
Monadification of Functional Programs

Martin Erwig a and Deling Ren a

aSchool of EECS, Oregon State University, Corvallis, OR 97331, USA

Abstract

The structure of monadic functional programs allows the integration of many dif-
ferent features by just changing the definition of the monad and not the rest of
the program, which is a desirable feature from a software engineering and software
maintenance point of view. We describe an algorithm for the automatic transforma-
tion of a group of functions into such a monadic form. We identify two correctness
criteria and argue that the proposed transformation is at least correct in the sense
that transformed programs yield the same results as the original programs modulo
monad constructors.

The translation of a set of functions into monadic form is in most cases only a first
step toward an extension of a program by new features. The extended behavior can
be realized by choosing an appropriate monad type and by inserting monadic actions
into the functions that have been transformed into monadic form. We demonstrate
an approach to the integration of monadic actions that is based on the idea of
specifying context-dependent rewritings.

1 Introduction

Monads can be used to structure and modularize functional programs. The
monadic form of a functional program can be exploited for quite different
purposes, such as compilation or integration of imperative features. Despite the
usefulness of monads, many functional programs are not given in monadic form
because writing monadic code is not as convenient as writing other functional
code. It would therefore be useful to have tools for converting non-monadic
programs into monadic form, a process that we like to call monadification.

Monadification-like algorithms for the purpose of compilation have been
known for some time now [6,4]. The idea of these algorithms is to transform
all functions in a program into monadic form. While these algorithms are
quite simple and work well for their purpose, they are not well suited for the
introduction of monads at selected places in a source program. On the other
hand, Ralf Lämmel has identified the selective introduction of monads into

Preprint submitted to Elsevier Science 27 February 2004

functional programs as a useful source code transformation in [8]. He gives a
specification of monad introduction for lambda calculus through a structured
operational semantics.

In this paper we present the first detailed treatment of an algorithm for the
selective introduction of monads into functional programs. We identify cor-
rectness criteria for monadification and investigate the correctness of the pre-
sented algorithm. We also demonstrate the principal limitation of all known
monadification algorithms.

The rest of this paper is structured as follows. In the remainder of this Intro-
duction we illustrate the use of monads and discuss general issues concerning
the automatic introduction of monads into functional programs. In Section 2,
we define correctness criteria for monadification and point out a principal limi-
tation of monadification. Moreover, we collect requirements of the monadifica-
tion operator by considering several small functions that illustrate implications
on monadifications in different situations. These requirements prepare for a
definition that is developed in Section 3. In Section 4 we apply the correctness
criteria to our monadification algorithm. The concept of runnable monads is
discussed in Section 5. We show how runnable monads can be sometimes used
to circumvent the principal limitation of monadification and how they can be
used to limit the proliferation of monads all over a program. In Section 6 we
describe how to add monadic actions to monadified functions using a rewrit-
ing approach. We discuss related work in Section 7. Finally, we present some
conclusions in Section 8.

1.1 Why Monads?

Monads provide a standardized way to integrate a variety of language features
into functional languages, such as I/O interaction, state-based computation,
or exception handling [14]. The notion of monad originates in category theory
[12]. Eugenio Moggi [13] used monads to structure semantics definitions, which
paved the way for using monads in functional languages [18]. An excellent
survey is given by Phil Wadler in [19].

In Haskell a monad is a unary type constructor with two associated functions,
which is expressed by a type class (more precisely, as a constructor class)
Monad.

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

This definition expresses that any type constructor m can be regarded as a

2

monad once these two operations have been defined (the function >>= is also
called bind). 1 In addition, the monadic structure requires return to be a left
and right unit of >>= and >>= to be associative in a certain sense, that is, the
definition of the monad operations should obey the following laws:

m >>= return = m

return x >>= f = f x

(m >>= f) >>= g = m >>= (\x -> f x >>= g)

These laws are not enforced by Haskell, it is the programmer’s responsibility
to define the operations in such a way that these laws hold.

As an example for monadification, we consider the task of adding exception
handling code to a function definition. Consider the following simple expres-
sion data type and a corresponding evaluating function, which we have bor-
rowed from Richard Bird’s book [1, Chapter 10].

data Expr = Con Int

| Plus Expr Expr

| Div Expr Expr

eval :: Expr -> Int

eval (Con x) = x

eval (Plus x y) = eval x + eval y

eval (Div x y) = eval x ‘div‘ eval y

One limitation of the shown definition of eval is that it does not handle
exceptions. For example, when eval is applied to the argument Div (Con

1) (Con 0), a runtime error will occur. In order to capture such exceptions,
Int values can be wrapped by the Maybe monad, which is a type constructor
defined as follows.

data Maybe a = Just a | Nothing

A Just constructor represents a normal state associated with a value of type
a, while a Nothing constructor represents an error state in which no value
is stored. Instances of the two basic monad operations, return and >>=, are
defined for the Maybe type as follows.

1 In the Haskell 98 standard [15], the monad class contains two further functions:
(i) a variation of (>>=): m >> f = m >>= _->f and (ii) a function fail that is in-
voked on pattern matching failure in do expressions. For this paper, these differences
are not relevant.

3

instance Monad Maybe where

Just x >>= f = f x

Nothing >>= f = Nothing

return = Just

The >>= operation works as follows. If the previous computation has produced
a proper value (indicated by the enclosing constructor Just), the value ob-
tained so far (x) is passed on for further computation (f). But if an error has
occurred (indicated by the constructor Nothing), this error state is propa-
gated, regardless of the following computation. In Haskell, the do notation is
provided as a convenient syntax for monadic programming. Expressions using
do are translated into calls to the monadic functions return and >>= (see
Section 2).

We want to use the Maybe type in the eval function in the following way.
Whenever a computation can be performed successfully, the corresponding
result value is injected into the Maybe type by applying return to it. On the
other hand, any erroneous computation should result in the Nothing construc-
tor. This strategy has an important implication on the definition of eval. First
of all, the result type of eval changes from Int to Maybe Int. Therefore, the
results of recursive calls to the function eval cannot be directly used any-
more as arguments of integer operations, such as + or div. Instead, we have
to extract the integer values from the Maybe type (if possible) or propagate
the Nothing constructor through the computation.

Performing this unwraping explicitly, that is, by pattern matching all Maybe
subexpressions in eval with case expressions, can become extremely tedious
for larger programs. At this point the fact that Maybe is defined as an instance
of the Monad class comes into play: the monad performs the unwrapping of
values and propagation of Nothing automatically through the function >>=.
However, this function has to be placed in eval at the proper places to make
the monadic version of eval work. The (changed) types of the involved objects
more or less dictate how this has to be done. In short, all recursively computed
values have to be bound to variables that can then be used as arguments
of integer operations—this binding process is the inverse operation to the
wrapping performed by return.

The monadified version of eval is given below using the do notation [1]. In this
paper we use the naming convention to append an M to names of monadified
functions.

4

evalM :: Expr -> Maybe Int

evalM (Con x) = return x

evalM (Plus x y) = do i <- evalM x

j <- evalM y

return (i+j)

evalM (Div x y) = do i <- evalM x

j <- evalM y

if j==0 then Nothing

else return (i ‘div‘ j)

The process of eval’s monadification consists of two part: First, the Maybe

monad is employed to hide the error status. Second, the adaptation in the
last two lines in the above code catches the exception and correctly set the
error status. The first change should preserve the type correctness and the
semantics of eval. The second change, the introduction of actions, changes
the semantics, but does not change the types.

The advantage of evalM over eval is its proper handling of divide-by-zero
errors, which do not cause runtime errors anymore.

1.2 Automatic Introduction of Monads

Not only are monads difficult for beginners, they are awkward for experts,
too—for example, they force the programmer to specify evaluation order.
Therefore, even experienced Haskell programmers often begin the develop-
ment of a functional program by writing non-monadic functions and later
changing it to monadic form. In other situations, monads are added to func-
tions only temporarily, for example, for debugging purposes or to implement
other tracing functionality. These monads are often to be removed later from
the program. In any case, the turning one or more functions into monadic
computations is a frequently occurring task for functional programmers. We
call this process monadification.

