preferences. It is in-
structive to see that we can get concrete rankings from our preference represen-
tations. We can do so using the ranks function (defined in Figure 2) as shown
below. Note that the preference lists of hospitals are unchanged from Figure 1.
Similarly, we can verify that the preference lists for applicants have not changed
either.

> ranks (gather :: Info Hospital Applicant AInfo)
{City --> [Darrius,Arthur,Sunny,Latha,Joseph] : 2,
Mercy --> [Darrius,Joseph] : 2,
General --> [Darrius,Arthur,Joseph,Latha] : 2}

The stable matchings can be generated in the same way as we did with explicit
rankings.

> twoWay :: Match Hospital Applicant
{City --> [Arthur,Darrius], Mercy --> [], General --> [Latha,Joseph]}

Since the inferred preference lists for applicants and hospitals didn’t change, the
stable matchings don’t change either.

4 Evolution and Analysis of Matches

So far we have seen matching problems with a fixed initial set of agents. Let’s
assume now that some hospitals or applicants decide to amend their preferences
or maybe some hospitals or applicants are added late in the NRMP cycle and
need to be accommodated in the match. The straightforward thing to do would
be to manually modify the preference lists and rerun the matching algorithm
on this amended list. Not only is this approach prone to errors during the up-
date, but we would also lose track of the history of the different stages of the

12

modWithRanks :: Ord2 a b => Info a b Rank -> (a,[b]) -> Info a b Rank
modWithInfo :: Ord2 a b => Info a b c -> Info a b c -> Info a b c
modWithRow :: Ord2 a b => Info a b c -> (a,[(b,c)]) -> Info a b c

updateWithRow :: Ord2 a b => Info a b c -> (a,[(b,c)]) -> Info a b c
updateWithInfo :: Ord2 a b => Info a b c -> Info a b c -> Info a b c
updateWithInfos :: Ord2 a b => Info a b c -> [Info a b c] -> Info a b c

modWithRanksDef :: (Ord2 a b,Preference a b Rank) => (a,[b]) -> Info a b Rank
...

data CompMatch a b = CompMatch {unCompMatch :: [(a,[b],[b])]}

diffMatch :: Eq2 a b => Match a b -> Match a b -> CompMatch a b
twoWayDiff :: Info a b c -> Info a b c -> CompMatch a b

Fig. 5: Combinators to modify encodings and compare results.

process, which can reveal how changes in the data lead to changes in matches.
An alternative is to keep the original and amend it using functions provided by
the DSL. This approach makes the changes explicit, allowing users to track the
evolution of data and corresponding matchings. The type signatures for some of
the relevant functions for these tasks are shown in Figure 5.

4.1 Updating Ranks and Adding Agents

Assume that a new applicant Bob is added to the matching process. Like other
applicants, Bob will have his preference list of hospitals. Hospitals will also need
to accommodate him in their preference lists. Let’s further assume that City
decides not to rank him. Situations like this are of special interests to game
theorists who are interested in finding out how the addition of a new applicant
or a hospital might change the resulting match. For example, is it more favorable
to the applicants or the hospitals? In this section, we look at how MatchMaker
can be used to support such investigations.

We begin by updating the Applicant data type to include the Bob constructor.

data Applicant = Arthur | Sunny | Joseph | Latha | Darrius | Bob

We can update the preference list of applicants by adding Bob’s preferences
using the modWithRanks function. It takes as input the original preference list of
applicants as well as the new applicant to be added with his preference list. The
function gather provides the original encoding of the preferences for applicants.

updatedAppl = gather `modWithRanks` (Bob --> [Mercy, City, General])

We also update the preference lists for hospitals. Note how we can chain to-
gether multiple updates. A difference between the two values updatedAppl and
updatedHosp is that, while the former creates a new record for Bob, the latter
simply updates the already existing preference lists for Mercy and General.

updatedHosp = gather `modWithRanks` (Mercy --> [Darrius,Bob,Joseph])
`modWithRanks` (General --> [Bob,Darrius,Arthur,Joseph,Latha])

