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Abstract—Based on 1) research into mutation testing for general-purpose programming languages and 2) spreadsheet errors that

have been reported in the literature, we have developed a suite of mutation operators for spreadsheets. We present an evaluation of

the mutation adequacy of definition-use adequate test suites generated by a constraint-based automatic test-case generation system

we have developed in previous work. The results of the evaluation suggest additional constraints that can be incorporated into the

system to target mutation adequacy. In addition to being useful in mutation testing of spreadsheets, the operators can be used in the

evaluation of error-detection tools and also for seeding spreadsheets with errors for empirical studies. We describe two case studies

where the suite of mutation operators helped us carry out such empirical evaluations. The main contribution of this paper is a suite of

mutation operators for spreadsheets that can be used for performing empirical evaluations of spreadsheet tools to indicate ways in

which the tools can be improved.

Index Terms—End-user software engineering, spreadsheets, end-user programming.
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1 INTRODUCTION

SPREADSHEETS are among the most widely used program-
ming systems [1]. Studies have shown that there is a

high incidence of errors in spreadsheets [2], up to 90 percent
in some cases [3]. Some of these errors have high impact [4]
leading to companies and institutions losing millions of
dollars [5]. In this context, it is quite surprising that the by
far most widely used spreadsheet system, Microsoft Excel,
does not have any explicit support for testing. In particular,
Excel spreadsheets do not have any provision by which the
user can create and run a suite of tests. Moreover, Excel
lacks any mechanism by which the user can associate a test
suite with a spreadsheet or use more sophisticated
techniques like regression and mutation testing. Therefore,
users are forced to carry out ad-hoc testing of their
spreadsheets. It has also been observed that users have a
mostly unjustified high level of confidence about the
correctness of their spreadsheets [6], [7].

To reduce the incidence of errors in spreadsheets, research

into spreadsheets has focused on the following areas:

1. Recommendations for better spreadsheet design [3],
[8], [9], [10], [11].

2. Auditing spreadsheets to detect and remove errors
[12], [13], [14].

3. Automatic consistency checking [15], [16], [17], [18],
[19], [20].

4. Error prevention techniques [21], [22].
5. Testing [23], [24], [25].

Traditional software engineering research has made con-

siderable progress in the area of testing. Part of the EUSES

[26] research collaboration’s goal is to bring these benefits to
the realm of spreadsheets.

For general-purpose programming languages, the idea of
mutation testing was proposed in [27], [28]. In mutation
testing [29], [30], [31], [32], [33], faults are inserted into the
program that is being tested. Each seeded fault generates a
new program, a mutant,1 that is slightly different from the
original. The objective is to design test cases that cause the
original program to compute outputs that are different from
those computed by the mutants. In such cases, the mutants
are said to be killed by the test case. Since the seeded faults
reflect the result of errors made by software developers, a
test suite that kills mutants is assumed to be effective at
detecting faults in the program that is being tested [34]. In
some cases, the mutant might produce the same output as
the original program, given the same input. Such mutants
are said to be equivalent to the original program and cannot
be distinguished from the original program through testing.
The goal in mutation testing is to find a test suite that is
mutation adequate, which means it detects all the none-
quivalent mutants.

Various comparisons of the effectiveness of test adequacy
criteria2 are available to guide the choice of strategies for
testing programs [35], [36], [37]. Two aspects guide the
choice of one test adequacy criterion over another: effective-
ness and cost. Effectiveness of a test adequacy criterion is
related to the reliability of programs that meet the criterion.
In other words, a test adequacy criterion is effective if it
stops testing only when few faults remain in the program.
The cost of an adequacy criterion, on the other hand, is
related to the difficulty of satisfying the criterion and the
human effort involved. Testing effort is always a trade-off
between the two since an ineffective criterion is a poor
choice no matter how low the cost might be. Similarly, a
very effective criterion is not a practical choice if the costs
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1. First-order mutants are created by inserting one fault into the
program. Higher-order mutants can be created by inserting more than
one fault into the program.

2. A test adequacy criterion is basically a set of rules that determine if the
testing is sufficient for a given program and specification.
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involved are prohibitive. One factor cited against using
mutation coverage as an adequacy criterion is that mutation
testing is costly. In the absence of automatic test-case
generation, this problem might be an even greater cause for
concern in the context of users testing their spreadsheets.

The only existing framework for testing spreadsheets is
“What You See Is What You Test” (WYSIWYT) [23], which
has been implemented in the Forms/3 environment [38].
WYSIWYT allows users to create test cases and uses
definition-use (du) adequacy as the criterion for measuring
the level of testedness of the spreadsheet. The idea behind
the du coverage criterion is to test for each definition of a
variable (or a cell in the case of spreadsheets) all of its uses.

Empirical studies comparing data-flow and mutation
testing have shown that mutation-adequate tests detect
more faults [39]. In this paper, we propose a suite of
mutation operators for spreadsheets and demonstrate their
use in mutation testing of spreadsheets and in the
evaluation of spreadsheet tools. In the empirical evaluation
we carried out (described in Section 6), we saw some faults
that would be discovered by a mutation-adequate test suite
that were not discovered by the automatically generated
test suites that satisfy the du-adequacy criterion.

In addition, the mutation operators also allow us to
assess the effectiveness of automatic tools aimed at the
detection and correction of errors in spreadsheets. Often-
times, spreadsheets seeded with errors are used in empiri-
cal studies to evaluate the effectiveness or usability of error-
prevention or -detection mechanisms [40], [41]. The seeding
of errors is usually done manually on the basis of accepted
classifications [7], [42]. However, there is no body of
research documenting the kinds of spreadsheet errors and
their frequency of occurrence in real-world spreadsheets.
Systematic work still needs to be done in this area [43]. The
mutation operators we have developed take the classifica-
tion schemes into account. Therefore, an experimenter who
wants to seed spreadsheets with errors to carry out a study
can use operators from our suite. Moreover, depending on
the goals of the empirical study, the designer of the
experiment could use some operators and not others. This
approach would make the study less biased as opposed to
the scenario in which the experimenter seeds the faults
manually.

We describe related work in Section 2. We give a brief
overview of mutation testing in Section 3, followed by a
description of the formal notation used in the later sections
of this paper in Section 4. The suite of mutation operators is
described in Section 5. We describe evaluations using the
mutation operators of the following spreadsheet tools:

1. Automatic test-case generator AutoTest [44] in
Section 6.

2. Spreadsheet debugger GoalDebug [45], [46] in
Section 7.

3. Combined reasoning [47] of the automatic consis-
tency checker UCheck [48] and the testing frame-
work WYSIWYT [23] in the online supplement
Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputer
society.org/10.1109/TSE.2008.73.

Finally, we present conclusions and plans for future work in

Section 8.

2 RELATED WORK

Over the years, research into mutation testing has led to the

development of mutation operators for several general-

purpose programming languages, for example, Mothra (for

Fortran programs) [49], Proteum (for C programs) [50], and

�Java (for Java programs) [51]. Mutation testing has also

been used and shown to be effective in other areas like

aspect-oriented programming [52], Web services and Web

applications [53], [54], and database queries [55]. At a more

abstract level, in [56], Offutt et al. describe how mutation

analysis can be viewed as a way to modify any software

artifact based on its syntactic description.
As pointed out in [57], [58], one of the main reasons why

mutation testing has not been more widely adopted by

industry is the overhead involved in mutation analysis and

testing. The computational expense involved in generating

and running the many mutant programs against the test

cases is very high. Another problem with this approach is

the potentially huge manual effort involved in detecting

equivalent mutants and in developing test cases to meet the

mutation adequacy criteria. Some researchers have focused

their effort on developing approaches for lowering the

computational cost of mutation testing [59]. We briefly

describe some approaches in the following:

. In general-purpose programming languages, mutant
programs have to be compiled (or interpreted) prior
to running the tests cases. Schema-based mutation
was proposed to lower this cost by using a
metamutant (a single program that, in effect, incor-
porates all the mutants) [60]. Since there is no
explicit compilation step in the case of spreadsheets,
this cost is not much of a cause for concern for our
system.