A tool for the automatic monadification of functional programs gives program-
mers the freedom to select monads on demand; they are not urged to adopt a
monadic (and thus more imperative) style from the start. This freedom means
an important aid for the development process of functional programs, because
a programmer does not have to worry about extensions of his or her program
that might require a monadic structure for some of the functions. Monadifi-
cation was also proposed in [17], but there it is assumed that programmers
resort to the traditional approach for the adaptation by using a text editor.
In [11] interpreters are written in a particular monadic style that facilitates
the extensibility by new features. A drawback of this approach is that the

5

program has to be written in a monadic style right from the beginning.

Automatic monadification has several advantages over manual monadification:

(1) Reliability. Since an automatic monadification operator works on the ab-
stract syntax level, no syntax errors can be introduced. Moreover, if the
monadification operator is well designed and implemented, type correct-
ness of the resulting program can be also guaranteed. The proper design
of the monadification operator is the main contribution of this paper.

(2) Reusability. We may need to monadify different functions with the same
monad. For example, various functions that need to manipulate inte-
ger values may all raise divide-by-zero exceptions. We can use the same
monadification program for adding exception handling repeatedly.

(3) Versatility. A function can be monadified with different monads, produc-
ing different functions for different purposes.

(4) Efficiency of Transformations. Using a tool to perform repeated monadi-
fication tasks is also much faster than performing all the required changes
with a text editor.

Examining the eval and various other examples of monadification (see, for
example, [1,18]), we can observe that monadification is mostly a mechanical
process that can be described by a systematic change of the source program.
Such a transformation can be captured by the definition of a monadification
operator. This monadification operator should preserve syntax and type cor-
rectness of the transformed program. Moreover, monadification should change
the program as little as possible and as much as needed, that is, the monadi-
fied program should behave similarly to the original program, only those parts
that should be changed/improved by the introduction of the monad should
be allowed to expose a possibly different behavior after monadic actions have
been introduced. For example, the monadification of eval did not monadify
the + or div operation, because the goal was to adapt the behavior of eval

and not that of other operations.

2 The Essence of Monadification

Monadification is a source-level program transformation. The goal of monad-
ification is to transform a given function f of type t1->t2-> . . . ->tk->t into a
function f̂ of type to t1->t2-> . . . ->tk->m t, where m is a monad type con-
structor. Note that t is an arbitrary type and can be, in particular, a function
type, such as tk+1->tk+2-> . . . ->tn. In other words, the notion of “return value”
is relative in the presence of higher-order functions, that is, a multi-parameter
function can be considered to have more than one “return type”. For instance,
a function of type t1->t2->t3 can be considered to return values of type t3 or

6

t2->t3. Therefore, monadification can be performed on different return types,
which means that the specification of the monadification of a function requires
in addition to the function’s name the number k of parameters that are not
part of the monadified result type.

We can characterize the correctness of monadification by two properties of the
produced results. Ideally, the behavior of a monadified function is identical to
that of the original function, except that the return value is wrapped in a
monad; in cases when the original function does not terminate with a result,
the monadified function should not terminate either. These requirements can
be formally expressed by referring to a semantics definition of the language to
be transformed. To this end we assume an operational semantics that defines
the reduction of expressions as a binary relation →, whose reflexive, transitive
closure is denoted by →→. Such a semantics is given, for example, in [14] where
the semantics of monadic operations is a particular focus.

The correctness requirements can be formalized through the definition of com-
pleteness and soundness of monadified functions.

f̂ is called a complete monadification of f if

return (f x1 . . . xk)→→ y =⇒ f̂ x1 . . . xk →→ y

f̂ is called a sound monadification of f if

f̂ x1 . . . xk →→ y =⇒ return (f x1 . . . xk)→→ y

Note that the terms “complete monadification” and “sound monadification”
refer to the result of the monadification transformation and not to the trans-
formation itself.

Before we develop our monadification algorithm, we discuss a general limita-
tion of all known monadification algorithms.

Proposition 1 There are functions for which it is impossible to find a sound
monadification for arbitrary arguments.

Consider, for example, the task of monadifying the following function for one
parameter.

f :: Int -> Int -> Int

f x y = if x==0 then y else f y (x-1)

What we need is a function definition of the following form:

7

fM :: Int -> m (Int -> Int)

fM x = e1

We have to replace e1 by an expression of type m (Int -> Int). Of course, we
cannot use an arbitrary expression of that type because we want the resulting
function definition to behave like the original function except for the monad.
Therefore, the defining expression of the function must be somehow retained.
The expression

return (\y -> if x==0 then y else f y (x-1))

works well except that it ignores the monad in the recursive call to f. We
cannot simply replace f by fM because fM y has a monadic type (and not
a function type) and can therefore not be applied to (x-1). The only way
to make the recursion work is to bind fM y to a variable, say g, to obtain
access to the integer function of the monadic value. Therefore, we have to
replace f y (x-1) by an expression of the form do {g <- fM y; e2}. The
problem is now: Whatever we try to substitute for e2, we obtain a monadic
value for the whole do expression, which can never match the type Int of y.
Not surprisingly, none of the known monadification algorithms can monadify
the function f.

To prepare for the definition of a monadification operator, we will identify
the rules that govern correct monadification by considering a number of small
examples.

We consider as an object language lambda calculus extended by case expres-
sions and let expressions. The syntax is defined in Figure 1.

p ::= c | v | p p

e ::= c | v | \v->e | e e | let v=e in e | case e of {p1->e1; . . . ;pn->en}

Fig. 1. Syntax of the object language.

For syntactic convenience we make use of the do notation, which can be trans-
lated into lambda calculus based on the following equalities [15].

do {e} = e

do {e;stmts} = e >>= _ -> do {stmts}

do {x <- e;stmts} = e >>= \x -> do {stmts}

Next we will examine several examples to better understand how to monadify
functions in different situations.

8

The first example demonstrates the notion of a return expression, which is an
expression that is subject to being wrapped by the monad operation return.

f :: Int -> Int -> Int

f = \x -> \y -> x+y

If we consider f as a two-parameter function, after stripping off two lambda
abstractions, x+y is the expression that defines the result. The most direct
way to monadify the function is to wrap a call to return around the return
expression.

fM :: Monad m => Int -> Int -> m Int

fM = \x -> \y -> return (x+y)

The body of f could be of any syntactic form. It might be the case that the
lambda abstractions are embedded in other syntactic structures, such as case
expressions or applications. Here is such an example where lambda abstrac-
tions are embedded in a case expression.

f :: Int -> Int -> Int

f = \x -> case x of

0 -> \y -> y+1

n -> \z -> z-1

The definition of f contains two return expressions: y+1 and z-1. To monadify
this function, return should be applied to both of them.

fM :: Monad m => Int -> Int -> m Int

fM = \x -> case x of

0 -> \y -> return (y+1)

n -> \z -> return (z-1)

Moreover, a function can be defined in terms of other functions, or be the result
of an application. In these cases, the number of parameters to the function
does not match the number of lambda abstractions in the function definition.
For example:

f :: Int -> Int

f = (\x -> \y -> x+y) 0

The syntactic structure of this one-parameter function is an application in-
stead of a lambda abstraction. In this form, there is no return expression to
apply return to. However, the above definition is η-equivalent to the following
definition.

f’ = \z -> (\x -> \y -> x+y) 0 z

9

After the return expression has been exposed, it can now be monadified in the
usual way.

fM :: Monad m => Int -> m Int

fM = \z -> return ((\x -> \y -> x+y) 0 z)

Alternatively, we can move monadification into the function of an application
while increasing the number of lambda abstractions to be crossed by 1. This
approach leads to simpler code. For the above example we obtain the following
definition.

fM :: Monad m => Int -> m Int

fM = (\x -> \y -> return (x+y)) 0

Monadification is more complicated in the case of recursive function defini-
tions, the because the corresponding recursive calls change their types. Not
properly handled, these subexpressions would introduce type errors. Let us
consider a simple example. 2

f :: Int -> Int

f = \n -> n*f (n-1)

If we simply wrap a return around the return expression n*f (n-1), the
result return (n*f (n-1)) is not type correct since the type of f (n-1) is
m Int and not Int, which is required for the application of *. The solution is
to bind the expression f (n-1) to a variable, say x, and use x in place of f

(n-1).

fM :: Monad m => Int -> m Int

fM = \n -> do {x <- fM (n-1); return (n*x)}

Still, this is not a complete solution. An expression being bound and lifted out
may contain local variables, which will become free variables after the lifting.
This problem case can be exemplified by the following function, in which a
local variable n is introduced by the second alternative of the case expression.

f :: Int -> Int

f = \x -> case x of

0 -> 1

n -> n*(f (n-1))

Since the scope of n is limited to the second body of the case expression,

2 This function, as some other examples that appear in the rest of the paper, does
not terminate. However, this aspect is not really relevant because the definition
could be easily changed into a terminating one by adding a case expression. To
reveal the essential structure, we use the simpler non-terminating forms instead.