13

When we need to modify the preference lists of multiple agents, rather than
making one change at a time by chaining together multiple modWithRanks calls,
it is more convenient to collect all the changes in an Info value and update
the original encoding with it in one go. This can be done with the modWithInfo

function, as shown below. The updated preferences of Mercy and General are
stored in an Info value called deltaInfo, which can then be used to update
the original preference encoding of the applicants. Note that since City doesn’t
appear in deltaInfo, its preferences are not changed in updatedHosp.

deltaInfo = choices [Mercy --> [Darrius,Bob,Joseph],
General --> [Bob,Darrius,Arthur,Joseph,Latha]]

updatedHosp = gather `modWithInfo` deltaInfo

The function modWithInfo is useful for various reasons. When the number of
elements being matched is large, we can keep the original data and the intended
changes separate. If we need to make iterative changes, this approach keeps track
of the changes performed in each iteration. We can also contemplate alternative
changes to the data. We also have a modWithInfos combinator, which can be
used to modify the original data with a list of iterative changes stored as Info

values themselves. For example, the following expression modifies the data by
four updates i1, . . ., i4.

updated = gather `modWithInfos` [i1,i2,i3,i4]

If at any point we need to undo some of the changes, we can simply remove the
corresponding Info value from the list.

Now that we have the amended preference lists for hospitals and applicants,
we can use them to get new matchings using the twoWayWithPref function, which
was introduced in Section 2.2.

> twoWayWithPref updatedHosp updatedAppl
{City --> [Arthur,Darrius], General --> [Latha,Joseph], Mercy --> [Bob]}

Notice how the matching is different from the original matchings, repeated here
for convenience.

> twoWay :: Match Hospital Applicant
{City --> [Arthur,Darrius], General --> [Latha,Joseph], Mercy --> []}

Clearly, Mercy has benefited by gaining a resident. While figuring out the differ-
ence was trivial in our current example, spotting changes in even a moderately
large example is more difficult. To do so systematically, we provide a function
called diffMatch, which compares two Match values and reports the difference
between the two matchings. In our current example, we obtain the following.

> diffMatch twoWay (twoWayWithPref updatedHosp updatedAppl)
{Mercy --> [] => [Bob]}

The result Mercy --> [] => [Bob] shows that that Mercy went from not having
any resident in the original match to having Bob in the updated match. An
interesting thing to note here is that even though we didn’t annotate the type
of the first argument twoWay, it can be inferred from the type of the second
argument of diffMatch.

14

What can we say about the performance of various hospitals and applicants
in the updated match, compared to the original match? Intuitively, it seems that
most hospitals, namely City and General, have performed as well as they did
before, while Mercy has improved its performance. Similarly, it appears that no
applicants have performed worse than in the original match. Do these observa-
tions always hold? Game theory informs us that no hospital will be worse off,
and some hospitals are better off compared to the original match [16, Theorem
2.26]. At the same time, none of the original applicants are better off, while
some can be worse off than in the original match. In any case, MatchMaker
can be employed as a tool for gaining a deeper understanding of a wide range of
matching scenarios.

4.2 Updating Representational Ranks

Assume that we want to update the representational ranks of our example from
Section 3.2. More concretely, suppose Mercy wants to add Sunny and Arthur, and
City wants to add Sunny to their preference lists. They only need to provide the
interview scores and school status for the applicants, as the other information can
be obtained from the applicants’ profiles. The interview scores can be updated
for the two hospitals using the updateWithRow combinator, which takes an Info

value to be updated along with the information to update it with. An entry such
as City --> [Sunny --> 9] indicates that City assigns an interview score of 9
to Sunny, which is then appended to its already existing score assignments for
other applicants. The function updateWithRow can be chained together to update
the records for multiple hospitals.

interview1 = interview `updateWithRow` (City --> [Sunny --> 9])
`updateWithRow` (Mercy --> [Sunny --> 8,Arthur --> 8])

And the school status also needs to be updated.

school1 = school `updateWithRow` (Mercy --> [Sunny --> True,Arthur --> False])
`updateWithRow` (City --> [Sunny --> False])

Again, we also have the option to collect all changes in an Info value, which is
then used by the updateWithInfo combinator.

deltaInterview = info [Mercy --> [Sunny --> 8,Arthur --> 8],City --> [Sunny --> 9]]

interview1 = interview `updateWithInfo` deltaInterview

Finally, we can use the modified interview scores and school status information
to update the preferences for hospitals.

updatedHosp = aProfile `completedWith2` (interview1 `zipInfo` school1)

The changed data leads to the following preference lists for various hospitals.

