
Parametric Fortran – A Program Generator for

Customized Generic Fortran Extensions?

Martin Erwig and Zhe Fu

School of EECS
Oregon State University

[erwig|fuzh]@cs.orst.edu

Abstract. We describe the design and implementation of a program
generator that can produce extensions of Fortran that are specialized
to support the programming of particular applications. Extensions are
specified through parameter structures that can be referred to in Fortran
programs to specify the dependency of program parts on these param-
eters. By providing parameter values, a parameterized Fortran program
can be translated into a regular Fortran program.
We describe as a real-world application of this program generator the
implementation of a generic inverse ocean modeling tool. The program
generator is implemented in Haskell and makes use of sophisticated fea-
tures, such as multi-parameter type classes, existential types, and generic
programming extensions and thus represents the application of an ad-
vanced applicative language to a real-world problem.

Keywords: Fortran, Generic Programming, Program Generation,
Haskell

1 Introduction

Fortran is widely used in scientific computing. For example, scientific models to
predict the behavior of ecological systems are routinely transformed by scientists
from a mathematical description into simulation programs. Since these simula-
tion programs have to deal with huge data sets (up to terabytes of data), they
are often implemented in a way that exploits the given computing resources as
efficiently as possible. In particular, the representation of the data in the sim-
ulation programs is highly specialized for each model. Alas, this high degree of
specialization causes significant software engineering problems that impact the
advance of scientists in evaluating and comparing their models. One particular
problem is that simulation programs currently have to be rewritten for each indi-
vidual forecasting model, even though the underlying algorithms are principally
the same for all models. Since Fortran lacks the flexibility to apply the same
subroutine on different data structures, scientists have to rewrite programs for
every model.

? This work was supported by the National Science Foundation under the grant
ITR/AP-0121542.

We provide a solution to this problem by an extension of Fortran, called
Parametric Fortran, which is essentially a framework that allows the creation of
domain-specific Fortran extensions. A Parametric Fortran program is a Fortran
program in which parts, such as statements, expressions, or subroutines, are
parameterized by special variables. Every syntactic element of Fortran can be
parameterized. When the values of these parameters are given, a program gen-
erator can create a Fortran program from the parameterized program, guided by
these values. Scientists can implement their algorithm in Parameterized Fortran
by using parameters to represent the model-dependent information. When the
information about a specific model is given in the form of values for the param-
eters, a specialized Fortran program can be generated for this model. Therefore,
scientists only need to write their programs once and can generate different
instances for different models automatically.

The program generator, which is implemented in Haskell [15], takes a Para-
metric Fortran program and parameter definitions and their values as inputs and
produces a Fortran program, see Figure 1.

Fig. 1. System architecture

Two different groups of people are concerned with Parametric Fortran. First,
scientists who write programs in Fortran want to use the genericity provided
by Parametric Fortran. Second, computer scientists who provide programming
support in the form of new Fortran dialects for scientists by extending Parametric
Fortran with new parameter types. Rather than defining one particular extension
of Fortran, our approach is to provide a framework for extending Fortran on a
demand basis and in a domain-specific way.

In the remainder of this Introduction we outline the approach by two simple
examples. In Section 2 we illustrate the use of Parametric Fortran in a real-world
application. In Section 3 we describe the implementation of Parametric Fortran.
We discuss related work in Section 4 and present some conclusions in Section 5.

1.1 Array Addition for Arbitrary Dimensions

The following example shows how to write a Parametric Fortran subroutine to
add two arrays of arbitrary dimensions.1 For simplicity, we suppose that the size
of each dimension is 100.