10

we should be careful not to lift f (n-1) outside that scope. In this case, the
solution is to move the monadification into all branches of the case expres-
sion. Another reason for not lifting the expression f (n-1) is that in the
original program, it is evaluated only when the second alternative of the case

is matched. Lifting might cause this expression to be evaluated more than
necessary, which increases the strictness of the program.

fM :: Monad m => Int -> m Int

fM = \x -> case x of

0 -> return 1

n -> do {y <- fM (n-1); return (n*y)}

Since all bodies of a case expression have the same type as the type of the
whole expression, operations on the case expression can be simply moved
down to the bodies.

Scoping problems can also be introduced by lambda abstractions because in
a lambda abstraction the type of the body differs from that of the whole
expression by an “arrow”. Consider the following function.

f :: Int -> Int

f = \n -> (\x -> n*(f x)) (n-1)

In this example, the return expression is (\x -> n*(f x)) (n-1), the recur-
sive call f x needs to be lifted and bound. But the scope of x is within the
lambda abstraction. Here, we can monadify the anonymous function (\x ->

n*(f x)) and change its type from Int -> Int to Int -> m Int.

fM :: Monad m => Int -> m Int

fM = \n -> (\x -> do {y <- fM x; return (n*y)}) (n-1)

In summary, three kinds of operations are involved in monadifying a function
definition:

• Navigating. Locate the return expressions in the function definition. The
basic approach is to move down k lambda abstractions. Navigating might
be taken down into case expressions. Whenever we cannot find enough
lambda abstractions, we use η-expansion to create additional abstractions.

• Binding. After locating return expressions, we identify recursive calls and
bind them to (fresh) variables. Then we replace the recursive calls with these
variables.

• Wrapping. After having removed recursive calls from return expressions, we
apply return.

It is worth mentioning that if two or more recursive calls exist in a return
expression and are to be bound to variables, we can choose different orders of

11

binding. For a purely functional program, this is not a concern because the
order does not affect the semantics, although it might have an impact on the
efficiency in the case of parallel execution. But the effects in the underlying
monad often depend on the order. If the user wishes to add extra actions
to the program, the order in which variables are bound does matter. The
implementation of the algorithm can either choose a predefined scheme or
be parameterized to leave the choice up to the user. In any case, the user
should take into consideration the relevant order. Two standard strategies for
ordering bindings resulting from recursive calls are preorder and postorder,
that is, arrange the bindings according to order in which the corresponding
recursive calls have been encountered in a preorder or postorder traversal
of the expression to be transformed. Since we are monadifying a group of
functions with one and the same monad, it does not seem to be required to
offer a different choice of order for different functions because the appropriate
ordering is probably determined by the monad and not by the functions using
the monad. We believe that such a choice should be a global parameter and not
a parameter that affects individual monadification steps. Therefore, we will
not parameterize the monadification algorithm presented in the next section
by this aspect.

3 Automatic Monadification

The general scenario is to monadify not just one, but a set of functions. These
functions are monadified simultaneously so that all their definitions are navi-
gated and calls to any of these functions will be bound. The function definitions
in a program can be grouped into three categories:

• functions to be monadified

• functions whose definitions contain calls to monadified functions, but which
should have been originally not monadified

• functions that are not affected by monadification

The first set of functions is selected by the user. This selection then determines
the remaining two function sets. A problem with functions in the second group
is that monadification destroys type correctness since calls to monadified func-
tions return values of type m t in contexts where values of type t are expected.
There are two ways to deal with this problem: first, functions could be moved
into the first set until the second set becomes empty. Second, values can be
extracted from monads at all call sites. This approach is discussed further
in Section 5. In this section we focus on the monadification of set of func-
tions and assume for simplicity that the second group of functions is empty.
Therefore, we view a program P as a collection of n function definitions that
are to be monadified plus a set of definitions P ′ that are not affected by the

12

monadification.
P = {f1 = e1, . . . , fn = en} ∪ P ′

Our goal is to define an operator M that is applied to each function defi-
nition and yields the corresponding monadified version. To uniquely identify
the result type to be monadified, M needs for each function the number of its
parameters, which has to be ultimately provided by the user. The function def-
initions together with the parameter information is called the monadification
context.

F = {(f1 = e1, k1), . . . , (fn = en, kn)}
We refer to the components of the ith context element by fF

i , eF
i , and kF

i ,
respectively.

M is applied to P and yields the following monadified program P̂ .

P̂ = M(P) = {f̂1 = MF (e1), . . . , f̂n = MF (en)} ∪ P ′

In this section, we are only concerned about the refactoring aspect of monad-
ification, that is, we ignore the insertion of monadic actions. We will address
this issue later in Section 6. We make the following assumption for the function
definitions of f1, . . . , fn: any call fF

i is always applied to at least kF
i arguments

where kF
i is the number of parameters for fF

i , that is, there is no partial ap-
plication of fF

i that leaves calls to fF
i “undersaturated” with arguments. This

condition can be checked through the predicate ∀i, j.F(eF
j , 0, fF

i , kF
i) where

the judgment F(e, i, f, j) represents the fact that in a context where e is ap-
plied to i arguments, all references to f are applied to at least j arguments.
Therefore, ∀i, j.F(eF

j , 0, fF
i , kF

i) requires that in any function definition to be
monadified, any function to be monadified is applied to at least k arguments.
F is defined in Figure 2. The parameter i is used to count the number of
arguments that have already been provided by the context of the expression;
it is needed to allow the checking of partial applications in the rule app.

Note that requiring saturated function calls is not really a limitation of the
algorithm because we can always supply additional arguments for undersatu-
rated calls through η-expansion before applying the monadification.

3.1 Characterizations of Subexpressions

The definition of the monadification operator is steered by properties of ex-
pressions. First, we need a predicate that tells whether or not e contains a
call to f with k arguments. This property is captured in the definition of the
predicate R(f, k, e), which is inductively defined in Figure 3.

In addition, we also need the information whether or not e contains a recursive
call to f as a strict subexpression, that is, e contains a call to f , but e itself

13

con
F(c, i, f, k)

var
i ≥ k

F(f, i, f, k)

v 6= f

F(v, i, f, k)

app
F(e1, i + 1, f, k) F(e2, i, f, k)

F(e1 e2, 0, f, k)

abs
F(\f->e, i, f, k)

F(e, 0, f, k) v 6= f

F(\v->e, i, f, k)

let
F(let f=e1 in e2, i, f, k)

F(e1, 0, f, k) F(e2, i, f, k) v 6= f

F(let v=e1 in e2, i, f, k)

case
F(e, 0, f, k) f /∈ FV(p′i) ⇒ F(ei, i, f, k)

F(case e of {p1->e1; . . . ;pn->en}, i, f, k)

Fig. 2. Saturated function calls.

call
R(f, k, f e1 e2 . . . ek)

abs
R(f, k, d) f 6= v

R(f, k, \v->d)

app
R(f, k, e1)

R(f, k, e1 e2)

R(f, k, e2)

R(f, k, e1 e2)

let
R(f, k, e1) f 6= v

R(f, k, let x=e1 in e2)

R(f, k, e2) f 6= v

R(f, k, let x=e1 in e2)

case
R(f, k, e′)

R(f, k, case e′ of {pi->ei})

R(f, k, ej) for some j ∈ {1, . . . , n} f /∈ FV(pi)

R(f, k, case e′ of {p1->e1; . . . ;pn->en})

Fig. 3. Expressions containing calls to f .

is not a call to f . We write S(f, k, e) if e has this property.