> ranks updatedHosp
{Mercy --> [Darrius,Sunny,Arthur,Joseph] : 2,
City --> [Darrius,Arthur,Sunny,Latha,Joseph] : 2,
General --> [Darrius,Arthur,Joseph,Latha] : 2}

15

class Preference a b c => Exchange a b where
endowment :: Match a b

type SameSetMatch a = Maybe (Match a a)

data CompRanks a b = CompRanks {unCompRanks :: [(a,[(b,Rank)],[(b,Rank)])]}

oneWay :: (Preference a b c,Set2 a b,Norm c) => Match a b

oneWayWithOrder :: (Preference a b c,Set2 a b,Norm c) => [a] -> Match a b
oneWayWithPref :: (Preference a b c, Set2 a b,Norm c) => Info a b c -> Match a b

trade :: (Preference a b c,Set2 a b,Norm c) => Match a b
sameSet :: (Preference a a b,Set a,Norm b) => SameSetMatch a

diffRanks :: (Eq2 a b,Preference a b c,Set2 a b,Norm c) => Match a b -> Match a b ->
CompRanks a b

Fig. 6: Some type and function definitions for various matching problems.

We can now generate the updated match using the twoWayWithPref function.
But perhaps it will be more interesting to see how this matching differs from
the original match. As shown, the only difference in the two matchings is that
Mercy which was not assigned a resident initially, now has Sunny assigned to it.

> twoWayDiff updatedHosp gather
{Mercy --> [] => [Sunny]}

5 Other Matching Problems

In addition to the two-way stable matching problem, MatchMaker also
allows for the modeling of other interesting matching problems like one-sided
matchings, one-sided matching with exchange, and same-set matchings, which
we briefly discuss in this section. The various types and function definitions used
in this section are shown in Figure 6.

5.1 Bipartite Matching With One-Sided Preferences

The first important example of a one-sided matching problem is known as the
house allocation problem in the economics literature. In this type of matching,
only the elements in the source set have preferences for the elements in the
target set. The preferences of the target sets are not taken into account. Some
of its applications have been allocating graduates to trainee positions, students
to projects, professors to offices, and clients to servers.

As a concrete example, let us consider the problem of selecting kidney donors
for various transplant patients. Assume that the donors are altruistic and don’t
care who their kidney goes to. Patients, on the other hand, have a preference
over the kidneys: a good kidney for a patient depends on the tissue compatibility
of the donor-recipient pair as well as the donor’s age and their overall health

16

P1 P2 P3 P4

Bob Alice Alice Alice
Dan Dan Bob Bob
Dillon Dillon Dillon Dan

(a) Preference lists of Donors
to Patients.

data Donor = Alice | Bob | Dan | Dillon
data Patient = P1 | P2 | P3 | P4

instance Preference Patient Donor Rank where
gather = choices [P1 --> [Bob,Dan,Dillon],

P2 --> [Alice,Dan,Dillon],
P3 --> [Alice,Bob,Dillon],
P4 --> [Alice,Bob,Dan]]

(b) Encoding the example in DSL.

Fig. 7: Assigning donors to patients: Bipartite matching with one-sided prefer-
ences.

condition. Thus, the transplant team of a patient may have a ranked preference
list of donors. Figure 7a shows patients with their preference lists.

Formally, the donor assignment problem is a three-tuple (T,D, P), where
T = {t1, . . . , tk} is a finite set of transplant patients and D = {d1, . . . , dn} is
a finite set of donors. P is a preference map such that the preference of each
patient t ∈ T is represented by an ordered list of preferences P (t) on set D. We
assume that each patient has a quota of 1, that is, they can be assigned just
one donor. A matching µ : T → D in this case is a partial function that assigns
every patient to 1 donor.