{ dim: subroutine arrayAdd(a, b, c)
real :: a, b, c
c = a + b

end subroutine arrayAdd }

The program is parameterized by an integer dim. The value of dim will guide
the generation of the Fortran subroutine. The brackets { and } delimit the
scope of the dim parameter, that is, every Fortran syntactic object in the scope
is parameterized by dim. For dim = 2, the following Fortran program will be
generated.

subroutine arrayAdd(a, b, c)
integer :: i1, i2
real, dimension (1:100, 1:100) :: a, b, c
do i1 = 1, 100
do i2 = 1, 100
c(i1, i2) = a(i1, i2) + b(i1, i2)

end do
end do

end subroutine arrayAdd

We can observe that in the generated program, a, b, and c are all 2-dimensional
arrays. When a variable declaration statement is parameterized by an integer
dim, the variable will be declared as a dim-dimensional array in the generated
program. The assignment statement that assigns the sum of a and b is wrapped
by 2 loops over both dimensions, and index variables are added to each array
expression. The declarations for these index variables are also generated. This
particular behavior of the program generator is determined by the definition of
the parameter type for dim.

1.2 Dimension-Independent Array Slicing

We can also define an array slicing subroutine, which slices an n-dimensional
array on the dth dimension. In the subroutine slice, a is the input n-dimensional
array, b is the result (n − 1)-dimensional array, and k is the index on the dth
dimension of the input array. This program is parameterized by two parameters.
The parameter dim is an integer representing the number of dimensions of a. It
only parameterizes the declaration of a. The parameter slice is a pair of integers
of the form (n,d), representing that the generated code slices the dth dimension

1 This example is meant for illustration. Dimension-independent array addition is al-
ready supported in Fortran by array syntax.

of an n-dimensional array. The parameter slice is not a Fortran variable, but
a variable of Parametric Fortran. Therefore, it causes no conflict with the name
of the subroutine.

subroutine slice(a, k, b)
{dim: real :: a}
{slice: real :: b}
integer :: k
{slice: b = a(k)}

end subroutine slice

For example, when dim is 3 and slice is (3,2), the generated Fortran subroutine
will be able to compute the kth slice of the second dimension of a 3-dimensional
array. As in the first example, we assume for simplicity that the size of each
dimension is 100.

subroutine slice(a, k, b)
integer :: i1, i2
real, dimension (1:100, 1:100, 1:100) :: a
real, dimension (1:100, 1:100) :: b
integer :: k
do i1 = 1, 100
do i2 = 1, 100
b(i1, i2) = a(i1, k, i2)

end do
end do

end subroutine slice

The declaration of a is parameterized by an integer, which has the same meaning
as in the first example. The declaration of b is parameterized by the parameter
slice, which is a pair of integers (n,d). This parameterization means that in
the generated program b has (n-1) dimensions and that array indices are added
such that the already existing index expression (in the example: k) will appear
at the dth dimension. How the different types of parameters guide the program
generation has to be defined as part of the parameter definition, which specifies
the program generator. Since n represents the number of the dimensions and d

represents one of the n dimensions, d must be in the range 1 to n. The program
generator can report an error if the value of slice is, for example, (2,3). We also
have to ensure that n must be equal to dim. Otherwise, the generated Fortran
program will contain a type error.

2 An Application in Scientific Computing

We consider as a real-world application the generation of inversion tools in the
domain of ocean modeling. The Inverse Ocean Modeling (IOM) system [3, 9] is
a data assimilation system, which enables the developers of ocean models to
combine their models with real observations of the ocean. The output of the

IOM is a weighted least-squared best-fit to the equations of motion and to the
data. The IOM consists of tools that are used for solving the equations of best
fit.

Since every ocean model uses its own data structure to describe the ocean,
it is impossible to write a system in Fortran that works with different ocean
models, although the algorithm for inverse ocean modeling is the same for all
models. The genericity that is inherent in the problem cannot be expressed by
Fortran.

With Parametric Fortran the IOM tools can be written in a generic way
so that different Fortran programs can be generated automatically as needed.
Using an extension of Fortran supports the idea of “gentle slope” [14] and allows
the developers of the IOM, who are familiar with Fortran, to start writing the
tools without first having to learn a completely new language. Moreover, most
of their current programs can be modified to Parametric Fortran programs with
reasonable effort. The main task is to identify the parameters for representing
the model-dependent information.

