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1 Introduction

At the heart of functional programming rests the principle of referential trans-
parency, which in particular means that a function f applied to a value x always
yields one and the same value y = f(x). This principle seems to be violated when
contemplating the use of functions to describe probabilistic events, such as rolling a
die: It is not clear at all what exactly the outcome will be, and neither is it guaran-
teed that the same value will be produced repeatedly. However, these two seemingly
incompatible notions can be reconciled if probabilistic values are encapsulated in a
data type.

In this paper, we will demonstrate such an approach by describing a probabilistic
functional programming (PFP) library for Haskell. We will show that the proposed
approach not only facilitates probabilistic programming in functional languages,
but in particular can lead to very concise programs and simulations. In particular,
a major advantage of our system is that simulations can be specified independently
from their method of execution. That is, we can either fully simulate or randomize
any simulation without altering the code which defines it. In the following we will
present the definitions of most functions, but also leave out some details for the
sake of brevity. These details should be obvious enough to be filled in easily by the
reader. In any case, all function definitions can be found in the distribution of the
library, which is freely available at eecs.oregonstate.edu/~erwig/pfp/.

The probabilistic functional programming approach is based on a data type for
representing distributions. A distribution represents the outcome of a probabilistic
event as a collection of all possible values, tagged with their likelihood.

newtype Probability = P Float

newtype Dist a = D {unD :: [(a,Probability)]}

This representation is shown here just for illustration; it is completely hidden from
the users of the library by means of functions which construct and operate on
distributions. In particular, all functions for building distribution values enforce the
constraint that the sum of all probabilities for any non-empty distribution is 1. In
this way, any Dist value represents the complete sample space of some probabilistic
event or “experiment”.

Distributions can represent events, such as the roll of a die or the flip of a coin.
We can construct these distributions from lists of values using spread functions,
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that is, functions of the following type.

type Spread a = [a] -> Dist a

The library defines spread functions for various well-known probability distribu-
tions, such as uniform or normal, and also a function enum that allows users to
attach specific probabilities to values. With uniform we can define, for example,
the outcome of die rolls.

die = uniform [1..6]

Probabilities can be extracted from distributions through the function ?? that is
parameterized by an event, which is represented as a predicate on values in the
distribution.

type Event a = a -> Bool

(??) :: Event a -> Dist a -> Probability

(??) p = P . sum . map snd . filter (p . fst) . unD

There are principally two ways to combine distributions: If the distributions are
independent, we can obtain the desired result by forming all possible combinations
of values while multiplying their corresponding probabilities. For efficiency reasons,
we can perform normalization (aggregation of multiple occurrences of a value). The
normalization function is mentioned later.

joinWith :: (a -> b -> c) -> Dist a -> Dist b -> Dist c

joinWith f (D d) (D d’) = D [(f x y,p*q) | (x,p) <- d, (y,q) <- d’]

prod :: Dist a -> Dist b -> Dist (a,b)

prod = joinWith (,)

Examples of combined independent events are rolling a number of dice. The function
certainly constructs a distribution of one element with probability 1.

dice :: Dist [Int]

dice 0 = certainly []

dice n = joinWith (:) die (dice (n-1))

On the other hand, if the second event depends on the first, it must be represented
by a function that accepts values of the distribution produced by the first event.
In other words, whereas the first event can be represented by a Dist a value, the
second event should be a function of type a -> Dist b. This dependent event
combination is nothing other than the bind operation when we regard Dist as a
monad.

instance Monad Dist where

return x = D [(x,1)]

(D d) >>= f = D [(y,q*p) | (x,p) <- d, (y,q) <- unD (f x)]

fail = D []
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The functions return and fail can be used to describe outcomes that are certain
or impossible, respectively. We also use the synonyms certainly and impossible

for these two operations. We will also need monadic composition of two functions
and a list of functions.

(>@>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c

f >@> g = (>>= g) . f

sequ :: Monad m => [a -> m a] -> a -> m a

sequ = foldl (>@>) return

We have defined Dist also as an instance of MonadPlus, but this definition is not
important for this paper.