We can represent the patient-donor example with the machinery already de-
veloped for two-sided matching. Figure 7 shows an encoding of the problem using
explicit ranks. In a more realistic setting, the agency tasked with performing the
match might prefer to rank the donors using meaningful representation such as
age and the blood and tissue compatibility between the donor-patient pair.

How do we assign donors to the patients based on their preferences? The
strategy we use here is the so-called serial dictatorship mechanism [1]. It is a
straightforward greedy algorithm that takes each patient in turn and assigns
them to the most preferred available donor on their preference list. The order in
which the patients are processed will, in general, affect the outcome. In appli-
cations where elements have a quota of n, they are assigned to n objects when
their turn comes for processing. For our example here, we expect that a match-
ing agency will come up with an order of processing based on factors such as
the urgency of a patient’s situation, their age, or their time on the waiting list.
The function oneWayWithOrder performs serial dictatorship with a given order as
shown below where patient P3 gets its first choice donor, P4 gets its first choice
amongst the remaining donors, and so on.

> oneWayWithOrder [P3,P4,P2,P1] :: Match Patient Donor
{P1 --> [Dillon],P2 --> [Dan],P3 --> [Alice],P4 --> [Bob]}

Oftentimes users might prefer that the matching function infer a preferred order
based on position of the constructor in the data definition for donors, that is,
the Donor data definition implies an order of [P1,P2,P3,P4]. The function oneWay

generates a one-way match with this implicit order.

> oneWay :: Match Patient Donor
{P1 --> [Bob],P2 --> [Alice],P3 --> [Dillon],P4 --> [Dan]}

17

Finally, there is also a third variant of the function oneWayWithPref that takes
explicit preference encoding like its counterpart twoWayWithPref.

As we can see, these two matches are different because they are generated
using different orders. Is one better than the other? What is the best possi-
ble match among the various possibilities? Manually comparing one match with
another is cumbersome because for every patient we have to look at the two
matchings and compare the relative ranks of the two donors in that patient’s
preference list. This task is simplified by the function diffRanks, which com-
pares the ranks of the two matchings using a type called CompRanks. This type
represents for every agent the element assigned to them in those matchings as
well the elements’ ranks for comparison. In the following expression, we use
x = oneWayWithOrder [P3,P4,P2,P1].

> diffRanks oneWay x :: CompRanks Patient Donor
{P1 --> Bob : 1 > Dillon : 3, P2 --> Alice : 1 > Dan : 2,
P3 --> Dillon : 3 < Alice : 1, P4 --> Dan : 3 < Bob : 2}

The first match is advantageous for patients P1 and P2, whereas the second
match is advantageous for patients P3 and P4. Informally, a matching is Pareto
optimal if there is no other matching in which some patient is better off, whilst
no patient is worse off. It is used as a metric to compare the quality of outcomes
in game theoretic matchings. The deceptively simple-looking serial dictatorship
algorithm results in Pareto optimal matchings, which implies that for any two
matchings, there are some patients for whom one match is better and for some,
the second match is better. In other words, a unique best match doesn’t exist.

5.2 Bipartite Matching With One-Sided Preferences and Exchange

We assumed the presence of altruistic donors in our last example. However, kid-
neys are valuable commodities, and altruistic donors alone can’t fulfill the vast
demand for them. A more realistic scenario is a family member or a friend donat-
ing one of their kidneys to a loved one. However, sometimes this donation may
not happen due to reasons like tissue or blood group incompatibility. An elegant
solution was developed in the field of economics. Suppose (d1, r1) and (d2, r2) are
two donor-receiver pairs such that di wants to donate to ri but can’t do so. How-
ever, if d1 could donate to r2 and d2 to r1, then both the patients would be able
to receive kidneys. This could be easily scaled to multiple pairs generating large
numbers of compatibility pairs. The actual kidney exchange mechanism [17] is a
little more complicated, but the exchange between multiple donor-receiver pairs
is at the heart of it. This exchange characterizes our next matching algorithm,
the so-called top trading cycle (TTC) matching mechanism for one-way match-
ing where every element has an initial endowment and a preference list [18]. The
resulting match takes both of these into account.