2.1 An Example Tool: Markovian Convolution in Time

The IOM tool described here is an example of a convolution tool used for averag-
ing over weighted values. The basic idea is to compute the value of one point by
averaging over the weighted values of its neighbors. The weights of its neighbors
depend on the distances from the point. The Markovian Convolution in Time is
formally defined by the following continuous equation.

b(t) =

∫ T

0

exp(−|t − t′|/τ)a(t′)dt′

The weighting function is exp(−|t − t′|/τ), and the variables t and t′ range
over time, which means that the convolution is in time. The coefficient τ is the
correlation time scale, which is provided by the ocean modelers when they use
the tool. The smaller τ is, the more quickly the values of the old points will be
forgotten.

The above formula is a continuous equation. Computer simulations are based
on the following corresponding discrete equations that can be derived from the
continuous one through techniques developed in [3].

hL = 0

bU = −(τ/2)hU

hn − hn−1

∆t + τ−1hn−1 = −2τ−1an

bn+1 − bn

∆t − τ−1bn+1 = hn

In the above equations, h represents a temporary array, and L (U) is the lower
(upper) boundary of the arrays. The arrays are over time and space where dif-
ferent models may use different array dimensions for space. The number of time
dimension is always one. However, different models may have different numbers
of space dimensions. Therefore, the IOM has to provide different subroutines
for all the possible data structures used in all the models. Moreover, the IOM

should also be able to provide tools for any new model that uses data structures
in a completely new way.

2.2 Expressing Markovian Convolution in Parametric Fortran

For parameterizing Markovian Convolution, we first have to find the parame-
ters representing the model-dependent information. In this example, the model-
dependent information is the number of space dimensions of the arrays, and the
size (lower bound and upper bound) of each dimension. We suppose that the
time dimension is always the first dimension of the arrays in all the models. In
the convolution tool that is actually implemented for the IOM system we also
parameterize the position of the time dimension, but for simplicity we do not
do that in this example. We can define a Haskell data type Dim to represent the
model-dependent information as follows.

data Space = Space Int [(IExpr, IExpr)]
data IExpr = ICon Int | IVar VName | ...

For example, the parameter value Dim 2 [(IVar "X", IVar "Y"), (ICon 1,

ICon 100)] specifies that the number of dimensions of the arrays in the model is
2, that the first dimension is bounded by variables X and Y, (where X is the lower
bound and Y is the upper bound), and that the second dimension is bounded by
1 and 100.

Since the only dependent information is given by the space dimensions of the
arrays, including the number of dimensions and the boundaries of each dimen-
sion, we only need one parameter type Space. Every array has the same type,
which means that the array variable declarations can be parameterized by the
same parameter. However, one parameter is not sufficient to parameterize the
body of the subroutine because we want to be able to group assignment state-
ments in the same loop, instead of getting a separate loop for each assignment.
This distinction of different “loop groups” requires additional information to in-
dicate if a loop over space dimensions needs to be generated, which is captured
by two tags.

data Pos a = Loop a | Inside a

We use Pos Space to parameterize both declarations and assignments. If an
assignment is parameterized by Loop s, a loop over the space dimensions is
generated. However, if an assignment is parameterized by Inside s, no loop
will be generated, the program generator just adds index variables to each array
expression. The Parametric Fortran code for the Markovian Convolution is shown
below.

subroutine timeConv {d: (L, U, a, b)}
real :: dt, tau
{d: real, dimension (!L:!U) :: a, b, h}
integer :: n
{d:
{x: h(!L) = 0.0}
{x(a,b,h):
do n = L, U

h(n) = h(n-1) - dt*(h(n-1)/tau + 2.0*a(n)/tau)
end do
b(U) = -0.5*h(U)/tau
do n = L, U

b(n) = b(n+1) - dt*(h(n) + b(n+1)/tau)
end do

}
}

end subroutine timeConv

The value of parameter d is Loop s, where s represents the space dimensions of
the arrays. The parameter d is used to parameterize 3 parts of the subroutine.