The observation that probability distributions form a monad is not new (Giry,
M., 1981). However, previous work was mainly concerned with extending languages
by offering probabilistic expressions as primitives and defining suitable semantics
(Jones, C. and Plotkin, G. D., 1989; Morgan, C. and McIver, A. and Seidel, K.,
1996; Ramsey, N. and Pfeffer, A., 2002; Park, S. and Pfenning, F. and Thrun, S.,
2004). The focus of those works is on identifying semantics to support particular
aspects, such as the efficient evaluation of expectation queries in (Ramsey, N. and
Pfeffer, A., 2002) by using a monad of probability measures or covering continuous
distributions in addition to discrete ones by using sampling functions as a semantics
basis (Park, S. and Pfenning, F. and Thrun, S., 2004) (and sacrificing the ability
to express expectation queries). However, we are not aware of any work that is
concerned with the design of a probability and simulation library based on this
concept.

Having defined distributions as monads allows us to define functions to repeatedly
select elements from a collection without putting them back, which causes later
selections to be dependent on earlier ones. First, we define two functions that, in
addition to the selected element, also return the collection without that element.

selectOne :: Eq a => [a] -> Dist (a,[a])

selectOne c = uniform [(v,List.delete v c) | v <- c]

selectMany :: Eq a => Int -> [a] -> Dist ([a],[a])

selectMany 0 c = return ([],c)

selectMany n c = do (x,c1) <- selectOne c

(xs,c2) <- selectMany (n-1) c1

return (x:xs,c2)

Since in most applications the elements that remain in the collection are not of
interest, it is helpful to provide derived functions that simply project onto the
values of the distributions. The implementation reveals that Dist is also a functor.
We will also use the function name mapD to refer to fmap to emphasize that the
mapping is across distributions.
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instance Functor Dist where

fmap f (D d) = D [(f x,p) | (x,p) <- d]

mapD :: (a -> b) -> Dist a -> Dist b

mapD = fmap

With mapD we can now define the functions for repeatedly selecting elements from
a collection. Note that the function fst is used in select because selectMany

returns a tuple containing the list of selected elements and the list of remaining
(unselected) elements. We wish to discard the latter. We reverse the returned list
because the elements retrieved in selectMany are successively cons’ed onto the
result list, which causes the first selected element to be the last in that list.

select :: Eq a => Int -> [a] -> Dist [a]

select n = mapD (reverse . fst) . selectMany n

With this initial set of functions we can already approach many problems found
in textbooks on probability and statistics and solve them by defining and applying
probabilistic functions. For example, what is the probability of getting at least 2
sixes when throwing 4 dice? We can compute the answer through the following
expression.

> ((>=2) . length . filter (==6)) ?? dice 4

13.2%

Another class of frequently found problems is exemplified by “What is the probabil-
ity of drawing a red, green, and blue marble (in this order) from a jar containing two
red, two green, and one blue marble without putting them back?”. With an enu-
meration type for marbles containing the constructors R, G, and B, we can compute
the answer as follows.

> (==[R,G,B]) ?? select 3 [R,R,G,G,B]

6.7%

Many more examples are contained in the library distribution.
A final concept that is employed in many examples is the notion of a probabilistic

function, that is, a function that maps values into distributions. For example, the
second argument of the bind operation is such a probabilistic function. Since it
turns out that in many cases the argument and the result type are the same, we
also introduce the derived notion of a transition that is a probabilistic function on
just one type.

type Trans a = a -> Dist a

A common operation for a transition is to apply it to a distribution, which is already
provided through the bind operation.

In the next two sections, we illustrate the use of basic library functions with two
examples to demonstrate the high-level declarative style of probabilistic functional
programming. In Section 4 we will show how randomization fits into the described
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approach and, in particular, how it allows the approximation of distributions to
cope with exponential space growth. In Section 5 we describe how to deal with
traces of probabilistic computations. Conclusions in Section 6 complete this paper.