Take the patient-donor example we considered in the last section. At the
start, some donor, presumably family or friends willing to donate a kidney, is
assigned to each patient. These initial set of donors are sometimes also called
the initial endowment, or just endowment, of a patient. Assume that patients
P1, . . . , P4 are endowed with Bob, Dan, Alice, and Dillon, respectively, such that

18

all the patients are compatible with the donors they are endowed with. In this
case, TTC tries to find out if the patients can do better than the donor they
are assigned to, based on their preference lists. We start by representing endow-
ments for which we define the multi-parameter type class Exchange, which has
a Preference class constraint (see Figure 6). The instance definition of Exchange
for our example is as follows.

instance Exchange Patient Donor where
endowment = assign [P1 --> Bob,P2 --> Dillon,P3 --> Alice,P4 --> Dan]

Now we can use the function trade provided by the DSL to generate the match-
ing.

> trade :: Match Patient Donor
{P1 --> [Bob], P2 --> [Dan], P3 --> [Alice], P4 --> [Dillon]}

Did any patient gain as a result of the change? We can use the diffRanks function
we saw in the previous section to find out. We discover that patients P2 and P4

do indeed profit by exchanging their donors.

> diffRanks endowment trade :: CompRanks Patient Donor
{P2 --> Dillon : 3 < Dan : 2, P4 --> Dan : 3 < Dillon : 2}

5.3 Same-Set Matching

This variation of the problem is the so-called stable roommate problem [6, 9]
where the source and the target sets being matched are the same. For example,
a set of students living in the dormitory can supply a ranked preference list of
other students they want to be roommates with. An example is shown below.

data Student = Charlie | Peter | Kelly | Sam

instance Preference Student Student Rank where
gather = choices [Charlie --> [Peter,Sam,Kelly], Peter --> [Kelly,Sam,Charlie],

Kelly --> [Peter,Charlie,Sam], Sam --> [Charlie,Kelly,Peter]]

We can obtain a stable matching of roommates using Irving’s algorithm [8].
In order to capture the fact that the source and target sets are the same, we
define a type synonym SameSetMatch that assigns the same type a to both the
source and the target sets in the Match type (see Figure 6). Even though same-set
matchings are stable matching problems like the bipartite two-sided matching
problems, they are different in that a stable match always exists for the former,
whereas it may not always exist for the latter. This fact is reflected by the Maybe

constructor in the type definition of SameSetMatch. Finally, we can generate the
same-set matching using the sameSet function, which produces the following
result for our example from above.

> sameSet :: SameSetMatch Student
Just {Charlie --> [Sam], Peter --> [Kelly]}

19

6 Related Work

Matching [20] is a library for Python that allows users to encode simple matching
problems in a straightforward manner. An issue with the library is that all the
encoding are done using strings, which makes error handling difficult and thus
complicates the maintenance and debugging of larger examples. In comparison,
MatchMaker avails the strongly typed feature of the host language Haskell to
detect the various errors in encoding.

Similarly, matchingMarkets [10] is a matching library for R. The advantage
of the library is that it implements a wide variety of matching algorithms de-
veloped in the matching theory. Additionally, it implements statistical tools to
correct for the sample selection bias from observed outcomes in matching mar-
kets, which is something that MatchMaker doesn’t do. The library encodes
the preference relation between the sets of elements being matched in the form
of a matrix. While an efficient way to encode the preferences, the matrix encod-
ing is clunky and is thus difficult to understand, update and maintain. Another
stable matching library for R and C++ matchingR is [19], which uses matrices
to encode the preference relations and thus suffers from the same problems as
matchingMarkets.

MatchMaker allows users to specify their preferences more abstractly in
terms of attributes that they understand, while all the previous libraries only
allow specification of preference in terms of ranks. Additionally, none of these
libraries offers either the primitives for systematic modification of representations
or primitives to compare and contrast different matchings.

Matching problems can also be solved using constraint programming [13, 5] or
SMT solving [3]. Moreover, integer linear programming can be used to solve NP-
hard stable marriage problems, including ones with ties and incomplete lists as
well as the many-to-one generalization [2]. While powerful, a potential downside
is that encoding matching problems as constraints might be challenging for users.
In contrast, MatchMaker facilitates high-level representations of matching
problems and can thus be used without any specialized knowledge.