S(f, k, e) = e 6= f e1 ... em ∧R(f, k, e)

Another relationship between an expression e and its subexpressions e′ is
whether it is safe to lift e′ to the outside of e and bind it to a variable. As we
have elaborated in the examples, if e′ contains a variable that is local to e, say
x, we shall not lift e′ because otherwise x would become unbound. Moreover,
in the case that e′ resides in the body of a case expression, lifting e′ might
change the termination behavior of the program, that is, lifting might make
the program less lazy. To avoid this problem, we shall not lift such e′ either. If

14

e′ can be safely lifted outside e, we say e′ is a liftable subexpression of e and
write L(e′, e). For the definition of the liftability predicate L we employ the
notion of contexts.

A context is essentially an expression with a hole, written as 〈·〉. We can apply
a context C to an expression e, written as C〈e〉, which denotes the expression
obtained by filling the hole of C with e.

The syntax of contexts is given in Figure 4.

C ::= 〈·〉 | \v->C | C e | e C | let v=C in e | let v=e in C |

case C of {p1->e1; . . . ;pn->en} |

case e of {p1->e1; . . . ;pi->C; . . . ;pn->en}

Fig. 4. Syntax of contexts.

The definitions for free and bound variables extend in a natural way from
expressions to contexts.

With the context notation we can define L as follows.

L(e′, e) = (e = C〈e′〉 ∧ BV(C) ∩ FV(e′) = ∅ ∧

C 6= C ′〈case e of { . . . ;pi->C
′′; . . . }〉)

The last condition, which restricts the possible case contexts, guarantees that
lifting does not increase the strictness of functions, at the expense of not being
able to lift from RHSs of case rules. If increased strictness is not considered
a problem, one could drop the last condition and thus extend the number of
possible liftings, which will generally result in less complex monadified code.

3.2 Locating Return Expressions

We define a navigation operator N that moves monadification across lambda
abstractions and into applications and eventually passes the found result ex-
pressions to the wrapping operator W . N is also parameterized by a context
F . More precisely, NF (n, e) tries to “strip off” n lambda abstractions from e
and then passes the result to W . N can be defined inductively as follows.

For the base case, when n = 0, e can be directly wrapped. Otherwise, the
syntactic structure of e is scrutinized. When a lambda abstraction is lacking,
η-expansion can be employed to generate the required abstraction. In the
case of an application we can move N into the function. The definition of
N is shown in Figure 5. In all expressions, z has to be a fresh variable with

15

respect to e, that is, z has to be chosen such that z /∈ FV(e). Moreover, we
assume n > 0. The variables fj and kj range over all f and k elements in
the monadification context F . The metavariable e in the last line works as a
catch-all case and matches constants, variables, and let expressions.

NF (0, e) = WF (e)

NF (n, \v->d) = \v->NF (n− 1, d)

NF (n, case e′ of {pi->ei}) =NF (n, \z->case e′ of {pi->ei z}) if R(fj, kj, e
′)

case e′ of {pi->NF (n, ei)} otherwise

NF (n, e e′) = NF (n + 1, e) e′

NF (n, e) = NF (n, \z->e z)

Fig. 5. Definition of the N operator.

It is worth mentioning that we use a slightly specialized version of η-expansion
in the transformation of case expressions. Because of the following equality:

(case e′ of {pi->ei}) e = case e′ of {pi->ei e}

we can customize the η-expansion for case expressions as follows.

case e′ of {pi->ei} = \z->case e′ of {pi->ei z}

The reason for using this relationship instead of the general law is related
to the definition of the wrapping operator W that will be discussed below.
Using the simple form of η-expansion would force us to pass an application
(case e′ of {pi->ei}) z to W . If no topmost call to some fj in this expression
is liftable, we have to resort to applying N again, with the case expression as
the parameter, which leads to an infinite loop. By using the above transfor-
mation, we are able to avoid this non-terminating situation.

3.3 Wrapping Return Expressions

Having exposed a return expression, we need to change its type from t to m t.
This is done by the operator W , which takes a context F and the expression
to be wrapped.

First, if there are no calls to any fF
i inside e, e will be wrapped by a return

unless e is a direct call to some fF
i because in this case its type is already

monadic. The condition is formally captured by the predicate ∀i.¬S(fF
i , kF

i , e),

16

and we get in this case:

WF (e) =

 f̂ j e1 . . . ekj
if ∃j : e = fF

j e1 . . . ekj

return e otherwise

Otherwise, that is, if a topmost call to any fF
i inside e is liftable, the corre-

sponding subexpression is lifted and bound to a fresh variable. The condition
for this case is expressed formally by using contexts. The condition that e
contains a liftable call to some fF

i is expressed by the following formula.

e = C〈fF
i e1 e2 . . . ekF

i
〉 ∧ L(fF

i e1 e2 . . . ekF
i
, e)

To additionally ensure that C locates a non-nested call to some fF
i , that is, a

call that is not nested inside a call to some other fF
j , we also require

@C ′ 6= 〈·〉, j, e′1 e′2 . . . e′kF
j

: C〈z〉 = C ′〈fF
j e′1 e′2 . . . e′kF

j
〉

(for a fresh variable z). Note that for C ′ = 〈·〉, we allow the extraction of a
nested call because this case covers the situation when e is a call to some fj

and contains a call to some fi as a subexpression. In this case we have to lift
and bind any such fi. The recursive application of W eventually replaces fj

with f̂j. We combine these two conditions in the predicate CL, which is defined
as follows.

CL(e, C, fF
i e1 . . . ekF

i
) =

(e = C〈fF
i e1 . . . ekF

i
〉 ∧ L(fF

i e1 . . . ekF
i
, e)∧

@C ′ 6= 〈·〉, j, e′1 . . . e′
kF

j
: C〈z〉 = C ′〈fF

j e′1 . . . e′
kF

j
〉)

Now if CL(e, C, fF
i e1 . . . ekF

i
) holds, we obtain the following definition for W .

WF (e) = do {z <- WF (fF
i e1 e2 . . . eF

k); WF (C〈z〉)}

where z /∈ VARS(e)

Why do we require that z /∈ VARS(e)? Because z must not conflict with
any variable in e, not only the free variables. This is because z replaces a
subexpression of e and must not be captured by a binder in e.

Finally, if no topmost recursive call to any fF
i in e is liftable, we have to

scrutinize the syntactic structure of e (since e contains calls to some fF
i , e

cannot be a variable or constant).

Case e = case e′ of {pi->ei}. In this case, we have to wrap and bind e′ and

17

move the operation down to the bodies ei:

WF (e) = do {z <- WF (e′); case z of {pi->WF (ei)}}

Case e = \v->e′. This is a case for which monadification fails as we have
discussed in Section 2. A possible remedy is discussed in Section 5.

Case e = e0 e1 . . . em where e0 is not an application, that is, e0 6= e′ e′′ for
any e′, e′′. A general solution to this case is to apply W to e1 . . . em, which
makes their types monadic, bind them to fresh variables with respect to e,
say z1, . . . , zm, and also apply N to e0. This requires the recursive application
NF (m, e0) because e0 is regarded as a function of m parameters and has to
change its return type to a monadic type. Only when e0 is a recursive let

expression, that is, if e0 = let v=C〈v〉 in e′, and contains a non-liftable
call to an fF

i , NF (m, e0) will apply η-expansions to e0 and eventually pass
it, applied to m arguments, down to W again, which would cause an infinite
loop. So monadification stops with an error in this case. We capture this latter
condition in the predicate CL̄, which is defined as follows.