. In general, during mutation testing, mutant pro-
grams are run to completion, and their output is
compared with the output of the original program.
Weak mutation is a technique in which the internal
states of the mutant and the original program are
compared immediately after execution of the mu-
tated portion of the program [61]. This approach
reduces the execution time during mutation testing
in general-purpose programming languages. How-
ever, in the absence of recursion or iteration, the
execution time is not so much of a cause for concern
in spreadsheets.

. Based on the original proposal in [62], studies were
carried out using Mothra that showed that, of the
22 operators, 5 turn out to be “key” operators. That
is, using the 5 key operators achieves testing that is
almost as rigorous as that achieved using the entire
set of 22 operators [63]. This observation led the
authors to propose the selective mutation approach in
which only those mutants that are truly distinct from
the other mutants are used in mutation testing to
make the approach more economical.
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. Techniques have been proposed that use a sampling
of the set of nonequivalent mutants. These techni-
ques have been shown to be only marginally less
effective at fault detection when compared to the
complete set of mutants [31], [32]. On the other hand,
using the sampling techniques reduces the effort
involved in mutation testing.

. To minimize the effort involved in developing new
test cases, researchers have also focused on algo-
rithms for automatic test generation that would
result in test suites that are close to being mutation
adequate [64], [65]. Support for generating test cases
automatically [24], [44] would also lower the cost of
mutation testing in spreadsheets.

. Some of the generated mutants might be equivalent
to the original program, that is, they produce the
same outputs as the original program for all inputs.
Equivalent mutants do not contribute to the genera-
tion of test cases and require a lot of time and effort
from the tester since earlier approaches required the
tester to go through and remove them by hand. No
automated system would be able to detect all the
equivalent mutants since the problem is, in general,
undecidable. However, there has been some work
that allows the detection of up to 50 percent of
equivalent mutants in general-purpose program-
ming languages [66], [67].

One concern regarding the effectiveness of mutation
adequacy as a criterion for the development of effective
test suites is: How well do the mutants reflect faults that
occur in real-world programs? The applicability of mutation
to the evaluation of testing has been explored in [34], [68]
and the authors have shown that generated mutants mirror
real faults. However, mutants might be different from and
easier to detect than hand-seeded faults, which in turn seem
to be harder to detect than real faults.

The widespread occurrence of errors in spreadsheets has
motivated researchers to look into the various aspects of
spreadsheet development. Some researchers have focused
their efforts on guidelines for designing better spreadsheets
so errors can be avoided to some degree [3], [8], [9], [10],
[11]. Such techniques are difficult to enforce and involve
costs of training the user. While this approach might be
feasible within companies, it is not practical in the context
of users working in isolation.

The benefits of the WYSIWYT approach (and associated
systems) have been demonstrated empirically [23], [40],
[41]. In WYSIWYT, users provide input values to the system
and then mark the output cells with a

p
if the output is

correct, or a x if the output is incorrect. The system stores
the test cases implicitly and gives the user feedback about
the likelihood of faults in cells through cell shading—cells
with higher fault likelihood are shaded darker than those
with lower fault likelihood. The testedness is reported to the
user through a progress bar, that ranges from 0 percent to
100 percent testedness, and coloring of the cell border that
indicates how many of the du pairs for the formula in the
cell have been tested (ranging from red when none of the du
pairs have been tested to blue when all the du pairs have
been tested).

In previous work, we have looked at ways to prevent
errors in spreadsheets by automatically enforcing specifica-
tions. This approach, implemented in the Gencel system
[21], [69], captures a spreadsheet and all its possible
evolutions in a template developed in the Visual Template
Specification Language (ViTSL) [70]. In the case of spread-
sheets generated using this approach, the user does not ever
have to edit the spreadsheet formulas since they are
automatically generated by the system based on the
template. However, the user would have to ensure the
correctness of the input values. In the context of companies
or other large organizations, the templates can be created
(or audited to ensure correctness) by some domain expert
(for example, the chief accountant of a company) and
passed on to the other users (for example, junior clerks).

Most of the research in the area of spreadsheet errors has
been targeted at removing errors from spreadsheets once
they have been created. Following traditional software
engineering approaches, some researchers have recom-
mended code inspection for detection and removal of
errors from spreadsheets [12], [13], [14]. However, such
approaches cannot give any guarantees about the correct-
ness of the spreadsheet once the inspection has been carried
out. Empirical studies have shown that individual code
inspection only catches 63 percent of the errors whereas
group code inspection catches 83 percent of the errors [12].
Code inspection of larger spreadsheets might prove tedious,
error prone, and prohibitively expensive in terms of the
effort required.

Automatic consistency-checking approaches have also
been explored to detect errors in spreadsheets. Most of the
systems require the user to annotate the spreadsheet cells
with extra information [15], [16], [17], [18], [19]. We have
developed a system, called UCheck, that automatically
infers the labels within the spreadsheet [20] and uses this
information to carry out consistency checking [48], thereby
requiring minimal effort from the user.

In previous work, we have developed a constraint-based
automatic test-case generator called AutoTest [44], which
can generate test cases to exercise all feasible du pairs.
Testing might cause the program to exhibit failures. Even
so, the user still needs to identify the faults that led to the
failures and come up with program changes to correct the
faults. To help users debug their spreadsheets, we have
developed an approach that allows users to specify the
expected computed output of cells. The system, named
GoalDebug, then generates change suggestions, any one of
which when applied would result in the desired output in
the cell [45], [46].

The distinction between different types of spreadsheet
errors is important since they require different types of
error detection and prevention techniques. Different classi-
fications of spreadsheet errors have been proposed [3], [6],
[71], [72]. Panko and Halverson classified quantitative
errors in terms of three main types [6]:

1. Mechanical errors. These errors are simple slips that
may arise due to carelessness, mental overload, or
distractions. Examples include mistyping a number
or a reference, pointing at a wrong cell address, or
selecting an incorrect range of values or cells.
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2. Omission errors. These errors arise from the pro-
grammer leaving something out of the model by
accident.

3. Logic errors. These errors are caused when the
programmer chooses an incorrect algorithm to solve
the problem. Such errors typically manifest them-
selves as incorrect formulas. These are the hardest to
detect since they oftentimes require domain-specific
knowledge.

Teo and Tan have classified errors in spreadsheets as
either quantitative errors or qualitative errors [72], [73].
Quantitative errors usually manifest themselves as incorrect
results in the spreadsheet. Qualitative errors, on the other
hand, take the form of poor spreadsheet design and format.
Qualitative errors in a spreadsheet might not be visible right
away, but they lead to quantitative errors in future
spreadsheet instances. Researchers have studied the occur-
rence of qualitative and quantitative errors and have made
recommendations on how to avoid them. Mason and Keane
have suggested that organizations should have a “Model
Administrator” (along the lines of Database Administrators
for enterprise-level databases) to regulate spreadsheet
models within the organization [74]. Williams has recom-
mended the adoption of organization standards [75]. These
standards would consist of recommendations for best
practices that cover spreadsheet specification, documenta-
tion, maintenance, and security that employees should
follow while creating spreadsheets. The use of automated
spreadsheet audit software has been recommended by
Simkin [76]. Teo and Tan have shown that spreadsheet
errors are hard to detect during “what-if” analyses if the
spreadsheets are not well designed [73]. Based on their
studies, they have recommended that courses designed for
teaching spreadsheets should focus more on spreadsheet
design, targeting ease of maintenance and debugging,
rather than demonstrating the features available in spread-
sheet systems.