2 The Monty Hall Problem

In the Monty Hall problem, a game show contestant is presented with three doors,
one of which hides a prize. The player chooses one of the doors, and then the host
opens another door which does not have the prize behind it. The player then has the
option of staying with the door they have chosen or switching to the other closed
door. This problem is also discussed in (Hehner, 2004; Morgan, C. and McIver, A.
and Seidel, K., 1996). When presented with this problem, most people will assume
that switching makes no difference—since the host has opened a door without the
prize, it leaves a 50/50 chance of the remaining two doors.

However, statistical analysis has shown that the player doubles their chance of
winning if they switch doors. How can this be? We can use our library to determine
if this analysis is correct, and how.

A simple approach is to first consider that of the three doors, only one is the
winning door. Thus, the player’s initial pick has a one third chance of being the
winning door.

data Outcome = Win | Lose

firstChoice :: Dist Outcome

firstChoice = uniform [Win,Lose,Lose]

If the player has chosen a winning door, and then switches, they will lose. However,
if they initially chose a losing door, the host only has one choice for a door to open:
the other losing door. Thus, if they switch, they win. This process can be captured
by a transition on outcomes.

switch :: Trans Outcome

switch Win = certainly Lose

switch Lose = certainly Win

We can analyze the probabilities of winning by comparing firstChoice and ap-
plying the transition switch to firstChoice.

*MontyHall> firstChoice

Lose 66.7%

Win 33.3%

*MontyHall> firstChoice >>= switch

Win 66.7%

Lose 33.3%

Therefore, not switching gives the obvious one third chance of winning, while switch-
ing gives a two thirds chance of winning.
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We can also model the game in more detail, replicating each step with the precise
rules that accompany them. We first construct the structure of the simulation from
the bottom up. We start with three doors.

data Door = A | B | C

doors :: [Door]

doors = [A .. C]

Next we create a data structure to represent the state of the game by having fields
that indicate which door (A, B, or C) contains the prize, which is chosen, and which
is opened.

data State = Doors {prize :: Door, chosen :: Door, opened :: Door}

Of course, these will not all be assigned at once, but in sequence. In the initial
state, the prize has not yet been hidden, no door has been chosen, and no door is
open. Since the state will be evaluated only after all fields are set, we can initialize
all fields with undefined.

start :: State

start = Doors {prize=u,chosen=u,opened=u} where u=undefined

Now each step of the game can be modeled as a transition on State. First, the host
will choose one of the doors at random to hide the prize behind.

hide :: Trans State

hide s = uniform [s{prize=d} | d <- doors]

A transition takes a value of some type and produces a distribution of that type.
In this case, the transition hide takes a State and produces a uniform distribution
of states—one state for each door the prize could be hidden behind. Next, the
contestant will choose, again at random, one of the doors.

choose :: Trans State

choose s = uniform [s{chosen=d} | d <- doors]

Once the contestant has chosen a door, the host will then open a door that is not the
one chosen by the contestant and is not hiding the prize. This is the first transition
which depends on the value of State it receives by considering the value of s in
the definition.

open :: Trans State

open s = uniform [s{opened=d} | d <- doors \\ [prize s,chosen s]]

Next the player can switch or stay with the door already chosen. Both strategies
can be represented as transitions on State.

type Strategy = Trans State

Switching means chose a door that is currently not chosen and that has not been
opened.
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switch :: Strategy

switch s = uniform [s{chosen=d} | d <- doors \\ [chosen s,opened s]]

We can also create a strategy for stay, which would simply be to leave everything
precisely as it already is.

stay :: Strategy

stay = certainlyT id

For constructing transitions which produce a distribution of only one element, we
provide the function certainlyT which converts any function of type a -> a into
a function of type a -> Dist a.

certainlyT :: (a -> a) -> Trans a

certainlyT f = certainly . f

Finally, we define an ordered list of transitions that represents the game: hiding the
prize, choosing a door, opening a door, and then applying a strategy.

game :: Strategy -> Trans State

game s = sequ [hide,choose,open,s]

Recall that sequ implements the composition of a list of monadic functions, which
are transitions in this example.