CL̄(e0, C, fF
i e1 . . . ekF

i
) = (e0 = C〈fF

i e1 . . . ekF
i
〉 ∧ ¬L(fF

i e1 . . . ekF
i
, e))

Hence, we get the following definition for W if e0 = let v=C〈v〉 in e′ =⇒
¬CL̄(e0, C, fF

i e1 . . . ekF
i
).

WF (e) = do {z1<-WF (e1); . . . ; zm<-WF (em); NF (m, e0) z1 . . . zm}

This solution might introduce unnecessary bindings in some of the ei (1 ≤ i ≤
m) (but not all). We can eliminate these by optimizing the resulting expression
through the left unit monad law, see Section 1.1 and [1].

Case e = let x=e1 in e2. If ∀i.¬R(fF
i , k, e1) holds, which means there are no

calls to any fF
i in e1, we can wrap e by only wrapping e2:

WF (e) = let x=e1 in WF (e2)

In case x is not recursively defined, that is, x /∈ FV(e1), e is treated like a
β-redex.

WF (e) = do {x <- WF (e1); WF (e2)}

But if not only x is recursively defined, but also its definition contains non-
liftable calls to some fF

i , we are unable to apply W to it. This is basically the
same situation as for lambda abstraction shown above.

Finally, we have to define the monadification operator M, which can be given
directly in terms of N :

MF (ei) = NF (ki, ei)

The definition of W is summarized in Figure 6.

18

1. If ∀i¬S(fF
i , kF

i , e):

WF (e) =

f̂ j e1 . . . ekj
if ∃j : e = fF

j e1 . . . ekj

return e otherwise

2. Otherwise, if CL(e, C, fF
i e1 . . . ekF

i
):

WF (e) = do {z <- WF (fF
j e1 . . . eF

k); WF (C〈z〉)}

where z /∈ VARS(e)

3. Otherwise, if
(a) e = case e′ of {pi->ei}:

WF (e) = do {z <- WF (e′); case z of {pi->WF (ei)}}

(b) e = e0 e1 . . . em where e0 6= e′ e′′ for any e′, e′′ and e0 =
let v=C〈v〉 in e′ =⇒ ¬CL̄(e0, C, fF

i e1 . . . ekF
i
):

WF (e) = do {z1<-WF (e1); . . . ; zm<-WF (em);

NF (m, e0) z1 . . . zm}

(c) e = let x=e1 in e2:

WF (e) =

let x=e1 in WF (e2) if ∀i¬R(f, k, e1)

do {x <- WF (e1); WF (e2)} if x /∈ FV(e1)

4. Otherwise, W fails.

Fig. 6. Definition of the W operator.

4 Correctness of Monadification

In Section 2 we have identified two correctness criteria for the monadification
of functions. Before we evaluate the monadification algorithm M presented in
Section 3 according to these criteria, we recall the restrictions of the algorithm.
There are two cases that M cannot deal with:

• A result expression is a lambda expression,which contains a recursive call
involving local variables. (In practice, this should not be a common case
because the return type is higher order.)

• A result expression is an application whose first part is a recursive let

expression that contains a non-liftable recursive call.

We have already discussed the problem that binding recursive calls to vari-
ables might change the termination behavior of the transformed function. For
case expressions we were able to avoid this problem by classifying the calls as
not liftable (see the definition of L in Section 3.1) and eventually moving the
monadification down into case expressions. However, the problem is gener-
ally always present in situations in which expressions are lifted from non-strict
functions because in a lazy evaluation setting, these recursive calls might not

19

be evaluated in the original function, but they might be evaluated after hav-
ing been lifted. This generally causes an “increased strictness” of monadified
functions. In these cases, the monadified functions are not complete. Recall
the functions c and r from Section 2 and the monadified function rM, which
is actually produced by our algorithm, repeated here for convenience.

rM x = do {y <- rM x; return (c y)}

The behavior of rM depends on the strictness of the implementation of the >>=
operation for the monad that is being used. For example, the implementation
of >>= for the Maybe monad inspects the pattern of the argument and therefore
forces the evaluation of the expression that is to be bound (which is probably
the case for most monads). Therefore, the argument rM is evaluated in this
example, and inevitably rM would not terminate. We could try to circumvent
this problem by avoiding to bind the result of the function application and
substitute y in the return expression by rM x.

rM’ x = do return (c (rM’ x))

This solution works well when c has a polymorphic type. However, if c’s type is
constrained by a type signature to, say Int -> Int, the shown transformation
will cause a type error because c is applied to an argument of type m Int.

Now we can give the main results about the correctness of our monadification
algorithm. The first result is that monadification produces sound results.

Proposition 2 Given f = e, f̂ = MF (e) is a sound monadification of f .

To prove the soundness, we can consider two cases. If f is not recursively
defined, the soundness can be shown by a structural induction on the function
definition. Otherwise, we can perform an induction on the recursive evaluation
of f . The base case is when the recursion of f ends, that is, when no recursive
evaluation takes place. In the case of recursion, the inductive hypothesis and
the left unit monad law can be applied to conclude soundness.

Although the results of monadification are not complete due to increased
strictness, monadification produces complete results under eager evaluation.

Proposition 3 Given f = e, f̂ = MF (e) is a complete monadification of f
under eager evaluation.

The completeness follows from soundness whenever f̂ is not less defined than
f . Under eager evaluation this condition is satisfied.

Moreover, we can show that the proposed algorithm terminates on all in-
puts. M is defined in terms of N , which eventually passes expressions to W .

20

Whenever a recursive definition occurs, W is applied recursively to smaller
subexpression so that the termination follows by a structural induction on the
expression. There is one exception, namely when W is applied to an applica-
tion e0 . . . em and e0 is a recursive let expression containing a recursive call
that is not liftable. In that case, e0 is passed to N that might expand it and
pass it back to W . Since our algorithm identifies this case, W is guaranteed
to terminate.

Finally, our monadification algorithm preserves the well typing of the monad-
ified functions. Of course, external calls (from definitions in P ′) to monadified
functions will no longer be type correct. Similarly, if instances of class mem-
ber functions are monadified, the type signature of the class member must
be monadified and also all other instance definitions. However, if the set of
functions to be monadified is closed with respect to mutual calls, the well
typing of the whole program is ensured. Note that monadification is not type
preserving since the types of some functions are changed to monadic type.
However, the programs that are produced by monadification are type correct
if the input programs are type correct. This property follows from the fact
that our algorithm will eventually change all the uses of a symbol f whose
definition changes from a type t to m t. In particular, the value of f will be
bound to a variable, which has type t. Since this variable is substituted for
the used occurrence of f, the well typing of the context is re-established. In
those cases when a symbol cannot be changed, our algorithm stops with an
error message and does not produce a possibly ill-typed program.

5 Runnable Monads

In Section 3 we have seen a situation where W cannot be applied to a lambda
abstraction. This was due to the need to lift a subexpression out of a context
that would also lift variables out of their scope.

Another problem in applying monadification to a function in a module con-
taining other functions is that monadification is only locally type correct, that
is, although it guarantees the type correctness of the monadified function, it
does not guarantee that callers of the monadified function deal with the new
monadic type correctly. Global type correctness can be recovered by a static
analysis that identifies all calls of a monadified function and monadifies the
calling functions accordingly as well as the class member definition and all
other instance definitions for a class instance definition. However, this might
lead to a proliferation of monadic types all over the program. We call this the
problem of monad infestation.

The simple concept of runnable monads provides a (partial) solution to both of

21

these problems. A runnable monad is a monad that provides a run operation,
which can be considered the dual operation to return and which has been
already defined for some monads in Haskell. We can define runnable monads
as a subclass of Monad as follows.

class Monad m => MonadRun m where

run :: m a -> a

Basically, the purpose of run is to extract the value from a monad.