3 MUTATION TESTING

Mutation analysis, strictly speaking, is a way to measure the
quality of test suites. This aspect might not be immediately
obvious from the activities involved: generation of mutants
and the development of test cases targeted at killing the
generated mutants. The actual testing of the software is a
side effect that results from new test cases being designed to
kill more and more mutants. In practical terms, if the test
cases in the test suite kill all mutants, then software is well
tested by the test suite, assuming the mutants represent real
faults [57]. The fault seeding is done by means of mutation
operators. These mutation operators should be powerful
enough to show how effective the test suite is. However, in
practice, this goal requires an expressiveness of the
mutation operators that makes them expensive in terms of
running time. Therefore, achieving powerful mutation
operations often come at the cost of a higher testing time.

Let P be a program that has the input domain D and
codomain D0. Running P on an input x 2 D is written as
P ðxÞ. We also use P ðxÞ to refer to the result of the program
run, that is, P ðxÞ 2 D0. A test case is a pair ðx; yÞ 2 D�D0. A

program passes a test t ¼ ðx; yÞ if P ðxÞ ¼ y; otherwise, P fails
the test t. A test set is a set of tests T ¼ ft1; . . . ; tng. A
program passes a test set T if P passes every t 2 T ;
otherwise, P fails the test set T .

Assume we make n copies of P and introduce a single
mutation in each one to get the mutated versions P1 through
Pn. Let T � D�D0 be a passing test set, that is, P passes or
satisfies every test in T . To measure the mutation adequacy of
the test set T , we run it against each of the mutants. We say
a mutant is killed when it fails T , whereas mutants that pass
T are said to be alive. That is, a dead mutant is one that
produces an output different from that of the original
program on at least one test case. The basic assumption is
that if T kills a mutant, then it will detect real unknown
faults as well. Extending the idea, if T kills all of the
nonequivalent mutants, it would be capable of detecting a
wide variety of unknown faults as well. A mutant Pi is said
to be equivalent to P if 8x 2 D, P ðxÞ ¼ PiðxÞ. This
equivalence is expressed as Pi � P . Obviously, an equiva-
lent mutant cannot be killed by testing. Mutation adequacy or
mutation score is computed as

number of killed mutants

total number of nonequivalent mutants
� 100%:

In choosing the mutation operators, we make the following
assumptions laid out in [33]:

1. The competent programmer hypothesis. Given a func-
tional specification f , the programmer is competent
enough to produce a program P that is within the
immediate “neighborhood” of the program P � that
satisfies f . Any program that is far removed from
the neighborhood of P � is called pathological. The
hypothesis allows us to limit the programs we need
to consider by excluding the pathological ones.

2. The coupling effect. Complex faults within a program
are linked to simple faults in such a way that a test
suite that detects all simple faults within a program
will also detect most complex faults.

It has been shown that if the program is not too large, only a
very small proportion of higher-order mutants survives a
test set that kills all the first-order mutants [77], [78], [79].
This result, which supports the coupling effect, is helpful
for cases in which a single failure is the manifestation of
multiple faults. Therefore, if we have tests that detect the
isolated faults, we would be able to detect a compound fault
(which is a combination of two or more simple faults
detected by the test suite) with a high level of probability.

4 A FORMAL MODEL OF SPREADSHEET PROGRAMS

The notions pertaining to programs in general-purpose
programming languages have to be slightly adjusted for
spreadsheets. For the purpose of this paper, a spreadsheet
program can be considered as given by a set of formulas
that are indexed by cell locations taken from the set
A ¼ IN� IN. A set of addresses s � A is called a shape.
Shapes can be derived from references of a formula or from
the domain of a group of cells and provide structural
information that can be exploited in different ways.
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We assume a set F that contains all possible formulas.
Cell formulas ðf 2 F Þ are either plain values v 2 V ,
references to other cells (given by addresses a 2 A), or
operations ð Þ applied to one or more argument formulas:

f 2 F ::¼ v j a j  ðf; . . . ; fÞ:

Operations include binary operations, aggregations, and, in
particular, a branching construct IFðf; f; fÞ.

We further assume a function � : F ! 2A that computes
for a formula the addresses of the cells it references. We call
�ðfÞ the shape of f ; � is defined as follows:

�ðvÞ ¼ ;
�ðaÞ ¼ fag
�  ðf1; . . . ; fkÞð Þ ¼ �ðf1Þ [ � � � [ �ðfkÞ:

A spreadsheet is given by a partial function S : A! F
mapping cell addresses to formulas (and values). The
function � can be naturally extended to work on cells ðcÞ
and cell addresses by 8ða; fÞ 2 S, �ða; fÞ ¼ �ðfÞ and
8a 2 domðSÞ, �ðaÞ ¼ �ðSðaÞÞ, that is, for a given spreadsheet
S, �ðaÞ gives the shape of the formula stored in cell a. Some
of the cells in �ðcÞ might themselves contain formulas. We
define a related function ��S : S � F ! 2A that transitively
chases references to determine all the input cells (that
contain only values and not formulas) for the formula. The
definition of ��S is identical to that of �, except for the
following case:

��SðaÞ ¼
fag if SðaÞ 2 V
��S SðaÞð Þ otherwise:

�

Like �, ��S can be extended to work on cells and addresses.
The cells addressed by ��SðcÞ are also called c’s input cells.

To apply the view of programs and their inputs to
spreadsheets, we can observe that each spreadsheet con-
tains a program together with the corresponding input.
More precisely, the program part of a spreadsheet S is given
by all of its cells that contain (nontrivial) formulas, that is,
PS ¼ fða; fÞ 2 S j �ðfÞ 6¼ ;g. This definition ignores formu-
las like 2 þ 3 and does not regard them as part of the
spreadsheet program, because they always evaluate to the
same result and can be replaced by a constant without
changing the meaning of the spreadsheet. Correspondingly,
the input of a spreadsheet S is given by all of its cells
containing values (and locally evaluable formulas), that is,
DS ¼ fða; fÞ 2 S j �ðfÞ ¼ ;g. Note that, with these two
definitions, we have S ¼ PS [DS and PS \DS ¼ ;.

Based on these definitions, we can now say more
precisely what test cases are in the context of spreadsheets.
A test case for a cell ða; fÞ is a pair ðI; vÞ consisting of values
for all the cells referenced by f , given by I, and the expected
output for f , given by v 2 V . Since the input values are tied
to addresses, the input part of a test case is itself essentially
a spreadsheet, that is I : A! V . However, not any I will
do; we require that the domain of I matches f’s inputs, that
is, domðIÞ ¼ ��SðfÞ. In other words, the input values are
given by data cells ðða; fÞ 2 DSÞ whose addresses are
exactly the ones referenced by f . Running a formula f on
a test case means to evaluate f in the context of I. The
evaluation of a formula f in the context of a spreadsheet
(that is, cell definitions) S is denoted by ½½f ��S .