If, once all the transitions have been applied, the chosen door is the same as the
prize door, the contestant wins.

result :: State -> Outcome

result s = if chosen s==prize s then Win else Lose

We can define a function eval that plays the game for a given strategy and computes
the outcome for all possible resulting states.

eval :: Strategy -> Dist Outcome

eval s = mapD result (game s start)

Again, we can determine the value of both strategies by computing a distribution.

*MontyHall> eval stay

Lose 66.7%

Win 33.3%

*MontyHall> eval switch

Win 66.7%

Lose 33.3%

Note that the presented model can be easily extended to four (or more) doors. All
we have to do is add a D constructor to the definition of Door and change C to D

in the definition of doors. A third take on this example will be briefly presented in
Section 4.
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3 An Example from Biology: Tree Growth

Many applications in biology are based on probabilistic modeling. In fact, the mo-
tivation for creating the PFP library results from a joint project with the Center
for Gene Research and Biotechnology at Oregon State University in which we have
developed a computational model to explain the development of microRNA genes
(Allen et al., 2005).

Consider the simple example of tree growth. Assume a tree can grow between
one and five feet in height every year. Also assume that it is possible, although less
likely, that a tree could fall down in a storm or be hit by lightning, which we assume
would kill it standing. How can this be represented using probabilistic functions?

We can create a data type to represent the state of the tree and, if applicable,
its height.

type Height = Int

data Tree = Alive Height | Hit Height | Fallen

We can then construct a transition function for each state that the tree could be
in.

grow :: Trans Tree

grow (Alive h) = normal [Alive k | k <- [h+1..h+5]]

When the tree is alive, it grows between 1 and 5 feet every year. We distribute these
values on a normal curve to make the extreme values less likely.

hit :: Trans Tree

hit (Alive h) = certainly (Hit h)

fall :: Trans Tree

fall _ = certainly Fallen

When the tree is hit, it retains its height, but when fallen, the height is discarded.
We can combine these three transitions into one transition that probabilistically
selects which action should happen to a live tree.

evolve :: Trans Tree

evolve t@(Alive _) = unfoldT (enum [0.9,0.04,0.06] [grow,hit,fall]) t

evolve t = certainly t

Here we use the function enum to create a custom spread with the given probabil-
ities. We apply this spread to the list of transitions (grow, hit, and fall) which
creates a distribution of transitions. The function unfoldT converts a distribution
of transitions into a regular transition.

unfoldT :: Dist (Trans a) -> Trans a

This transition is then applied to t, the state of the tree, to produce a final distri-
bution for that year. With an initial value, such as seed = Alive 0, we can now
run simulations of the tree model.
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To find out the situation after several generations, it is convenient to have a
combinator that can iterate a transition a given number of times or while a certain
condition holds. Three such combinators are collected in the class Iterate, which
allows the overloading of the iterators for transitions and randomized changes (see
next section).

class Iterate c where

(*.) :: Int -> (a -> c a) -> (a -> c a)

while :: (a -> Bool) -> (a -> c a) -> (a -> c a)

until :: (a -> Bool) -> (a -> c a) -> (a -> c a)

until p = while (not . p)

For example, to compute the distribution of possible tree values after n years, we
can define the following function.

tree :: Int -> Tree -> Dist Tree

tree n = n *. evolve

For large values of n, computing complete distributions is computationally infea-
sible. In such cases, randomization of values from distributions provides a way to
approximate the final distribution with varying degrees of precision. We will discuss
this randomization in the next section.

Since the distribution spreads out into many different values quickly, we do not
show an example run here.

4 Randomization

The need for randomization arises quickly when an iterated transition creates a new
set of values for each value currently in the distribution, thus creating an exponen-
tial space explosion. We provide functions to transform a regular transition into a
randomized change, which select only one result from the created distribution. By
repeatedly applying such a randomized change to the same value, we can construct
an arbitrarily good approximation of the exact probabilistic distribution. An ex-
ample of the space explosion compared to the roughly constant space requirement
in randomization is shown in Table 1 for the tree growth simulation given in the
previous section.