– The parameter list of the generated Fortran subroutine to add the new vari-
ables used in s’s value as dimension boundaries

– The declarations of the array variables to append the space dimensions to
the current time dimension of these arrays

– The body of the subroutine to create loops.

The symbol ! is used to stop the downward propagation of a parameter for a
particular part of the syntax tree. For example, since L is a non-array variable, we
do not want to parameterize it by x in the first assignment.2 The parameter x has
the value of Inside s since the assignments parameterized by x do not need their
own loops to be generated. However, all the array expressions in the assignment
statements parameterized by x will be filled by index variables of the space
dimensions. We also provide a form of applicability constraint for parameters
by allowing a list of variables to be added after the parameter. For instance,
the syntax {x(a,b,h):. . .} expresses that the parameter x only parameterizes
the variables a, b, and h, or array expressions using these names, such as h(n).
When we generate the Fortran subroutine timeConv for the model in which the
arrays have 1 space dimension and the boundaries of that dimension is (X:Y),
we can assign d and x the following values.

d, x :: Pos Space
s :: Space
s = Space 1 [(IVar "X", IVar "Y")]
d = Loop s
x = Inside s

2 Since every node in the syntax tree can be annotated only by one parameter, we
could not use d and x to annotate the whole body. Therefore, we have parameterized
the first assignment and the remaining sequence of assignments separately.

With these parameter values the program generator creates the following sub-
routine.

subroutine timeConv (X, Y, L, U, a, b)
integer :: i1
real :: dt, tau
real, dimension (L:U, X:Y) :: a, b, h
integer :: n
do i1 = X, Y
h(L,i1) = 0.0
do n = L, U
h(n,i1) = h(n-1,i1) - dt*(h(n-1,i1)/tau + 2.0*a(n,i1)/tau)

end do
b(U,i1) = -0.5*h(U,i1)/tau
do n = L, U
b(n,i1) = b(n+1,i1) - dt*(h(n,i1) + b(n+1,i1)/tau)

end do
end do

end subroutine timeConv

The program generator had the following effects. (1) X and Y are added to the
parameter list of the generated subroutine. (2) The arrays a, b, and h are declared
as 2-dimensional arrays. (3) The body of the subroutine is wrapped by a loop
over the space dimension. (4) Every array expression is extended by an additional
index variable i1. (5) i1’s declaration is generated.

3 Implementation of the Parametric Fortran Compiler

3.1 The Parametric Fortran Parser

For the implementation of the front end of Parametric Fortran we have used
the Haskell scanner generator Alex [5] and the parser generator Happy [13].
The parser deals with a subset of Fortran language and ignores some esoteric
“features”. For example, we do not allow spaces inside identifiers. Figure 2 shows
part of the syntax of Parametric Fortran. It illustrates for the syntactic categories
Stmt and Expr how every syntactic category of Fortran is extended by two forms
of parameterization.

We use {p:e} to represent that the syntactic object e is parameterized by
the parameter p. The semantics of such a parameter annotation is that e itself is
parameterized by p and also that p is propagated downward to all (parameteri-
zable) descendants in the syntax tree. We use !e to stop the effect of a possibly
propagated parameter on e, which means e and all of its subexpressions are not
parameterized at all. A parameter can be extended by a list of variables that
restrict the downward propagation to just this set of variables. For example, in
{p(v):e} only variable occurrences of v and array expressions v(...) inside e
will be parameterized by p. This form of parameter applicability constraints is
currently limited to variables, a language for allowing the specification of tree
patterns to be parameterized is part of future work.