Now we can define that a formula f passes a test t ¼ ðI; vÞ
if ½½f��I ¼ v. Otherwise, f fails the test t. Likewise, we say that
a cell c ¼ ða; fÞ passes (fails) t if f passes (fails) t. Since we
distinguish between testing individual formulas/cells and
spreadsheets, we need two different notions of a test set.
First, a test set for a cell c is a set of tests T ¼ ft1; . . . ; tng such
that each ti is a test case for c. Second, a test suite for a
spreadsheet S is a collection of test sets T S ¼ fða; TaÞ j a 2
domðPSÞg such that Ta is a test set for the cell with address a.
A test suite T S in which each test set Ta contains just a
single test (that is, jTaj ¼ 1) is also called a test sheet for S.
Running a formula f on a test set T means to run f on every
t 2 T . Running a spreadsheet S on a test suite T S means to
run for every ða; fÞ 2 PS , the formula f on the test set T SðaÞ.

A formula f (or cell c) passes a test set T if f (or c) passes
every test ti 2 T . Likewise, a spreadsheet S passes a test
suite T S if for every ða; fÞ 2 PS , f passes T SðaÞ. Otherwise,
S fails the test suite T S .

Finally, the concepts related to mutants can be transferred
directly to formulas and spreadsheets. The notion of killing
mutants by test sets has to be distinguished again for
formulas/cells and spreadsheets, that is, a formula
mutant fi is killed by a test set T if fi produces an output
different from f for at least one test input in T . Likewise, a
spreadsheet mutant Si is killed by a test suite T S if Si
produces an output different from that produced by S for at
least one test input in T S .

5 MUTATION OPERATORS FOR SPREADSHEETS

Mutation operators are typically chosen to satisfy one or
both of the following criteria (or goals):

1. They should introduce syntactical changes that
replicate errors typically made by programmers.

2. They should force the tester to develop test suites
that achieve standard testing goals such as statement
coverage or branch coverage.

To meet the first goal, we have chosen mutation operators
that reflect errors reported in the spreadsheet literature [7],
[42]. From this point of view, the operators themselves are a
contribution to research on categories of errors in spread-
sheets [3], [43], [80]. To ensure that the operators meet the
second goal, we have included operators that have been
developed for general-purpose programming languages.

A “standard” set of 22 mutation operators for Fortran has
been proposed in [63]. A subset of these that are applicable to
spreadsheets is shown in Table 1. As mentioned in Section 2, it
has been shown empirically in [63] that test suites killing
mutants generated by the five operators ABS, AOR, LCR,
ROR, and UOI are almost 100 percent mutation adequate
compared to the full set of 22 operators.

In adapting mutation operators for general-purpose
languages to the spreadsheet domain, we draw the parallels
shown in Table 2. The mutation operators we propose for
spreadsheets are shown in Table 3. A few of them have been
directly adapted from the operators shown in Table 1. The
original operators are mentioned in parenthesis. Other
operators have been added that make sense only in the
context of spreadsheets. For example, we have introduced a
set of operators that mutate ranges, replace formulas in cells
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with constants, and change functions used in formulas
(discussed in more detail below).

We do not have a mechanism that allows us to
distinguish between the data cells that are equivalent to
input data from the data cells that are equivalent to
constants within a program written in a general-purpose
programming language. We therefore treat all data cells
within the spreadsheet as inputs to the spreadsheet program,
which essentially is the collection of cells that have formulas
or references to other cells. In the description of the
operators, the use of “constant” (in the operators CRP,
CRR, and RCR) refers to constants within formulas.

We consider references in spreadsheets equivalent to
scalar variables in general-purpose programming lan-
guages. Therefore, the equivalent of a scalar variable
replacement in a general-purpose programming language
would be a change in reference in spreadsheets. Mutation
operators for references should ensure that they do not
introduce cyclic references in spreadsheets. Cyclic refer-
ences lead to nonterminating computations and are
reported by spreadsheet systems like Excel. Therefore,
there is no need to detect them through test cases. In the
following, we discuss three approaches to refine mutations
of references:

1. It might be reasonable to only change a reference to
another one that references a cell of the same type.3

For example, a reference to a cell that has a
numerical value should only be changed to a
reference to a cell with a numerical value. On the
other hand, it might make sense in some cases to
remove this restriction on types since spreadsheet
systems like Excel do not perform any systematic
type checking, and spreadsheet programmers might
actually have such errors in their spreadsheets.

2. In case of formulas that operate over cells within the
same row (or column), it might be reasonable to
change references only to other cells within the same
row (or column) to reflect the user’s lack of under-
standing of the specification. This refinement could
be too restrictive if we are trying to model mechan-
ical errors in which the user accidentally clicks a cell
in the immediate neighborhood of the cell they
meant to include in the formula.

3. While mimicking mechanical errors, it would be
reasonable to change a reference to a cell to other
cells in the immediate spatial neighborhood of the
original reference. The “distance” between the
original cell and the new cell could be considered a
measure of the reference mutation, and could be
tuned depending on the application. Along similar
lines, a reference could be mutated to point to
another cell whose computed output is the same as
that of the original cell. However, this mutant would
reflect logical, and not mechanical, error.

In the current implementation of the mutation operators,
we impose the third constraint (and drop the second)
discussed above since we are modeling mechanical errors in
automatic evaluation of spreadsheet tools (see Sections 6, 7,
and the online supplement Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSE.2008.73). Since
Excel does not carry out type checking of formulas, we do
not enforce the first constraint during mutation. As we have
shown in [81], integrating a type checker within Excel
would help prevent type errors and thereby lower the cost
of testing.

We discuss below the mutation operators we have
included that are unique to the domain of spreadsheets.
For an RFR mutation, the candidates are the eight spatial
neighbors of the cell originally being referenced and other
cells that have the same output as the cell originally being
referenced.

Range mutation. Aggregation formulas in spreadsheets
typically operate over a range of references. Ranges might
be contiguous or noncontiguous. For example, the formula
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3. A type checker would be able to enforce this property at compile time
in a general-purpose programming language.

TABLE 1
Subset of Mutation Operators for Fortran

TABLE 2
Correspondence of Constructs in General-Purpose

Programming Languages and in Spreadsheets

TABLE 3
Mutation Operators for Spreadsheets



SUM(A2:A10) aggregates over the contiguous range from
A2 through A10, whereas the formula SUM(A2, A5, A8,
A11) aggregates over the noncontiguous range that includes
the references A2, A5, A8, and A11. We employ the
following novel operators that mutate ranges:

1. Contiguous Range Shrinking (CRS). This operator
shrinks a contiguous range by altering the reference
at its beginning or end.

2. Noncontiguous Range Shrinking (NRS). This operator
removes any reference from a noncontiguous range.

3. Contiguous Range Expansion (CRE). This operator
expands a contiguous range by altering the reference
at its beginning or end.

4. Noncontiguous Range Expansion (NRE). This operator
introduces an extra reference into a noncontiguous
range.

5. Range Reference Replace (RRR). This operator replaces
a reference in a noncontiguous range with another
reference (generated using the RFR operator) not in
the range.

We treat contiguous and noncontiguous ranges differently
because of the competent programmer hypothesis—we
only consider mutations to contiguous ranges that affect
the first or last reference, whereas mutations to noncontig-
uous ranges can happen to any reference in the range. For
range expansions, we have the following options from the
cells within the spreadsheet:

1. If the cells in the range are in the same column, add a
reference to a cell above or below the range.

2. If the cells in the range are in the same row, add a
reference to a cell to the left or right of the range.

3. Include references generated by RFR mutations of
the references within the range.

For range shrinkages, we have the following options:

1. Remove the reference at the beginning of a range.
2. Remove the reference at the end of a range.
3. Remove any reference from within a range.

The first two options are both applicable to contiguous and
noncontiguous ranges. The third option is only applicable
in the case of noncontiguous ranges.