Table 1. Comparing the maximum heap size (in kilobytes) for fully simulated and
randomized tree growth simulations

Generations Fully simulated Randomized (500 runs)

5 700 650
6 4000 800
7 19000 800
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Library users need not be concerned about randomization when they first de-
sign transitions. Instead, randomization can be performed later automatically by
employing corresponding library functions. Likewise, tracing can be provided on
request by the library without changes to the transition function itself. In this
way, tracing and randomization are concepts that are orthogonal to the library’s
probabilistic modeling capabilities.

All randomized values live within the R monad, which is simply a synonym for
IO. Elementary functions to support randomization are pick, which selects exactly
one value from a distribution by randomly yielding one of the values according to
the specified probabilities (performed by selectP), and random, which transforms
a transition into a randomized change.

type R a = IO a

type RChange a = a -> R a

pick :: Dist a -> R a

pick d = Random.randomRIO (0,1) >>= return . selectP d

random :: Trans a -> RChange a

random t = pick . t

Randomly picking a value from a distribution or randomizing a transition is not an
end in itself. Instead, the collection of values obtained by repeated application of
randomized changes can be aggregated to yield an approximation of a distribution,
represented by the type RDist a, representing a randomized distribution. Given a
list of random values, we can first transform them into a list of values within the
R monad. Then we can assign equal probabilities with uniform and group equal
values by a function norm that also sums their probabilities.

type RDist a = R (Dist a)

type RTrans a = a -> RDist a

rDist :: Ord a => [R a] -> RDist a

rDist = fmap (norm . uniform) . sequence

With rDist we can implement a function ~. that repeatedly applies a randomized
change or a transition and derives a randomized distribution. The Ord constraint
on a in the signature of ~. is required because the instance definitions are based on
norm (through rDist).1

1 The function norm sorts the values in a distribution to achieve grouping for efficiency reasons.
Since we have found that in most examples that we encountered defining an Ord instance is not
more difficult than an Eq instance, we have preferred the more efficient over the more general
definition.
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class Sim c where

(~.) :: Ord a => Int -> (a -> c a) -> RTrans a

instance Sim IO where

(~.) n t = rDist . replicate n . t

instance Sim Dist where

(~.) n = (~.) n . random

In particular, the latter instance definition allows us to simulate transitions in
retrospect. In other words, we can define functions to compute full distributions
and can later turn them into computations for randomized distributions without
changing their definition. For example, the tree growth computation that is given
by the function tree can be turned into a simulation that runs a randomized tree
growth k times as follows.

simTree :: Int -> Int -> Tree -> RDist Tree

simTree k n = k ~. tree n

Similarly, for the Monty Hall problem we could randomly perform the trial many
times instead of deterministically calculating the outcomes.

simEval :: Int -> Strategy -> RDist Outcome

simEval k s = mapD result ‘fmap‘ (k ~. game s) start

Since in many simulation examples it is required to simulate the n-fold repetition
of a transition k times, we also introduce a combination of the functions *. and ~.

that performs both steps.

class Sim c where

(~*.) :: Ord a => (Int,Int) -> (a -> c a) -> RTrans a

instance Sim IO where

(~*.) (k,n) t = k ~. n *. t

instance Sim Dist where

(~*.) x = (~*.) x . random

Note that *. is defined to bind stronger than the ~. function. We can thus imple-
ment the tree simulation also directly based on evolve.

simTree k n = (k,n) ~*. evolve

Again, we do not have to mention random number generation anywhere in the
model of the application.

5 Tracing

As simulation complexity increases, some computational aspects become difficult.
If, for example, we wished to evaluate the growth of the tree at each year for one
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hundred years, it would be quite redundant to calculate it first for one year, then
separately for two years, and again for three, and so on. Instead, we could calculate
the growth for one hundred years and simply keep track of all intermediate results.