For example, the Maybe type constructor can be made an instance of MonadRun
by simply defining run (Just x) = x. As another example we define a
MonadRun instance for state transformers. The idea of getting the value out of
the monad is to apply the state transformer to an initial state and extract the
value from a value/state pair. To do this, we need to know what the initial
state is. Therefore, we can define a type class Initializable of initializable
values. Any data type that is intended to be used as a state for a state trans-
former can be made an instance of Initializable by providing an initial
value. For instance, an initial value for integers could be 0.

class Initializable s where

initValue :: s

initValue = undefined

instance Initializable Int where

initValue = 0

Now we can capture the requirement on the state of a state transformer monad
to have an initial value by a corresponding class constraint in the instance
definition for MonadRun.

instance Initializable s => MonadRun (ST s) where

run (Trans f) = let (x,_) = f initValue in x

The above definition assumes the following definition for the state transformer
data type.

data ST s a = Trans (s -> (a,s))

In addition to the three basic monad laws (see Section 1.1 and [1]), a runnable
monad should also satisfy the following inversion law [7].

run (return x) = x Monad Inversion

This law ensures that values injected into a monad can be recovered by run.
It is easy to check that this law holds for the Maybe and the ST monads.

22

The value of the run operation lies in the fact that we can use it to “unwrap”
a monadic expression at any place, meaning that we can extract the value
from a monad in-place without lifting and binding. Therefore, in the process
of wrapping, whenever a recursive call to f is encountered that cannot be
lifted, we can apply run to get a proper non-monadic value instead. With this
approach, the function f from Section 2 can be monadified as follows.

fM = \x -> return (\y -> if x==0 then y else run (fM y) x)

This method is sound and complete (at least for monads that satisfy the monad
inversion law). However, by escaping monads the essence of monads can be
lost to some degree at those places where run is used. Moreover, monadic
actions cannot be inserted at these points. On the other hand, run provides a
way to make monadification work in some cases.

Another use for run is to limit the effect that the monadification of a function
has on the rest of a module. By wrapping run around some or all calls to the
monadified function we have precise control over what other functions have to
be monadified. In this way, we can effectively bound monad infestation.

6 Adding Actions to Monads

So far, we have developed an algorithm for converting a group of functions
into monadic form. In most cases the goal of this transformation is to add
further code to these functions. This code is sometimes also referred to as
monadic actions. In the introductory example from Section 1, the conditional
expression for handling divide-by-zero exceptions is such a monadic action.
After discussing several approaches to integrating actions into monads in Sec-
tion 6.1, we define the syntax and semantics of a language that can be used to
express such updates in Section 6.2. In Section 6.3, we discuss the type safety
of the approach.

6.1 Three Options for Adding Actions

A simple, but inflexible, approach is to (always) insert one particular action
before return. Such an action can be passed down to W from M and N
as a parameter. We could define a function Wa in almost the same way as
W except changing return e everywhere to a >>= return e. However, this
solution is rather limited since the context of the return expression is totally
ignored, which means that the same action is inserted before every return.
No useful adaptation can be achieved in this way.

23

A more general approach can be obtained by using some form of symbolic
rewriting to describe the insertion of actions. The idea of symbolic rewriting
is to match a pattern against an expression to obtain a variable binding, then
substitute the expression with another pattern, with the variables substituted
according to the variable binding. The following rewrite rule describes the
adaptation that is needed for the divide-by-zero exception handling in the
example from Section 1.

return (x ‘div‘ y) → if y==0 then Nothing else return (x ‘div‘ y)

The pattern return (x ‘div‘ y) is matched against the expression return

(i ‘div‘ j) which causes x to be bound to i and y to be bound to j. The
expression is then substituted by the conditional expression on the right-hand
side, with x and y substituted by i and j, respectively.

The purely syntactic rewriting approach is limited by the fact that only literal
occurrences of rewrite patterns can be identified. For example, if the program
contains the expression div i j, the above rule would not match. We can
imagine using rewriting modulo an equational theory to extend the applica-
bility of matching, but the general problem remains.

Even though rewrite rules can incorporate context information through the
use of metavariables in patterns, they cannot refer to parts of the context that
is not being rewritten. However, this feature is sometimes very useful.

An example to illustrate this idea is the extension of the eval function we have
seen earlier by an output trace [1]. First, we define an Out monad that couples
an output string with the result value. Since the string is to be printed at the
end, we have to thread all the output strings through the whole computation.

data Out a = Out (String,a)

instance Monad Out where

return x = Out ("",x)

Out (s,x) >>= f = Out (s++s’,x’) where Out (s’,x’) = f x

The call return x couples the value x together with an empty string. The
call Out (s,x) >>= f applies f to x, returns its result value, and appends the
output to s.

A basic operation on Out is to add a string to the output and return no value.

out :: String -> Out ()

out x = Out (x,())

To add an execution trace to the evaluator, the original evaluator is monadified
with Out. The code for tracers is also added.

24

eval :: Expr -> Out Int

eval (Con x) = do out (show (Con x)++"="++show x)

return x

eval (Plus x y) = do i <- eval x

j <- eval y

out (show (Plus x y)++"="++show (i+j))

return (i+j)

eval (Div x y) = do i <- eval x

j <- eval y

out (show (Div x y)++"="++show (i ‘div‘ j))

return (i ‘div‘ j)

The interesting aspect of this example is that the changes required for the
original program are non local in the sense that they cannot be achieved
by just adding a context-independent expression before return. Rather, the
inserted expressions need to refer to the parameter of the function, which
makes the automatic transformation more challenging.

To describe such a transformation we need a rewriting system that is capable
of expressing rewrite rules with variable context dependencies. We can imagine
the following rewrite rule for the task.

case e′ of p -> 〈return e → out (show p ++ "=" ++

show e); return e〉

The intended meaning is to match an enclosing context of a case expression,
bind the metavariable p, and then perform the shown rewrite rule.

6.2 A Context Update Language

The last approach leads to an update language that can express context-
dependent rewritings. A context update is a rewrite rule that has been placed
into a context. Contexts were defined in Figure 4. We can apply a context to
a rewrite rule to obtain a context update. A rewrite rule is either a simple
rule p1 → p2 or the composition of two rules r1; r2. Rewrite rules can contain
metavariables that match any expression in the object program. Therefore,
we extend the syntax of the object language defined in Figure 1 to include
metavariables for patterns (p) and expressions (e) that are used to describe
contexts. The definition of contexts from Figure 4 now refers to this extended
form of expressions, which causes contexts to possibly contain metavariables.

We require that contexts and patterns are linear in the sense that a meta
variable does not appear more than once. However, within a context rewrite
rule, a metavariable that occurs in the context might be reused in the patterns

25

u ::= C〈r〉

r ::= p → p | r; r

p ::= c | v | m | p p | case e of {q1->e1; . . . ;qn->en}

q ::= c | q q

e ::= c | v | m | e e | \v->e | let v=e in e |

case e of {p1->e1; . . . ;pn->en}

Fig. 7. Syntax of the update language.

of rewrite rules where it is just substituted by the binding obtained from
matching the context. We restrict patterns of rewrite rules to not include
expressions that create bindings to prevent the illegal creation of unbound
variables. The restricted form of case expressions

case e of {q1->e1; . . . ;qn->en}

disallows the use of variables in the left-hand sides of case rules (q) for the
same reason. On the other hand, having case expressions allows us to express
updates dealing with conditionals, such as the one for handling divide-by-zero
errors.

When an update is applied to an expression, its context is matched against
the expression and metavariables that occur in the context are bound to parts
of the expression. After the context is matched, the rewrite rule in the hole
is applied to the expression that matches the hole of the context. It will be
applied recursively to all the subexpressions. All simple rules in a composi-
tion of rewrite rules are tried on the expression until one of them applies.
A simple rule is applied as follows. The rule is instantiated by substituting
those metavariables for which a binding is already provided by the matched
context. Then the left-hand side of the rule is matched against the expression
to obtain bindings for the remaining uninstantiated metavariables in the rule.
These bindings are then used to replace the metavariables in the right-hand
side to build the resulting expression. The semantics of the update language
is defined in Figure 8 by rules that define the judgment [[u]]σe = e′, which ex-
presses that the update u changes the expression e to e′ under that mapping
σ from metavariables to expressions. This context update language is general
enough to express all the approaches discussed in Section 6.1.