Formula replacement. In addition to the reference and
range operators, the Formula Replacement with Constant
(FRC) operator is unique to spreadsheets. It overwrites the
formula in a cell with the computed output value, given the
set of inputs within the spreadsheet, from the formula. It
has been observed in empirical studies that when the
spreadsheet specifications are not well understood, users
sometime overwrite formula cells with constant values as a
“quick fix” to get the output they expect [82]. The FRC
operator has been included in the suite of mutation
operators to model this kind of error.

Function mutation. Users might sometimes use the
incorrect function in their spreadsheet formulas. For
example, the user might use SUM (and forget to divide by
COUNT of the cells) instead of AVERAGE. We include the
Formula Function Replacement (FFR) operator to simulate
this effect. As in the case of mutation of cell references, we
use a distance measure for the FFR operator. For example,

replacement of SUM with AVERAGE (or vice versa) seems
more likely than replacing SUM (or AVERAGE) with an
IF statement.

We have developed an evaluation framework with Excel
as the front end, and a back-end server developed in
Haskell. Communications take place over a socket connec-
tion. The mutation operators have been implemented in
Haskell and are part of the server. This framework allows
us to easily carry out evaluations using the suite of mutation
operators.

In the following three sections, we describe how the
mutation operators were used in the evaluations of
spreadsheet tools. Details regarding number of input cells,
number of cells with formulas, and number of first-order
mutants generated for each of the spreadsheets used are
shown in Table 4. All of the spreadsheets were not used in
all three evaluations. The analysis of mutation adequacy of
du-adequate test suites described in Section 6 is based on
the data from an empirical evaluation comparing two
automatic test-case generators. The first 12 spreadsheets
(“Microgen” through “NewClock”) were used in this evalua-
tion since the data for du coverage was available for these
sheets. We added additional spreadsheets (“GradesBig,”
“Harvest,” and “Payroll”) to the evaluation of the spread-
sheet debugger GoalDebug described in Section 7 to include
more types of mutants. In the evaluation of the combined-
reasoning system, described in the online supplement
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2008.73, we used two spreadsheets (“Grades-
New” and “Payroll”) that were used in actual user studies
since we had data on the user interactions. This data was then
used to model users in the evaluation of the combined-
reasoning system.

6 EVALUATION OF TEST SUITES THROUGH

MUTATION TESTING

In previous work, we have developed an automatic test-
case generator, called AutoTest, to help users test their
spreadsheets [44]. AutoTest generates test suites aimed at
satisfying the du adequacy criterion. The idea behind the
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du-coverage criterion is to test for each definition of a cell in
the spreadsheet, all of its uses. In other words, the goal is to

test all du pairs. In this section, we evaluate the mutation
adequacy of the du-adequate test suites generated by

AutoTest.
In a spreadsheet, every cell defines a value. Cells with

conditionals generally give rise to two or more definitions,
contained in the different branches. Likewise, one cell

formula may contain different uses of a cell definition in
different branches of conditionals or in the conditionals

themselves. Therefore, it is incorrect to represent du pairs

simply as pairs of cell addresses. Instead, we generally need
paths to subformulas to identify definitions and uses.

6.1 Definition-Use Coverage

To formalize the notions of definitions and uses of cells, we

employ an abstract tree representation of formulas that
stores conditionals in internal nodes and conditional-free

subformulas in the leaves. In this section, we briefly

describe using an example how AutoTest generates du-
adequate test cases given a spreadsheet formula. For a more

detailed description of the system, please see [44].
A du pair is given by a definition and a use, which are

both essentially represented by paths. To give a precise

definition, we observe that while only expressions in leaves

can be definitions, conditions in internal nodes as well as
leaf expressions can be uses. Moreover, since a (sub)formula

defining a cell might refer to other cells defined by
conditionals, a single path is generally not sufficient to

describe a definition. Instead, a definition is given by a set
of paths. To generate constraints for a du pair, the

constraints for a definition are combined with the con-

straints for a use. The attempt at solving the constraints for
a du pair can have one of the following outcomes:

1. The constraint solver might succeed, in which case
the solution is, for each input cell, a range of values
that satisfies the constraints. For each cell, any value
from the range can be used as a test input.

2. The constraint solver might fail. This situation arises
when for at least one input cell the constraints
cannot be solved. In this case, it is not possible to
generate a test case that would execute the path
under consideration. Therefore, the failure of the
constraint solver indicates that the particular du pair
(referred to as an infeasible du pair) cannot be
exercised.

Consider a spreadsheet composed of the following three

cells:

A1 : 10

A2 : IFðA1 > 15; 20; 30Þ
A3 : IFðA2 > 25;A2þ 10;A2þ 20Þ:

Cell A1 is an input cell and therefore has one definition and

does not use any other cells. A2 has one use of A1 (which is
always executed) in the condition. Since the formula in A2

has two branches, it has two definitions with the constraints
C1 � A1 > 15 and C2 � A1 	 15 for the true and false

branch, respectively.

The constraint tree for the formula in A2 is shown in

Fig. 1a.
The formula in A3 has three uses of A2, one in the

condition, and one each in the true and false branches. The

use in the condition is always executed, but we need to

satisfy the constraints C3 � A2 > 25 and C4 � A2 	 25 in

order to execute the true and false branch, respectively.

(The constraint tree for the formula in A3 is shown in

Fig. 1b.) Therefore, to test the formula in A3 to satisfy the

du-adequacy criterion, we need test cases that execute the

two definitions of A2 and the two uses of A2 in the branches

of A3’s formula—a total of four du pairs. The constraints for

the four du pairs are shown below:

fC1 � A2 ¼ 20; C3 � A3 ¼ A2þ 10g;
fC1 � A2 ¼ 20; C4 � A3 ¼ A2þ 20g;
fC2 � A2 ¼ 30; C3 � A3 ¼ A2þ 10g;
fC2 � A2 ¼ 30; C4 � A3 ¼ A2þ 20g:

We consider the constraints individually in the following:

. fC1 � A2 ¼ 20; C3 � A3 ¼ A2þ 10g: C3 requires A2
to be some value greater than 25. However, satisfy-
ing C1 results in 20 in A2. Therefore, the two
constraints cannot be satisfied at the same time,
and we have an infeasible du pair.

. fC1 � A2 ¼ 20; C4 � A3 ¼ A2þ 20g: Satisfying C1

results in 20 as the output of A2, which satisfies
the constraint C4. Solution of C1 results in A1 ¼ 16 as
the test case to execute this du pair.

. fC2 � A2 ¼ 30; C3 � A3 ¼ A2þ 10g: Satisfying C2

results in an output of 30 in A2. This value satisfies
the constraint C3. Therefore, the test case that
exercises this du pair is A1 ¼ 14, which is obtained
by solving C2.

. fC2 � A2 ¼ 30; C4 � A3 ¼ A2þ 20g: Satisfying C2

results in 30 in A2. This value violates the
constraint C4. Therefore, this set of constraints cannot
be solved and we have an infeasible du pair.

Even though the solution of a constraint might result in

many test cases, AutoTest generates only one test case per

feasible du pair. For example, any value greater than 15 in

A1 would satisfy C1, but AutoTest generates 16 as the test

case. Moreover, in a more complicated spreadsheet, there

might be several independent sets of constraints (represent-

ing different paths between a du pair) for a feasible du pair.

In such cases, each solvable set of constraints could generate

one or more test cases.
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6.2 Experiment Setup

As discussed earlier in this paper, the primary goal of
mutation testing is to evaluate the quality of test suites. An
adequacy criterion like du adequacy is well defined in the
sense that it is independent of the programming language
or programming environment. On the contrary, the effec-
tiveness of mutation testing depends on the design of the
mutation operators. For example, a poor choice of mutation
operators might certify that a test suite is 100 percent
mutation adequate even when the program is poorly tested.
The all-uses data-flow criterion for test adequacy was
empirically evaluated against mutation adequacy in [39],
and the authors of that paper found that mutation-adequate
test suites are closer to satisfying the data-flow criterion and
succeed at detecting more faults. It is not known if this
result holds in the spreadsheet domain.