StmtP ::= !{Stmt} | {Param:Stmt} | Stmt

ExprP ::= !Expr | {Param:Expr} | Expr

Param ::= PName | PName(VName, . . . ,VName)

Stmt ::= Assg | DoStmt | StmtP StmtP

Assg ::= VName=ExprP | Array=ExprP

DoStmt ::= do VName=ExprP,ExprP StmtP

Expr ::= PName | VName | Array | Const | UOp ExprP

| ExprP BOp ExprP | (Expr)

Array ::= VName(ExprP, . . . ,ExprP)

UOp ::= -

BOp ::= + | - | * | /

Fig. 2. Syntax of Parameterized Fortran.

3.2 Abstract Syntax

For lack of space, we only show an excerpt of the abstract Fortran syntax. For
example, Stmt only contains assignment, loop, and sequential statements. The
Haskell definitions of the data types for Fortran statements and expressions are
shown below.

data Stmt = Assg VarName [ExprP] ExprP
| For VarName ExprP ExprP StmtP
| Sequ StmtP StmtP

deriving (Typeable,Data)

data Expr = IntCon Int
| RealCon Float
| Var VarName [ExprP]
| Bin BinOp ExprP ExprP

deriving (Typeable,Data)

The data types StmtP and ExprP represent parameterized Fortran statements
and expression. A syntactic object may contain parameterized sub-objects, for
example, a Fortran assignment statement, which is of type Stmt, may contain
parameterized Fortran expressions, which are of type ExprP. These data types
must be instances of type classes Typeable and Data, because we have to apply
the functions cast and everywhere (described below) to elements of these types.

Since every Fortran syntactic category can be parameterized, we need a data
type for each parameterized Fortran syntactic category. The following code shows
the data type definitions for parameterized Fortran statements and expressions.

data StmtP = forall p . Param p Stmt => F p Stmt
data ExprP = forall p . Param p Expr => E p Expr

We use existential types to facilitate the use of parameters of different types at
different nodes in the syntax tree.

3.3 A Type Class for Program Generation

We define a multiple parameter type class Param to represent the relation be-
tween a parameter type and the data type of a syntactic category. Again, the
context Data p is needed because we want to use the function everywhere to
implement traversals of the syntax tree together with a type-based selective ap-
plication of a generator function.

class (Show p,Data p,Show e) => Param p e where
showP :: p -> e -> String
gen :: p -> e -> e
check :: p -> e -> Bool
-- default implementations
gen _ = id
check _ _ = True

In the above definition, p represents the parameter type and e represents the
syntactic category. The member function showP is used for pretty-printing the
parameterized program. The program generator gen takes a parameter value and
a Fortran syntactic object as input and generates a non-parameterized syntactic
object. The member function check can be used to implement validity checks
for parameterized program. For lack of space we cannot describe the details of
this part of the program generator.

The data type Void is a parameter type used in those cases in which no
parameter is needed. Void can be used to parameterize any syntactic category.
In Section 3.5 we will demonstrate how parameterized programs are transformed
to programs parameterized by Void. Programs that are parameterized by Void

are pretty-printed as plain Fortran programs by showP. The Void parameter uses
the default definition for gen and check.

data Void = Void deriving (Eq,Typeable,Data)

instance Show Void where
show Void = ""

instance Show a => Param Void a where

Since parameters in Parametric Fortran programs are variables, we define the
type of variable names VarName as an instance of the type class Param. Similar
to Void, VarName can be used to parameterize any syntactic category and its
gen function does nothing. The Parametric Fortran parser is a function of type
String->FortranP. In the parsing result, all parameters are of type VarName.
For generating the Fortran programs, we have to supply values for the parameters
so that every parameter name in the abstract syntax tree can be replaced by
the parameter’s value. We have defined a derived type class Par p to be able to
succinctly express that p is a valid parameter type of Parametric Fortran.

class (Param p Expr, Param p Stmt, ...) => Par p where

In other words, only if the type p can be used to parameterize all the Fortran syn-
tactic categories, it is an instance of the type class Par. We use a heterogeneous
list param of type PList to store parameters of different types.