7 Conclusions

MatchMaker is an embedded DSL in Haskell for expressing, solving, and an-
alyzing game-theoretic matching problems. Our implementation leverages ad-
vanced type system features of Haskell to facilitate high-level representations of
matching problems, expressed in terms of domain elements. MatchMaker also
supports the maintenance and evolution of the problem representation and pro-
vides some limited support for analyzing computed results, making it a useful
tool for end users as well as game theorists.

The design of our DSL emphasizes the significance of strong typing in de-
tecting errors at compile time. Additionally, employing multi-parameter type
classes promotes a lucid mental representation of the problem, helping users to
comprehend problem structures and implement complex functions.

20

References

1. Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem.
Journal of Economic Theory 100(2), 295–328 (2001)

2. Delorme, M., Garćıa, S., Gondzio, J., Kalcsics, J., Manlove, D., Pettersson, D.:
Mathematical models for stable matching problems with ties and incomplete lists.
European Journal of Operational Research 277(2), 426–441 (2019)

3. Drummond, J., Perrault, A., Bacchus, F.: Sat is an effective and complete method
for solving stable matching problems with couples. In: Proceedings of the 24th
International Conference on Artificial Intelligence. p. 518–525. IJCAI’15, AAAI
Press (2015)

4. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. The
American Mathematical Monthly 69(1), 9–15 (1962)

5. Gent, I.P., Irving, R.W., Manlove, D., Prosser, P., Smith, B.M.: A constraint pro-
gramming approach to the stable marriage problem. In: Proc. of the 7th Inter-
national Conference on Principles and Practice of Constraint Programming. p.
225–239. CP ’01, Springer-Verlag (2001)

6. Gusfield, D.: The structure of the stable roommate problem: Efficient represen-
tation and enumeration of all stable assignments. SIAM Journal on Computing
17(4), 742–769 (1988)

7. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, Cambridge, MA, USA (1989)

8. Irving, R.W.: An efficient algorithm for the “stable roommates” problem. Journal
of Algorithms 6(4), 577–595 (1985)

9. Irving, R.W., Leather, P.: The complexity of counting stable marriages. SIAM
Journal on Computing 15(3), 655–667 (1986)

10. Klein, T., Aue, R., Giegerich, S., Sauer, A.: matchingMarkets: Analysis of Stable
Matchings in R (2020), https://matchingmarkets.org/

11. Manlove, D.F.: Algorithmics of Matching Under Preferences. World Scientific
(2013)

12. NRMP: National Resident Matching Program (2022), https://www.nrmp.org/

intro-to-the-match/how-matching-algorithm-works/
13. Prosser, P.: Stable roommates and constraint programming. In: CPAIOR (2014)
14. Roth, A.E.: Deferred acceptance algorithms: History, theory, practice, and open

questions. Working Paper 13225, National Bureau of Economic Research (2007)
15. Roth, A.E., Peranson, E.: The redesign of the matching market for american physi-

cians: Some engineering aspects of economic design. American Economic Review
89(4), 748–780 (September 1999)

16. Roth, A.E., Sotomayor, M.A.O.: Two-Sided Matching: A Study in Game-Theoretic
Modeling and Analysis. Econometric Society Monographs, Cambridge University
Press (1990)

17. Roth, A.E., Sönmez, T., Ünver, M.U.: Kidney exchange. The Quarterly Journal of
Economics 119(2), 457–488 (2004)

18. Shapley, L., Scarf, H.: On cores and indivisibility. Journal of Mathematical Eco-
nomics 1(1), 23–37 (1974)

19. Tilly, J., Janetos, N.: matchingR: Matching Algorithms in R and C++ (2020),
https://github.com/jtilly/matchingR/

20. Wilde, H., Knight, V., Gillard, J.: Matching: A python library for solving matching
games. Journal of Open Source Software 5(48), 2169 (2020)

21. Williams, K.J., Werth, V.P., Wolff, J.A.: An analysis of the resident match. New
England Journal of Medicine 304(19), 1165–1166 (1981)

21