For the purpose of our experiment, we used spread-
sheets that have been used in other evaluations described in
[23], [44], [83]. We designed our experiment to answer the
following research questions:

RQ1: What is the mutation adequacy of the automatically
generated test suites for each one of the spreadsheets?

We have shown empirically in [44] that the test suites
generated by AutoTest are 100 percent du adequate. RQ1
compares the effectiveness of du adequacy against mutation
adequacy for each of the spreadsheets.

RQ2: How effective are the automatically generated test suites
at killing higher-order mutants?

As a result of the coupling effect, a test suite that kills
most of the first-order mutants must also be effective
against higher-order mutants. In this context, we would like
to determine what proportion of the higher-order mutants
in comparison with the first-order mutants survive the du-
path adequate test suites.

Since the mutation operators have been designed to
mirror real-world faults in spreadsheets, answers to the
research questions would give us a better idea of how
effective the du-adequate test suite is at detecting faults. A
single fault might have a very high impact. Therefore,
ideally, we would like to kill as many of the nonequivalent
mutants as possible.

6.3 Results

The data in Table 5 show the mutation adequacy of du-
adequate test suites generated by AutoTest4 under the
following configurations:

1. Rand1. In this configuration, AutoTest picks a
solvable constraint set at random from those avail-
able for a du pair. The randomly picked set of
constraints is used to generate one test case for each
du pair.

2. Rand2. This configuration is essentially the same as
the previous case, except that the random number
generator used a different seed value.

3. RandAvg5. The same configuration as above, except
that the figures were averaged across five runs.

4. First. In this case, only one test case (from the first
solvable set of constraints) was generated by
AutoTest per feasible du pair.

5. All. In this configuration, we modified the system to
generate test cases for all solvable constraint sets.

For each spreadsheet used in the evaluation, Table 5
contains the number of mutants generated, and the number
of tests generated, number of mutants killed, and the
mutation score for each configuration.

In configurations “Rand1,” “Rand2,” and “First,”

AutoTest only generates one test case be feasible du pair.

We see from the data that the mutation adequacy of test

suites generated using “First” is low in many cases. The

configuration “All” gives an indication of the maximum

possible mutation coverage that can be achieved by the

current test generation approach used by AutoTest. This

approach is expensive from a user’s point of view since

the number of test cases to be dealt with is much higher

than the other approaches. Moreover, as far as du

adequacy is concerned, this approach would potentially

generate multiple test cases for the same du pair. The

additional mutation coverage achieved under “All” is due

to the large number of test cases.
Keeping the number of test cases as low as possible is

important to minimize user effort. However, as can be seen
from the data in Table 5, test suites with more test cases
have higher mutation coverage in general. On the other
hand, some test cases are more effective at killing mutants
than others. For example, for the “NewClock” spreadsheet,
the 14 test cases picked in “Rand1” were as mutation
adequate as the 16 test cases picked by “Rand2.” More
importantly, the 29 test cases picked in “All” have the same
mutation adequacy as the 14 test cases picked in “Rand1.”

We can observe from the results in Table 5 that the test
suites generated by “All” are successful at killing almost all
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Comparison of Number of Test Cases against Mutation Coverage

4. All the generated mutants were nonequivalent to the original
spreadsheets.



the mutants.5 That is, the test suites, which are 100 percent du-
path adequate, are, in many cases, close to being 100 percent
mutation adequate as well. Even so, the empirical results
indicate that mutation adequacy might be a stronger test
adequacy criterion than du adequacy. More importantly,
especially when adopting the strategy of generating a single
test case for every du pair, we need to pick those that help the
overall test suite achieve higher mutation adequacy.

To answer RQ2, we looked at the mutation adequacy of
the automatically generated test cases with second-order
mutants. The coverage numbers for second-order mutants
using the “All” approach is shown in Table 6. Comparing
the figures in Table 5 with those in Table 6, we see that the
same number of test cases achieve higher (in some cases) or
similar (in other cases) mutation scores when applied to
second-order mutants. This result confirms similar results
observed in the case of general-purpose programming
languages [77], [78], [79]. From the numbers in Table 6,
we see that a considerably higher number of second-order
mutants are generated compared to first-order mutants.
This factor, in itself, would make mutation testing using
higher-order mutants time consuming and computationally
expensive to the point of being infeasible. In this context,
the observation that test suites that are effective at killing
first-order mutants are equally effective at killing second-
order mutants as well, indicates that we only need to carry
out mutation testing using first-order mutants.

7 EVALUATION OF A SPREADSHEET DEBUGGER

GoalDebug is a spreadsheet debugger that allows users to
mark cells that contain incorrect values and specify their
expected output [45]. The system uses this information to
generate a list of formula and value-change suggestions,
any one of which, when applied, would result in the user-
specified output in the cell. Typically, many change
suggestions are generated and the user would have to go
over them to identify the correct change. To minimize the
effort required of the user, we have incorporated a set of
heuristics that rank the suggestions. As far as performance

of GoalDebug is concerned, an effective change suggestion is

one which would correct the error, and an effective set of

ranking heuristics is one which would assign a high rank (1

ideally) to the correct change suggestions consistently.

7.1 Experiment Setup

To be able to evaluate the effectiveness of the change

inference and ranking heuristics of GoalDebug, we decided

to use spreadsheets from the study described in the

previous section, together with a few we have used in

other studies. In general, not all mutation operators are

applicable to all formulas. Table 7 shows the summary

information about the sheets used in the evaluation. Note

that some of the details from Table 4 have been reproduced

in Table 7 for the convenience of the reader. For each

spreadsheet, the following information is given:

1. Number of formula cells in the spreadsheet (Fml).
2. Total number of cells in the spreadsheet (Total).
3. The number of irreversible mutants that were

generated. Irreversible mutants are the mutated
formulas that evaluate to the same value as the
original formula, given the input values in the
original spreadsheet, and thus cannot produce fail-
ures that could be identified by the user. Therefore,
GoalDebug is principally inapplicable in those cases
and cannot be invoked to generate change sugges-
tions since the computed output and expected
output are the same.

4. The number of reversible mutants that were gener-
ated. In these cases, the mutant formulas evaluate to
values that are different from the values produced
by the original formulas, and GoalDebug can be
invoked on those cells.

5. Total number of mutants generated from the given
sheet.

For the purpose of this study, we excluded formula-deletion

operator (FDL) and formula replace with constant operator

(FRC) from the suite of operators. The FDL operator was

excluded since it seems unlikely that a user would mark an

empty cell as incorrect and specify the expected output.

Along similar lines, the FRC operator was excluded because
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5. The number of test cases reported for “All” in Table 5 is the sum of all
tests generated when using all the constraints. This number might be lower
if we only considered effective test cases, where an effective test case is one
that kills at least one mutant that has not been killed by a previous test.

TABLE 6
Mutation Adequacy of AutoTest Test Suites

with Second-Order Mutants

TABLE 7
Sheets Used in the Evaluation of GoalDebug



the mutation is not a minor change to reverse. To be able to
reverse an FRC mutation, given the cell and the expected
output, GoalDebug would have to come up with a formula
that would compute the expected output in the marked cell.
In practice, GoalDebug could accommodate these muta-
tions by searching for candidate formulas within the
spreadsheet, which if copied and pasted to the cell would
result in the expected value. The formula changes could
then be ranked on the basis of similarity of regions or
distance from the target cell.