data ParV = forall p . Par p => ParV p
type PList = [(VarName, ParV)]

Parameter names are replaced by parameter values through a collection of func-
tions that look up the values of parameters in the list param. For example, the
function substE maps expressions parameterized by parameter names to expres-
sions parameterized by the parameters’ values.

substE :: ExprP -> ExprP
substE (E p e) = case lookup (getName p) param of

Nothing -> E Void e
Just (ParV p’) -> E p’ e

getName :: forall p . Par p => p -> VarName
getName = (\p->(VarName "")) ‘extQ‘ id

We have similar functions for all other other syntactic categories. The function
getName in the above definition is a generic function that works on any parameter
type, but only gets a valid value for the type VarName. This genericity is realized
by the function extQ, which was introduced in [12] to extend generic queries of
type Typeable a => a->r by a new type-specific case.

3.4 Defining Parameter Types as Instances of Param

In the array slicing example, we have two parameter types, Dim and Slice. The
type Dim specifies the number of dimensions of an array. The type Slice is used
for parameterizing the dimension to be sliced.

data Dim = Dim Int
data Slice = Slice Int Int

To use these types to parameterize Fortran programs, we have to make them
instances of the Param type class for all Fortran syntactic categories. Figure
3 shows how to define the gen function for the parameter type Dim for every
Fortran syntactic category. Most instance declarations use the default definition
of gen. We only have to consider the cases of extending a type by dimensions,
adding loops around a statement, and filling an expression with index variables.

The index variables used for extending array expressions and generating loops
are generated by the function newVar::Int->VName. The names of these gen-
erated index variables are illegal Fortran names. The program generator just
marks the places where a new variable is needed. After a program is generated,
the function freshNames traverses the complete program and renames every
marked place with an unused variable name and add declarations for these vari-
ables to the program. Although we could have implemented the generation of
fresh variables with a state monad directly, we decided not to do so, because
that would have complicated the interface for implementing new parameters.

instance Param Dim Type where

gen (Dim d) (BaseType bt) = ArrayT (indx d) bt

gen (Dim d) (ArrayT rs bt) = ArrayT (rs++indx d) bt

gen p t = t
where indx d = replicate d [(a,b)]

instance Param Dim Stmt where

gen (Dim d) s | d>0 = gen (Dim (d-1)) (For (newVar d) a b (F Void s))
gen p s = s

instance Param Dim Expr where

gen (Dim d) (Var v es) = Var v (es++map (var . newVar) [1..d])
gen p e = e

a = E Void (IntCon 1)

b = E Void (IntCon 100)

var :: VName -> ExprP

var v = E Void (Var v [])

Fig. 3. Example Parameter Implementation

3.5 Transformation Functions

For every Fortran syntactic category, a transformation function is defined.
Whereas gen has to be implemented for every new parameter type, the transfor-
mation functions are defined once and for all. They transform a parameterized
syntactic object into a Fortran object parameterized by Void. The following code
shows how these transformation functions are defined for Fortran statements and
Fortran expressions. The approach is to extract the parameter p from the node
in the syntax tree and apply the function gen with this parameter to the syntax
constructor under consideration. Other Fortran syntactic categories are dealt
with similarly.

transF :: StmtP -> StmtP
transF (F p f) = F Void (gen p f)

transE :: ExprP -> ExprP
transE (E p e) = E Void (gen p e)

We can observe that every transformation function has the type a->a. That
enables us to apply the function everywhere [12] to build a generic transfor-
mation function genF, which is basically the program generator. The function
everywhere is a generic traversal combinator that applies its argument func-
tion to every node in a tree. The argument function is a generic transforma-
tion function of type forall b. Data b => b->b. We can lift a non-generic
transformation function f, which has the type Data t => t->t, into a generic
transformation function g by the function extT as follows.

g = id ‘extT‘ f

Therefore, extT allows the composition of different behaviors on different types
into one generic function. In the definition of genF, we use extT to compose
different transformation functions for different syntactic categories. By applying
the function everywhere to a generic transformation function g, we obtain an-
other generic transformation function, which applies g to every node in a tree.
Therefore, genF can be defined in the following way.

genF :: Data g => g -> g
genF = everywhere (id ‘extT‘

transF ‘extT‘
transE ‘extT‘ ...)

