
A Notation for Non-Linear Program Edits†

Martin Erwig
Oregon State University

erwig@eecs.oregonstate.edu

Karl Smeltzer
Oregon State University

smeltzek@eecs.oregonstate.edu

Keying Xu
Oregon State University

xuke@eecs.oregonstate.edu

Abstract—We present a visual notation to support the under-
standing and reasoning about program edits. The graph-based
representation directly supports a number of editing operations
beyond those offered by a typical, linear program-edit model
and makes obvious otherwise hidden states the code can reach
through selectively undoing or redoing changes.

I. INTRODUCTION

Many programming tools such as editors and version control
systems (VCSs) model program edits as a linear series of
changes, a view which simplifies common operations such as
undo and redo and makes tool support easier to implement.
However, such a model is intrinsically limited in its inability
to express a number of desirable editing operations. Most
notable among these is the notion of a selective undo [1].
Undo is a widely studied editing operation with a number
of proposed models [2], [3], of which selective undo is one.
Unlike traditional linear undo, selective undo allows users to
undo previous actions without first undoing later ones. This
encourages the development a model of program edits which
provides support for non-linear, selective undo in a systematic
way, including the handling of dependencies among edits. Other
operations which are complicated through the use of a linear
model are omitted here for space.

In addition to modeling individual operations, the analysis
of source code edit histories in gerenal has proved fruitful in a
number of areas [4], [5], [6], [7], which helps to justify further
study of program edit models. Much of this work assumes that
a program edit is analogous to a commit in a version control
system. More recent work, however, has found this granularity
to be too coarse and imprecise [8], [9]. This suggests the need
for a model with arbitrary granularity, in which edits can be
anything from individual keystrokes to rewrites of large code
sections.

To model program edit histories in support of analysis and
reasoning, as well as to support non-linear editing operations,
we propose a compositional notation for program edits which
handles branching and sharing of program parts explicitly and
systematically, called program edit graphs (PEGs). PEGs make
the following primary contributions:

● Explicitly reveal all program variants.
● Show dependencies among edits
● Serve as a semantic basis for selective undo.
● Support partial undo operations.
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II. PROGRAM EDIT SCENARIO

Consider the following editing scenario, which serves as
a running example for future discussion. A programmer has
written a simple function definition.

int f(int a){int b; return a+b}

The programmer then renames the function parameter from a
to c and obtains the following code. We refer to this change
as edit A.

int f(int c){int b; return c+b}

Next she elects to rename the local variable from b to c.
However, since c already exists as the function parameter,
she must rename that parameter again, say to d, in order to
avoid shadowing it. This change, which we refer to as edit B,
results in the following final program.

int f(int d){int c; return d+c}

Including the initial program, these two edits appear to have
produced three program variants: one by applying no edits, one
by applying only edit A, and one by applying A and then B.
However, the edits have also produced a fourth, less obvious
variant, which can be obtained by applying edit B without
first applying A. This is functionally equivalent to a (partially)
selective undo of edit A.

In order to reveal variants such as this, which are made
inaccessible by a linear editing model, and to facilitate reasoning
about them, we introduce the notion of a program edit graph
(PEG). PEGs are annotated graphs in which the nodes represent
program states or variants and directed edges represent the
corresponding program edits. The example here uses single
letter edit names for simplicity.

III. PROGRAM EDIT GRAPHS

Figure 1 shows two PEG representations for the preceding
editing example. The factored representation, shown on the
right, is used in the construction of the expanded version, and
is discussed in Section IV. The expanded representation shows
the original program as the source node, and the black path
shows the program edits A and B leading to the latest variant,
a sink. In green, it shows edits that deviate from the standard,
linear path. Traversing an edge in a forward direction amounts
to applying an edit while a backward direction indicates an
undo.

This PEG also makes it clear that a linear undo history
(represented by the black path) would not allow the A edit to
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Fig. 1. Expanded (left) and factored (right) PEG for the edits of function f.

be undone without first undoing B since both edges would need
to be traversed backwards. However, the expanded PEG shows
that a (partially) selective undo of A is possible without first
undoing B, by traversing the edge A+A.B backwards. Despite
only three variants being obvious from the initial edit story, the
PEG representation clearly shows this hidden fourth variant.

The superscript notation indicates the dependencies between
edits, and therefore also the partial nature of certain operations.
In the original edit history, part of B was dependent on A. Thus
the edge label B−A.B represents only the independent part of
edit B, without the part that depends on edit A. Conversely, the
label A+A.B indicates that traversing that corresponding edge
applies edit A as well as that part of edit B which is dependent
on A. This means that, were the programmer to selectively undo
A, it would necessitate undoing the part of B that is dependent
on A as well. This is called a partially selective undo.

This PEG also illustrates a valuable property, namely that
edits are commutable. For any two paths that start at the root
of a PEG and end in a common target node represent the
same edits. This commutability critically provides the semantic
basis for selective undo since it allows the traversal of multiple
paths representing the same program edits but with different
sequences.

Finally, PEGs identify partial undo operations. Any partially
selective undo must necessarily traverse an edge in the
PEG which is annotated with a superscript. This provides
programmers more information about which edits have been
triggered or are lacking, and generally offers more options for
navigating the edit space.

IV. PEG CONSTRUCTION

PEGs can be constructed algorithmically in three main steps,
as illustrated in Figure 2. First the factored representation is
generated. Each factor corresponds to an independent, top-
level edit. Any dependencies between edits results in them
being chained together in the corresponding graph, while
branching edits introduced through deletions or undos are
captured by branching graphs. Figure 2(a) shows the factors
for the preceding edit scenario. The top factor shows the
independent part of the B edit, which involved renaming the
local variable. The bottom factor shows two edits. First the A
edit, which is independent, is applied, followed by the remaining
portion of the B edit which is dependent on A.

The second step is to produce a Cartesian product graph
of all the individual factors. This will produce a node for
every possible combination of nodes in the factors, with edges
between nodes only if there is a corresponding edge in one of
the factors. A product graph is shown in Figure 2(b).
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Fig. 2. Generating a PEG by creating and simplifying a product graph of
factors. Node labels are for clarity.

The product graph will frequently include redundancies
such as paths along which multiple edges have the same label.
Because of this, the graph must be simplified by merging edges,
as illustrated in Figures 2(c) and 2(d). Once all redundancies
have been removed, the result is the final, expanded PEG.

V. CONCLUSIONS

We have demonstrated program edit graphs as a notation
to formally capture program edits and operations. PEGs
reveal non-obvious program variants and support a general
form of selective undo. The commutable edits and explicit
edit dependency information provide additional tools for
programmers to reason about edits. Finally, because PEGs
can be constructed algorithmically, they could be integrated
into existing programming tools.
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