The experimental setup is shown in Fig. 2. We start with
the set of spreadsheets that are of interest and use the
mutation operators to generate a (much larger) set of
mutant spreadsheets. The input cells are not mutated. We
use the computed output values in the original spread-
sheets to specify the expectations for the mutant cells in
those cases where the computed outputs differ between the
original and mutated spreadsheets. The change inference
process is carried out on the mutant spreadsheets to
generate a list of change suggestions. We then apply each
generated change suggestion to each of the mutants to

obtain a new set of spreadsheets. Now these spreadsheets
can be compared with the original spreadsheet to verify if
the effect of the mutation was reversed by the application of
any one of the generated change suggestions. In cases in
which any one of the change suggestions reversed the effect
of the mutation, we also recorded the rank of the
suggestion.

7.2 Preliminary Evaluation

The number of mutants that have not been corrected by the
original version of GoalDebug are shown in Table 8. We
carried out the evaluation using the suite of mutation
operators to get an idea of what kind of extensions are
required for GoalDebug to be able to suggest changes for a
wide range of faults.

It should be clear from the results in Table 8 that the
original version of GoalDebug was ineffective against a
wide variety of spreadsheet faults. All of the uncorrected
mutants are created by the nine operators shown in Table 8.
GoalDebug did not have any change inference mechanism
to reverse the errors seeded by the following operators:
AOR, CRR, LCR, NRE, NRS, and ROR. To increase the
range of errors for which GoalDebug would be helpful, it
was important to extend the system to include these classes
of errors. We also wanted to improve the system’s coverage
on errors seeded by the CRP, RFR, and RRR operators.

From the preliminary evaluation, we identified two areas
in which GoalDebug could be improved: 1) The change
inference mechanism needed to be substantially expanded
to include a wider range of error situations the system could
recover from. Without this extension, GoalDebug would
have limited use for real-world errors. The modification of
the system would result in a much higher number of change
suggestions being generated under any given condition.
This problem required us to 2) carry out enhancements to
the ranking heuristics so that the system performs better
even with the higher number of generated suggestions. The
goal of refining the ranking heuristics is to ensure that the
correct suggestions are assigned high ranks to minimize the
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Fig. 2. Setup for evaluating change suggestions.

TABLE 8
Original Version of GoalDebug’s Effectiveness at Correcting Mutations



effort invested by the users while debugging faults in
spreadsheets.

7.3 Evaluation of the Extended System

The effectiveness scores after extending the change in-
ference system are shown in Table 9. Fig. 3a shows
comparisons of these scores with those from the old system
in Table 8. For each of the mutation operators, the
percentage coverage of the old system (in lighter shade) is
shown against the coverage of the new system (in darker
shade). The extensions to the change inference mechanism
increased the ability of GoalDebug to recover from a much
wider spectrum of errors as can be seen from the plot.

The extended change inference system generates more
suggestions than the original system. We had to make
improvements to the ranking heuristics to cope with the
increase in number of change suggestions. Therefore, to
evaluate the new ranking heuristics, for each of the mutants
reversed by the new change inference mechanism, we
compare the rank assigned by the old version of the ranking
heuristics against the rank assigned by the new version. The
Wilcoxon test showed that the new ranking heuristics

perform significantly better than the old ones ðp < 0:001Þ.
Ideally, the correct change suggestion should be ranked

within the top five ranks, thereby minimizing the effort the

user would have to expend to locate it. The difference in

ranks assigned by the two techniques is more important at

high ranks than at low ones. For example, a difference of 5

between ranks 1 and 6 is more important than a difference

of 5 between ranks 100 and 105. To take this effect into

consideration, we also ran tests on the reciprocals of the

ranks generated by the two techniques. Once again, the

Wilcoxon test showed that the new ranking techniques

perform significantly better than the old ones ðp < 0:001Þ.
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TABLE 9
GoalDebug’s Effectiveness at Correcting Mutations after Enhancements

Fig. 3. Coverage and ranking comparisons. (a) Comparison of coverage percent. (b) Cumulative coverage of ranking heuristics.



Since the mutation operators reflect different kinds of
errors that can occur in spreadsheet formulas, we also
compared the performance of the ranking heuristics for
each operator. The new heuristics are significantly better
than the old ones for all operators as shown by the p-values
reported in the table on the left.

The cumulative coverage percentages across ranks for
the new heuristics (in dark red) are compared against those
for the old (in light blue) in Fig. 3b. With the new heuristics
in effect, the top ranked suggestion corrects the mutations
in 59 percent of the cases, the top two suggestions correct
the mutations in 71 percent of the cases, and so on. Out of
the 3,988 reversible mutants generated, the suggestion that
corrects the mutation is ranked in the top five in 80 percent
of the cases with the new ranking heuristics as opposed to
only 67 percent of the cases with the old version of the
system.

7.4 Summary

The evaluation of GoalDebug using the suite of mutation
operators helped us identify classes of errors GoalDebug
was not effective against. We were able to use this
information to extend the change inference mechanism of
GoalDebug. Furthermore, it also enabled us to refine the
ranking heuristics. Since the suite of mutation operators has
been designed to reflect real-world faults, the evaluation
and subsequent modifications of the system have made
GoalDebug effective against a wider range of potential
errors.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a suite of mutation
operators for spreadsheets that allows users to evaluate the
mutation adequacy of their test suites. In addition to testing
spreadsheets, the suite of mutation operators has been
successfully employed to carry out empirical studies of
spreadsheet tools. We have described three such cases (one
can be found in the online supplement) in which the
operators helped us evaluate and improve tools we have
developed.

The list of spreadsheet mutation operators proposed in
this paper is by no means complete. We suspect the list will
evolve as we try to mirror more errors from real-world
spreadsheets. The operators described in this paper are
targeted at individual spreadsheets (that is, without an
editing history) and hence do not reflect errors that can arise
from update operations. For example, incorrect use of
relative and absolute references might result in errors that
occur during row/column insert/delete operations. We are
currently working on operators that reflect update errors. A
more complete list of mutation operators would allow a
practitioner to adapt the operators to other applications
more easily.

As part of the ViTSL/Gencel framework, we have
developed a system that automatically infers ViTSL
templates from spreadsheets [84]. A preliminary evaluation
we carried out has shown that the system works well in
practice. In future work, we plan to use the mutation
operators to investigate how well template inference works
in the presence of errors in the spreadsheet.

APPENDIX A

EVALUATION OF EFFECTIVENESS OF COMBINED-RE-

ASONING APPROACHES

None of the tools described in Section 2 of this paper
protects the user from all spreadsheet errors. Each tool has
its own strengths and weaknesses, and there is also a cost-
benefit trade-off associated with their use. We studied the
effects of combining WYSIWYT and UCheck [47] to find out
whether a combination could result in an overall improved
approach to error detection. As mentioned earlier in this
paper, WYSIWYT is a framework for testing spreadsheets,
and UCheck is an automatic consistency checker. To study
the effectiveness of combining WYSIWYT and UCheck, we
used the suite of mutation operators to seed errors in the
spreadsheets used in the evaluation. This approach allowed
us to evaluate the error detection and reporting mechanism
of the two systems independently and together over a wide
range of possible error situations.

This study was made possible by the suite of mutation
operators. We used the operators to seed errors within the
spreadsheets used in the evaluation. Each user’s interactions
with WYSIWYT were simulated using a model we built based
on empirical data of user interactions collected from a
previous study [85]. Using this approach, we could combine
WYSIWYT’s reasoning, based on the spreadsheet and the
user’s inputs, with UCheck’s reasoning, which is based solely
on the data and formulas within the spreadsheet.