The function genF takes a parameterized Fortran program as input and outputs
a Fortran program in which every syntactic object is parameterized by Void.
The source code of the generated Fortran program can be obtained by calling
the showP function.

4 Related Work

The Earth System Modeling Framework (ESMF) defines an architecture that
allows the composition of applications using a component-based approach [6,
4]. The focus of the ESMF is to define standardized programming interfaces
and to collect and provide data structures and utilities for developing model
components.

Parametric Fortran was developed for the use in scientific computing. Most
scientific computing applications deal with huge data sets. Usually, these data
sets are represented by arrays. The data structures of these arrays, such as the
number of dimensions, are often changed in different models to which the same
algorithm will be applied. The programming languages APL [10] and J [11] have
built-in mechanisms for computing with variable-dimensional arrays. However,
since APL and J only provide efficient operations for array processing, they have
not been widely used in scientific computing area, which also requires efficient
numerical computations. Although Matlab [2] is popular for testing simulations
on small examples, it is too inefficient for large data sets.

Parametric Fortran is essentially a metaprogramming tool. For a compre-
hensive overview over the field, see [16]. Existing Fortran metaprogramming
tools include Foresys [18], whose focus is on the refactoring of existing Fortran
code, for example, transforming a Fortran77 program into Fortran90 program.
Sage++ [1] is a tool for building Fortran/C metaprogramming tools. However,
to express applications as the ones shown here a user has to write metaprograms
in Sage++ for transforming Fortran, which is quite difficult and error prone and
probably beyond the capabilities of scientists who otherwise just use Fortran.
In contrast, Parametric Fortran allows the users to work mostly in Fortran and
express generic parts by parameters; most of the metaprogramming issues are

hidden inside the compiler and parameter definitions. Macrofort [8] can generate
Fortran code from Maple programs and does not provide the mechanism to deal
with generic, model-dependent code. In metaprogramming systems like MetaML
[19] or Template Haskell [17] the metaprogramming language is an extension of
the object language. In Parametric Fortran, metaprogramming happens in two
different languages: (i) parameters are defined in Haskell and (ii) parameter-
dependencies in object programs is expressed in Parametric Fortran syntax.

There has also been a lot of work on the generation of Fortran code for sim-
ulations in all areas of science. All this work is concerned with the generation
of efficient code for one particular scientific model. For example, CTADEL [20]
is a Fortran code-generation tool, which is applied to weather forecasting; its
focus is on solving weather-forecast models, especially, solving partial differen-
tial equations. This and other similar tools do not address the problem of the
modularization of scientific models to facilitate generic specifications.

The work reported in [7] is similar to ours in the sense that scientific computa-
tions are described in functional way and are then translated into lower-level effi-
cient code. But again, the approach does not take into account model-dependent
specifications.

5 Conclusions

Parametric Fortran provides a framework for defining Fortran program genera-
tors through the definition of parameter structures. The system offers a two-level
architecture to Fortran program parameterization and generation. On the first
level, the definition of parameter structures creates a Fortran dialect for a par-
ticular class of applications. On the second level, programs for different problems
can be implemented within one Fortran dialect employing parameters in simi-
lar or different ways. Any such Parametric Fortran program can be translated
into different ordinary Fortran programs by providing different sets of parameter
values.