The first three inference rules in the first line define the core rewriting seman-
tics. The first rule in the second line defines how a composition of rewrite rules
in a context is applied recursively. The next group of rules from line two to four
define the recursive application of rules in the context. We write µr for a rule
r that has to be recursively applied. The rules implement a “stop-top-down”

26

σ′(p1)�σ e σ(σ′(p2)) = e′

[[p1 → p2]]σ′e = e′
r1�@ e [[r1]]σe = e′

[[r1; r2]]σe = e′
r1�@/ e [[r2]]σe = e′

[[r1; r2]]σe = e′

[[µr]]σe = e′

[[〈r〉]]σe = e′
[[r]]σe = e′

[[µr]]σe = e′
[[r]]σe1 = e′1 [[r]]σe2 = e′2

[[µr]]σe1 e2 = e′1 e′2

[[r]]σe1 = e′1 [[r]]σe2 = e′2
[[µr]]σlet v=e1 in e2 = let v=e′1 in e′2

[[r]]σei = e′i for 1 ≤ i ≤ n [[r]]σe = e′

[[µr]]σcase e of {p1->e1; . . . ;pn->en} = case e′ of {p1->e1; . . . ;pn->en}

[[u]]σe = e′

[[\v->u]]σe = \v->e′
[[u]]σ∪σ′e = e′ e0�σ′ e1

[[u e0]]σe e1 = e′ e1

[[u]]σ∪σ′e = e′ e0�σ′ e1

[[e0 u]]σe1 e = e1 e′

[[u]]σ∪σ′e = e′ e0�σ′ e1

[[let v=u in e0]]σlet v=e in e1 = let v=e′ in e1

[[u]]σ∪σ′e = e′ e0�σ′ e1

[[let v=e0 in u]]σlet v=e1 in e = let v=e1 in e′

[[u]]σ∪σ′e = e′ pi �σi1
p′i ei �σi2

e′i σ′ = ∪i(σi1 ∪ σi2)

[[case u of {p1->e1; . . . ;pn->en}]]σcase e of {p′1->e
′
1; . . . ;p′n->e

′
n}

= case e′ of {p′1->e
′
1; . . . ;p′n->e

′
n}

[[u]]σ∪σ′∪σ′′e = e′ pi �σi1
p′i (ei �σi2

e′i for i 6= j)

σ′ = (∪iσi1) ∪ (∪i6=jσi2) e0 �σ′′ e1

[[case e0 of { . . . pj->u; . . . }]]σcase e1 of { . . . p′j->e; . . . }

= case e1 of { . . . p′j->e
′; . . . }

Fig. 8. Semantics of context updates.

strategy (see, for example, [9]) that does apply the rewrite rule recursively at
possibly different places in the expression, but does not move recursively into
expressions that have been rewritten. This is exactly the behavior we need for
adding monadic actions because we generally have to replace more than one
return expression that occurs, for example, in different branches of a case

expression, but we do not want to replace recursive occurrences of return

within other return expressions that are rewritten, because we want to add
actions only for one particular monad. The remaining rules starting in line five
are congruence rules that define the matching of the context. In the definition
of the semantics we need a judgment of the form r�@ e that tells whether or not
the update r applies to e. A rule r is applicable to e if we can apply the first
inference rule in Figure 8 to perform the update. We also use a judgment p�σ e

27

that infers under which binding of metavariables to expressions the pattern p
matches the expression e, that is, σ(p) = e.

Note that the nonterminals e from Figure 7 that are used in contexts might
contain metavariables that are bound during the process of context matching
described by the congruence rules. In contrast, the nonterminals e from Figure
1 just represent expressions to which context rewrite rules are applied. These
two different versions of nonterminals can be easily distinguished syntactically
in the inference rules as follows. The nonterminals e used for representing con-
texts always occur (in judgments) inside of the semantics brackets [[]], whereas
the “ordinary” expression nonterminals e always occur outside of these brack-
ets. This distinction has to be kept in mind when reading conditions, such as
e0�σ′ e1.

6.3 Type Preservation

An important property of updates is type preservation, that is, when the
updates are applied to well-typed expressions, they should ensure that any
resulting expressions is of the same type as the original expression. A context
update is type preserving if it satisfies the following two conditions.

(1) For any update C〈e1 → e′1; . . . ; en → e′n〉:⋃
1≤i≤n

FV(ei) ⊆ FV(C)

This condition ensures that no unbound variables are introduced by the
update.

(2) For any rule p1 → p2, the type of p2 is the same as p1. This condition
ensures that we replace expressions with expressions of the same type.
From the substitution lemma [20] it follows that the result of applying
the update to the whole expression is type correct and has the same type.

7 Related Work

Ralf Lämmel has employed program-transformation techniques to reduce the
need for anticipation in developing reusable software [8]. One example he con-
sidered is the transformation of programs into monadic form. In his approach
he has employed a program-transformation technique called sequencing [4] to
flatten an expression into let expressions. This intermediate result is then
transformed into a monadic computation. Lämmel’s approach is type directed
in contrast to our syntax-directed transformation method, which does not

28

depend on the presence of typing information. Moreover, his transformation
is given by inference rules in natural semantics style, whereas we describe a
transformation algorithm. The type-directed approach seems to works quite
well. Nevertheless, we favor a syntactic, algorithmic approach because it does
not rely on the availability of the type information for all involved objects,
although we exploit information about the number of arguments, which is
derived from the type information. This fact simplifies the implementation
of a monadification tool, and it also makes it more efficient, because the
syntactical algorithm can be always directly applied, no matter whether or
not other definitions (internal to the current module or external ones) have
been changed since the last compilation of the program. In contrast, a type-
directed approach has to generally re-parse and typecheck all modules that
have changed.

Another approach to monadification is known for a long time in the domain
of compiler transformations [6,4]. The idea of these algorithms is to transform
all functions and intermediate results in a program into monadic form. Hat-
cliff and Danvy give two transformations, a call-by-value and a call-by-name
version. Below we present their call-by-value transformation, 3 adjusted to our
abstract syntax from Figure 1.

M(c) = return c

M(v) = return v

M(\v->e) = return (\v->M(e))

M(e e′) = do {f <- M(e); x <- M(e′); f x}

M(let v=e in e′) = let v=M(e) in M(e′)

The call-by-name transformation is very similar. The only two differences
are: (i) only recursively defined variables (by let) are wrapped by return,
in contrast to all variables in the call-by-value transformation, and (ii) the
monadification of a function argument is not bound to a variable, but directly
monadified in place:

M(e e′) = do {f <- M(e); f M(e′)}

While these algorithms are straightforward and simple, the translation of only
a subset of functions into monadic form is complicated by the need to delimit
the effect of monadic code to only the required places. One could imagine using
one of these simple monadification algorithms to monadify all function calls in
a program and then trying to get rid of unwanted monadifications by selecting
the Id monad for all but the required places and simplifying the resulting

3 The algorithms given in [6] do not deal with data types or case expressions.

29

code by applications of the monad laws. This approach is possible since the
monadification introduces monad expressions that are principally independent
of one another and can therefore be of different monad types. However, this
approach does not work in general. We illustrate the limitations of the simple
algorithms by two examples. First, consider the following expression of type
(a -> b) -> a -> b.

\f -> \x -> f x

The call-by-value translation yields the following monadified form. 4

return (\f -> return (\x ->

do {g <- return f; y <- return x; g y}))

This expression has the following type.

(Monad m1, Monad m2, Monad m3) =>

m1 ((a -> m2 b) -> m3 (a -> m2 b))

If the goal is to monadify the original expression for k = 2 parameters, the
resulting expression must have the following type.