Both WYSIWYT and UCheck use cell shading for
communicating fault localization information to the user.
Prior empirical research has shown that users consistently
debug the darkest-shaded cells in the spreadsheet [85].
Therefore, it is important to ensure that the darkest shading
corresponds to the actual location of errors within the
spreadsheet. As shown in [85], there are two aspects to any
error reporting mechanism—an information base consists of
the information used to locate the faults, and a mapping
determines how the information base is actually trans-
formed into fault localization feedback and presented to the
user. Our research goals in carrying out the evaluation were
to find the most effective heuristics for selecting and
combining feedback from the two systems and to identify
the classes of faults that are caught by the combined system
when compared to WYSIWYT and UCheck working
independently.

A.1 Fault Localization

The fault localization mechanism of WYSIWYT relies on
user judgments about the correctness of cell output to
isolate formulas containing faults. During the course of
developing the spreadsheet, users can place

p
or x to

indicate to the system that the computed output of a cell is
right or wrong. The

p
marks increase the testedness of the

spreadsheet. The system combines the dependencies be-
tween the cell formulas and the location of the

p
and x

marks placed by the user to estimate the likelihoods of
faults being located in various cells. Based on this estimate,
the system shades the interior of cells light-to-dark amber.

UCheck uses orange shading for cells that are the site of
unit errors and yellow shading for cells whose formulas have
references to cells that are the site of unit errors. WYSIWYT,
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on the other hand, has a six-point scale of shading—unshaded
(or zero, indicating no error) to darkest shade (or five,
indicating high likelihood of error). To integrate UCheck’s
three-point scale with scores on WYSIWYT’s six-point scale,
we assigned a score of zero to unshaded cells, one to cells that
are shaded yellow, and five to cells shaded orange by UCheck
since the system is reporting unit errors with 100 percent
confidence in these cases. The degree of shading of a cell c is
returned by the function score(c).

Intuitively, the fault-localization feedback provided to the
user can be considered to be more effective when the faulty
cells are all shaded dark, and the nonfaulty cells are shaded (if
at all) light. We compute the visual effectiveness (VE) of the
feedback in terms of the set of formula cells with correct and
incorrect formulas, and the degree of shading [86]:

VE ¼
X

c2Faulty

scoreðcÞ
jFaultyj 


X
c2Correct

scoreðcÞ
jCorrectj :

A.2 Experiment Setup

In the evaluation, we compared three heuristics for
combining the feedback computed independently by
UCheck and WYSIWYT:

1. ComboMax returns the darkest shading received
from the two systems for each of the cells.

2. ComboAverage returns the average of the scores of the
shading computed by the two systems.

3. ComboMin returns the lightest cell shading received
from the two systems.

We also considered two different mappings from the
information base. For the original mapping, we used the
scores from the actual shading generated by the two
systems. For the threshold mapping, we ignored cells shaded
yellow by UCheck and cells with very low fault likelihood
(shading levels zero and one) as reported by WYSIWYT.
The rest of the cells were treated as if they were shaded with
the darkest hue. In both mappings, we considered the three
different strategies (ComboMax, ComboAverage, and Combo-

Min) for combining feedback.
The architecture of the combined reasoning system is

shown in Fig. 4. The cell edits, and other inputs from the
user are captured by Excel. This information is then sent to

the reasoning database. UCheck carries out unit checking
based on the spreadsheet information stored in the reason-
ing database, and sends back information about unit errors
into the database. WYSIWYT employs information about
the spreadsheet cells and user judgments to calculate fault
likelihood of the cells, and stores this data in the database.
Based on the inputs from UCheck and WYSIWYT, the fault
localization information is computed, and the results are
presented to the user as visual feedback.

In this evaluation, we used the spreadsheets used in the
study described in [85]. This choice was made since we
already had empirical data on user interactions with the
spreadsheets used in the study. The input values used were
actual test cases developed by the subjects in the study
described in [85]. The mutation operators were used to seed
errors in the spreadsheets. The mutants were then checked
using UCheck and WYSIWYT, and the fault localization
information was recorded for further analysis.

UCheck is fully automatic, whereas user input (
p

and
x marks) is a key component of the WYSIWYT fault-
localization mechanism. In our evaluation of the combined
system, we modeled user behavior based on data from prior
empirical work [85], [86]. It has been observed that users
mark 85 percent of the cells while testing and debugging
spreadsheets, placing

p
marks more frequently than

x marks. Empirical data from previous studies, summarized
in Table 10, shows that users made mistakes while putting
marks in cells. Such incorrect decisions made during testing
and debugging are referred to as oracle mistakes [86].

Since WYSIWYT is a framework for testing, the designers
of the system expect the users to place

p
or x marks in cells

based on their computed output. The data in Table 10
shows that, in 74 percent of the cases, users place a

p
in

cells whose formula and computed output value are both
wrong. Along similar lines, in 1 percent of the cases, users
place a x mark in cells whose formula and computed output
are both correct. However, it has been observed that in
some cases the users place the marks depending on their
judgments about the correctness of the cell formulas. The
users, in such cases, are actually not just testing anymore. In
75 percent of the cases, users place a

p
in a cells whose

value is incorrect (probably due to one or more faulty cells
upstream in the computation) in spite of the formula being
correct. Similarly, in 50 percent of the cases, users place an
x mark in cells whose formula is incorrect in spite of the
output value being correct.

The numbers in bold font in Table 10 show false positive
(
p

on incorrect value) and false negative (x on correct
value). Even in cases where the output of a cell was
incorrect, users placed

p
marks (false positives) more often

than x marks. However, in cases where the output of a cell
was correct, users were unlikely to place an x mark on that
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cell (false negative). The data indicates that users made
incorrect testing decisions between 5 percent and 20 percent
of the time. We used these probabilities to model user input
in our empirical evaluation.

A.3 Results

The results of our evaluation show that WYSIWYT and
UCheck differ in their ability to uncover various types of
faults. Table 11 summarizes the observed faults and the
feedback provided by the systems independently and in
conjunction. We see that while UCheck is very effective at
detecting reference mutations, WYSIWYT detects a broader
range of faults. Therefore, UCheck and WYSIWYT comple-
ment each other.

The visual effectiveness scores for the various combina-
tions we considered are shown, sorted in descending order,
in Tables 12 (original mapping) and 13 (threshold map-
ping). ComboMax scores the highest VE scores for both
mappings.

UCheck and WYSIWYT support different approaches to
spreadsheet development. UCheck’s effectiveness is depen-
dent on strings in cells that serve as row and column
headers. WYSIWYT, on the other hand, relies on the data-
flow relationships between the cells and the user judgments
about the correctness of cell outputs. If a spreadsheet
contains cells that provide labeling information, UCheck
offers consistency checking for free, which leaves fewer
number of errors the user would have to debug later. On the
other hand, WYSIWYT can help identify faults through
testing. However, in this case, it is likely that a much greater
effort would be required to identify all faults through
testing alone. As far as design of fault localization feedback
is concerned, ComboMin would be the strategy to adopt to

provide conservative feedback, whereas, ComboMax would

be the ideal approach if higher VE is the goal.

A.4 Summary

In the evaluation of combining the reasoning from UCheck

with that from WYSIWYT, the mutation operators allowed

us to generate spreadsheets with a wide range of faults in

them. Since the evaluation was performed using a model of

user interactions based on empirical data from previous

studies, we were also able to simulate user behavior

assuming varying levels of expertise. Such an extensive

analysis would prohibitively expensive if we were limited

to actual user studies.
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