To facilitate tracing, we define types and functions to produce traces of prob-
abilistic and randomized computations. For deterministic and probabilistic values
we introduce the following types.

type Trace a = [a]

type Space a = Trace (Dist a)

type Walk a = a -> Trace a

type Expand a = a -> Space a

A walk is a function that produces a trace, that is, a list of values. Continuing the
idea of iteration described in the previous section, we define a function to generate
walks, which is simply a bounded version of the predefined function iterate.

walk :: Int -> Change a -> Walk a

walk n f = take n . iterate f

Note that the type Change a is simply a synonym for a -> a, introduced for com-
pleteness and symmetry (see RChange a in the previous section).

While a walk produces a trace, iteration of a transition yields a list of distribu-
tions, which represents the explored probability space. We use the symbol *.. to
represent the trace-producing iteration. The definition is based on the function >>:,
which prepends the result of a transition to a space, and singleton, which maps
x into [x].

(*..) :: Int -> Trans a -> Expand a

0 *.. _ = singleton . certainly

1 *.. t = singleton . t

n *.. t = t >>: (n-1) *.. t

(>>:) :: Trans a -> Expand a -> Expand a

f >>: g = \x -> let ds@(D d:_)=g x in

D [(z,p*q) | (y,p) <- d,(z,q)<- unD (f y)]:ds

The potential space problem of plain iterations is even worse in trace-producing
iterations. Therefore, we also define randomized versions of the types and iterators.

type RTrace a = R (Trace a)

type RSpace a = R (Space a)

type RWalk a = a -> RTrace a

type RExpand a = a -> RSpace a

The function rWalk iterates a random change to create a random walk, which can
produce a random trace.

rWalk :: Int -> RChange a -> RWalk a
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The definition is similar to that of *.., but not identical, because the result types
are structurally different: While Dist is nested within Trace in the result type
of *.., R is wrapped around Trace in the result type of rWalk. This structural
difference in the result types is also the reason why we cannot overload the notation
for these two functions.

Similar to ~. we can now implement a function ~.. that simulates the repeated
application of a randomized change or transition and derives a randomized space,
that is, a randomized sequence of distributions that approximate the exact distri-
butions. Since ~.. is overloaded like ~. for transitions and random changes, it can
reside in the same class Sim. The function replicate k produces a list containing k

copies of the given argument. In the second instance definition, mergeTraces trans-
poses a list of random lists into a randomized list of distributions, which represent
an approximation of the explored probabilistic space.

class Sim c where

(~..) :: Ord a => (Int,Int) -> (a -> c a) -> RExpand a

instance Sim IO where

(~..) (k,n) t = mergeTraces . replicate k . rWalk n t

instance Sim Dist where

(~..) x = (~..) x . random

Note that the first argument of ~.. is a pair of integers representing the number of
simulation runs and the number of repeated application of the argument function.
The latter is required to build the correct number of elements in the trace unlike
for ~. where only the final result matters.

Applied to the tree-growth example we can now define functions for computing
an exact and approximated history of the probabilistic tree space as follows.

hist :: Int -> Tree -> Space Tree

hist n = n *.. evolve

simHist :: Int -> Int -> Tree -> RSpace Tree

simHist k n = (k,n) ~.. evolve

6 Conclusion

We have illustrated an approach to express probabilistic programs in Haskell. The
described ideas are implemented as a collection of Haskell modules that are com-
bined into a probabilistic functional programming library. In addition to the ex-
amples described here, the PFP library contains modules defining functions for
queueing simulations, bayesian networks, predator/prey simulations, dice rolling,
card playing, etc. Moreover, the library provides a visualization module to produce
plots and figures that can be rendered by the R package (Maindonald & Braun,
2003).
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Probabilistic functional programming can be employed as a constructive approach
to teach (or study!) statistics, as shown in the first two sections. Moreover, the PFP
library provides abstractions that allow the high-level modeling of probabilistic
scientific models and their execution or simulation. We have illustrated this aspect
here with a toy example, but we have successfully applied the library to investigate
a real scientific biological problem (Allen et al., 2005). In particular, the high-level
abstractions allowed us to quickly change model aspects, in many cases immediately
during discussions with biologists about the model.
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