We have successfully applied Parameteric Fortran in the area of scientific
computing to enable the generic specification of inverse ocean modeling tools.
The general, two-level framework promises opportunities for applications in
many other areas as well. In one tool (space convolution) we had to employ
a parameter that allows the parameterization by Fortran subroutines and pro-
vides limited support for higher-order subroutines. This extension turned out
to be a straightforward task. From the experience we have gained so far and
from the feedback from ocean scientists we conclude that Parameteric Fortran
is a flexible and expressive language that provides customized genericity for For-
tran through a pragmatic approach. The use of advanced Haskell features was
essential in this approach.

References

1. F. Bodin, P. Beckman, D. Gannon, J. Gotwals, and S. Srinivas. Sage++: A Class
Library for Building Fortran 90 and C++ Restructuring Tools. In Second Object-

Oriented Numerics Conference (OON-SKI’94), pages 122–138, 1994.
2. S. J. Chapman. MATLAB Programming for Engineers. Brooks Cole, 2001.
3. B. Chua and A. F. Bennett. An Inverse Ocean Modeling System. Ocean Modelling,

3:137–165, 2001.
4. R. E. Dickenson, S. E. Zebiak, J. L. Anderson, M. L. Blackmon, C. DeLuca, T. F.

Hogan, M. Iredell, M. Ji, R. Rood, M. J. Suarez, and K. E. Taylor. How Can
We Advance Our Weather and Climate Models as a Community? Bulletin of the
American Meteorological Society, 83(3), 2002.

5. C. Dornan. Alex: A Lex for Haskell Programmers, 1997. http://haskell.org/

libraries/alextar.gz.
6. R. Ferraro, T. Sato, G. Brasseur, C. DeLuca, and E. Guilyardi. Modeling The

Earth System. In Int. Symp. on Geoscience and Remote Sensing, 2003.
7. S. Fitzpatrick, T. J. Harmer, A. Stewart, M. Clint, and J. M. Boyle. The Au-

tomated Transformation of Abstract Specifications of Numerical Algorithms into
Efficient Array Processor Implementations. Science of Computer Programming,
28(1):1–41, 1997.

8. C. Gomez and P. Capolsini. Macroc and Macrofort, C and Fortran Code Genera-
tion Within Maple. Maple Technical Newsletter, 3(1), 1996.

9. IOM. http://iom.asu.edu/.
10. K. E. Iverson. Introduction to APL. APL Press, 1984.
11. K. E. Iverson. J Introduction and Dictionary. Iverson Software Inc., Toronto,

Canada, 1995.
12. R. Lämmel and S. Peyton Jones. Scrap Your Boilerplate: A Practical Design

Pattern for Generic Programming. In ACM SIGPLAN Workshop on Types in
Language Design and Implementation, pages 26–37, 2003.

13. S. Marlow and A. Gill. Happy User Guide, 2000. http://www.haskell.org/happy/
doc/html/happy.html.

14. B. Myers, S. Hudson, and R. Pausch. Past, Present, and Future of User Interface
Software Tools. ACM Transactions on Computer-Human Interaction, 7(1):3–28,
2000.

15. S. L. Peyton Jones. Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, Cambridge, UK, 2003.

16. T. Sheard. Accomplishments and Research Challenges in Meta-Programming. In
2nd Int. Workshop on Semantics, Applications, and Implementation of Program
Generation, LNCS 2196, pages 2–44, 2001.

17. T. Sheard and S. L. Peyton Jones. Template Metaprogramming for Haskell. In
Haskell Workshop, 2002.

18. Simulog, SA, Guyancourt, France. FORESYS, FORtran Engineering SYStem,
Reference Manual v1.5, 1996.

19. W. Taha and T. Sheard. MetaML and Multi-Stage Programming with Explicit
Annotations. Theoretical Computer Science, 248(1–2):211–242, 2000.

20. R. van Engelen, L. Wolters, and G. Cats. The CTADEL Application Driver for
Numerical Weather Forecast Systems. In 15th IMACS World Congress, volume 4,
pages 571–576, 1997.