(a -> b) -> a -> m b

However, there is no choice for m1, m2, and m3 to instantiate the above monadic
type to this type. The call-by-name translation produces the following result.

return (\f->return (\x->do {g <- f; g x}))

The type of this expression shown below suffers from the same limitations as
the type of the call-by-value translation.

(Monad m1, Monad m2, Monad m3) =>

m1 (m2 (a -> m2 b) -> m3 (a -> m2 b))

On the other hand, there is a simple monadification of the original expression
that has the required type, namely the expression

\f -> \x -> return (f x)

which is exactly what our algorithm produces.

The approach of these simple algorithms to wrap all variables and constant
into a monad requires the ability to choose monads independent of one an-
other (Id vs. m) to be able to selectively monadify a function at a particular

4 The expression can be simplified to return (\f->return (\x->do {f x}})).

30

result type. However, in cases when the result type of a higher-order argument
(like f in the example) contributes to the overall result type of the function to
be monadified, the monadification of that argument forces its result type to
be wrapped by the same monad as the overall result type (here m2). This fact
limits the applicability of these algorithms with respect to selective monadi-
fication essentially to first-order functions. Another limitation is revealed by
recursive definitions, which will be illustrated next.

As we have already seen from the call-by-value and call-by-name translations,
the main source of variation in the simple algorithm is the translation for
application. One might think of still another version (not described in [6])
that can be obtained from the call-by-value transformation by wrapping the
result of the application in an additional return.

M(e e′) = do {f <- M(e); x <- M(e′); return(f x)}

This variation ensures the independence of result types that was a problem
with the other two translations. The application of this algorithm yields the
following result that differs from the call-by-value result only by the additional
return around g y.

return (\x -> return (\y ->

do {g <- return f; y <- return x; return (g y)}))

The type of this expression is general enough to allow the instantiation to the
desired result type.

(Monad m1, Monad m2, Monad m3) => m1 ((a -> b) -> m2 (b -> m3 b))

Alas, the transformation is unsound in the sense that it can produce ill-typed
expressions. Consider again the example from Section 2, which can be monad-
ified on its result type by our algorithm as follows.

f :: Monad m => Int -> Int -> m Int

f x y = if x==0 then return y else f y (x-1)

The third algorithm produces the following definition (we have simplified the
result according to the monad laws).

f x = return (\y->if x==0 then return y else return (f y (x-1)))

However, this definition contains a type error.

The call-by-value and call-by-name transformations given by Hatcliff and
Danvy work well for this example and both yield the following translation.

f x = return (\y->if x==0 then return y else do {g <- f y; g (x-1)})

31

The definition is type correct, but again due to the too many involved monads
the type is too constrained to be instantiated as required.

Monad m => Int -> m (Int -> m Int)

The shown examples demonstrate the limitations of the simple monadifica-
tion algorithms with regard to the monadification of functions on selected
parameters and that a tailor-made algorithm is required instead.

Other work on local monad transformations can be found in the context of CPS
transformations. For example, the approach taken in [16] translates only those
functions that have the same continuation. This and all the other work on CPS
transformations and monadic normal forms is targeted at compiling functional
languages. In contrast, our work is concerned with source-code transformations
of programs that are still to be used by programmers.

8 Conclusions

We have shown how function definitions can be automatically converted into a
monadic form by a process called monadification. The developed transforma-
tion is safe since it preserves syntax and type correctness of the transformed
program. Moreover, automatic monadification can preserve the semantics of
the original program to a large degree. One could even argue that automatic
monadification preserves the semantics as much as possible.

Monadification is an example of a generic program transformation that can be
effectively used as a very general functional refactoring [5]. In many cases, such
refactorings are only preparatory steps toward adding further functionality to
programs. In the monadic setting this means to add monadic actions. We have
addressed this task by employing a simple but effective context-dependent
rewriting system, which preserves the types of the monadified program.

We have an initial prototype implementation of a monadification tool written
in Haskell, which can be run as a stand-alone tool. Although quite a few
desirable features are still missing, the current prototype can reproduce all
the examples discussed in this paper. Future versions will contain an analysis
phase that can detect closeness of a set of function with respect to calls of
monadified functions, the possibility to specify the addition of actions, and an
intelligent “pretty-reprinting”, that is, a pretty-printing of changed code parts
that retains as much of the original program layout as possible. Ultimately,
we plan to integrate our monadification tool into the Haskell refactoring tool
“HaRe” [10]. Monadification could then be a refactoring that is offered through
the menus of ordinary text editors.

32

A drawback of using Haskell as a metaprogramming language is that although
Haskell can guarantee the syntactic correctness of transformed object pro-
grams, it cannot guarantee type correctness. Alternatively, we can implement
monadification in a dedicated type-safe metaprogramming language that en-
sures the preservation of syntactic as well as type safety. To this end, we have
developed an update calculus that can express type-preserving updates on
functional languages like Haskell [3,2]. The monadification operator defined in
this paper will also serve as a benchmark for this update language.

Acknowledgments

We are very grateful to Ralf Lämmel who has provided many useful com-
ments on this paper. We also thank the anonymous reviewers for their helpful
comments.

References

[1] R. S. Bird. Introduction to Functional Programming Using Haskell. Prentice-
Hall International, London, UK, 1998.

[2] M. Erwig and D. Ren. A Rule-Based Language for Programming Software
Updates. In 3rd ACM SIGPLAN Workshop on Rule-Based Programming, pages
67–77, 2002.

[3] M. Erwig and D. Ren. Type-Safe Update Programming. In 12th European
Symp. on Programming, LNCS 2618, pages 269–283, 2003.

[4] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The Essence of Compiling
with Continuations. In ACM Conf. on Programming Languages Design and
Implementation, pages 237–247, 1993.

[5] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Reading, MA, 1999.

[6] J. Hatcliff and O. Danvy. A Generic Account of Continuation-Passing Styles.
In 21st ACM Symp. on Principles of Programming Languages, pages 458–471,
1994.

[7] J. Hughes. The Design of a Pretty-Printing Library. In Advanced Functional
Programing, LNCS 925, pages 53–96, 1995.

[8] R. Lämmel. Reuse by Program Transformation. In G. Michaelson and
P. Trinder, editors, Functional Programming Trends 1999. Intellect, 2000.

[9] R. Lämmel and J. Visser. A Strafunski Application Letter. In 5th Symp. on
Practical Aspects of Declarative Languages, LNCS 2562, pages 357–375, 2003.

33

[10] H. Li, C. Reinke, and S. J. Thompson. Tool Support for Refactoring Functional
Programs. In ACM SIGPLAN Haskell Workshop, 2003.

[11] S. Liang, P. Hudak, and M. Jones. Monad Transformers and Modular
Interpreters. In 22nd ACM Symp. on Principles of Programming Languages,
pages 333–343, 1995.

[12] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag,
1971.

[13] E. Moggi. Notions of Computation and Monads. Information and Computation,
93(1), 1991.

[14] S. Peyton Jones. Tackling the Awkward Squad: Monadic Input/Output,
Concurrency, Exceptions, and Foreign-Language Calls in Haskell. In T. Hoare,
M. Broy, and R. Steinbrüggen, editors, Engineering Theories of Software
Construction, pages 47–96. IOS Press, 2001.

[15] S. Peyton Jones. Haskell 98 Language and Libraries. Cambridge University
Press, Cambridge, UK, 2003.

[16] J. Reppy. Local CPS Conversion in a Direct-Style Compiler. In 3rd ACM
Workshop on Continuations, 2001.

[17] P Wadler. The Essence of Functional Programming. In Conference Record of
the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1–14, Albequerque, New Mexico, 1992.

[18] P. Wadler. Monads for Functional Programming. In Advanced Functional
Programing, LNCS 925, pages 24–52, 1995.

[19] P. Wadler. How to Declare an Imperative. ACM Computing Surveys, 29(3):240–
263, 1997.

[20] A. K. Wright and M. Felleisen. A Syntactic Approach to Type Soundness.
Information and Computation, 115(1):38–94, 1994.

34

