
A Generic Recursion Toolbox for Haskell
Or: Scrap Your Boilerplate Systematically

Deling Ren Martin Erwig
School of EECS

Oregon State University
[rende, erwig]@eecs.oregonstate.edu

Abstract
Haskell programmers who deal with complex data types often need
to apply functions to specific nodes deeply nested inside of terms.
Typically, implementations for those applications require so-called
boilerplate code, which recursively visits the nodes and carries
the functions to the places where they need to be applied. The
scrap-your-boilerplate approach proposed by Lämmel and Peyton
Jones tries to solve this problem by defining a general traversal
design pattern that performs the traversal automatically so that
the programmers can focus on the code that performs the actual
transformation.

In practice we often encounter applications that require vari-
ations of the recursion schema and call for more sophisticated
generic traversals. Defining such traversals from scratch requires
a profound understanding of the underlying mechanism and is ev-
erything but trivial.

In this paper we analyze the problem domain of recursive traver-
sal strategies, by integrating and extending previous approaches.
We then extend the scrap-your-boilerplate approach by rich traver-
sal strategies and by a combination of transformations and accumu-
lations, which leads to a comprehensive recursive traversal library
in a statically typed framework.

We define a two-layer library targeted at general programmers
and programmers with knowledge in traversal strategies. The high-
level interface defines a universal combinator that can be cus-
tomized to different one-pass traversal strategies with different cov-
erage and different traversal order. The lower-layer interface pro-
vides a set of primitives that can be used for defining more sophis-
ticated traversal strategies such as fixpoint traversals. The interface
is simple and succinct. Like the original scrap-your-boilerplate ap-
proach, it makes use of rank-2 polymorphism and functional de-
pendencies, implemented in GHC.

Categories and Subject Descriptors D.1.m [Programming Tech-
niques]: Generic Programming; D.2.13 [Software Engineering]:
Reusable Libraries

General Terms Design, Languages

Keywords Generic Programming, Traversal Strategy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’06 September 17, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-489-8/06/0009. . . $5.00.

1. Introduction
Lämmel and Peyton Jones address the problem of traversing recur-
sive data structures in their papers [12, 13, 14]. They propose a de-
sign pattern to eliminate boilerplate code by applying a generic pro-
gramming technique. In the following we briefly summarize some
major elements of their approach.

The examples given in [12] are based on a collection of data
types that represent a simplified structure of a company. We repeat
the definitions here for reference:

data Company = C [Dept]
data Dept = D Name Manager [Unt]
data Unt = PU Employee | DU Dept
data Employee = E Person Salary
data Person = P Name Address
data Salary = S Float
type Manager = Employee
type Name = String
type Address = String

Derived instances for type classes Typeable and Data are declared
but omitted here for clarity. Here is an example definition of a
company according to the above data types:

genCom :: Company
genCom = C [D "Research" joe [PU mike, PU kate],

D "Strategy" mary []]

joe, mike, kate, mary :: Employee
joe = E (P "Joe" "Oregon") (S 8000)
mike = E (P "Mike" "Boston") (S 1000)
kate = E (P "Kate" "San Diego") (S 2000)
mary = E (P "Mary" "Washington") (S 100000)

A simple transformation task is to define an increase function that
increases everybody’s salary by a certain percentage. Normally, in
Haskell we would have to define one increase function for each
individual data type. The only purpose these functions serve is to
traverse the data types and move the incS function to the Salary
type where it actually increases the salary:

incS :: Float -> Salary -> Salary
incS k (S s) = S (s * (1+k))

This incS function is the only interesting bit. All other code is
“boilerplate code”. As the sizes of the data types grow, the boiler-
plate code becomes extremely clumsy and hard to maintain. It also
does not scale up well. Changes to the data type definitions will
entail many changes in the boilerplate codes. In [12], a type ex-
tending function mkT is introduced that, when applied to functions
like incS, produces a generic transformation. A generic transfor-
mation is polymorphic. When applied to a Salary, it behaves the
same as incS, otherwise it behaves like the identity function. The

type extension is implemented with a cast function, which is a
member function of Typeable type class. The cast function per-
forms a safe type casting. Type class Data extends Typeable and
has a member function gfoldl, which will be discussed in Section
3.3, that is essential to defining one-layer traversals.

A generic traversal combinator everywhere is also provided
that traverses a term recursively and applies a generic transforma-
tion to every node in the term.

With the generic traversal combinator, programmers only need
to implement the interesting part of recursive traversals, the incS
function, and feed them to mkT and everywhere to achieve the
same goal as the boilerplate code. The definition of the increase
function defined in [12] is repeated here for reference:
increase :: Float -> Company -> Company
increase k = everywhere (mkT (incS k))

The scrap-your-boilerplate (SYB) approach relieves a big bur-
den from Haskell programmers who need to traverse complex data
structures frequently. They can now focus on the code that does
the real job instead of the traversal itself. The boilerplate code to
traverse arbitrary data structures can be automatically derived. In
the following, we illustrate how to implement some traversals in
our library through several examples. We begin with defining the
increase function using our interface:
increase :: Float -> Company -> Maybe Company
increase k = traverse Trans NoCtx Full FromBottom FromLeft

(always (incS k))

Compared to the original version, this increase function is de-
fined using more parameters which specify the traversal. In this par-
ticular case, the parameters define the traversal to be a transformer
that modifies nodes, independently of contextual information. It is
a full traversal (all nodes in the tree will be visited), and the order of
visiting the nodes is from bottom to top, from left to right. Another
noticeable difference is the return type, which is a Maybe account-
ing for possible failures. We allow a transformation on a node to
fail. A failed transformation will leave the node unchanged. Such
mechanism can be used to construct contingent transformations.
We will discuss more about failures in Section 2. The “interesting
case” that deals with Salary data is still the incS function, which
we can reuse without changes. However, instead of extending its
type to make it a generic function, we take a slightly different ap-
proach. We define a few combinators to combine specific functions
and pass a list of them to the traversal combinator. In this case, the
combinator always takes the specific function incS k. This spe-
cific function is unconditionally applied and works on any term of
type Salary.

In applications like this one, not all the parameters are interest-
ing. The users usually do not care, or even do not know, about the
context and the left-to-right traversal direction. All they need is a
transformation. We have identified default values for the different
dimensions along which a traversal can be customized and have
introduced functions for all possible combinations of parameters
following a strict naming scheme that will be explained in detail
in Section 3.3. Employing the traversal that represents the shown
traversal parameters, the presented example can be defined much
more succinctly as follows.
increase :: Float -> Company -> Company
increase k = transformB (always (incS k))

The B indicates “bottom-up”, which was chosen in the original SYB
approach. The top-down version transform works just as well.

In the following we continue to use the expanded versions of
the traversals to make the parameters and options explicit.

Our next example is an accumulation instead of a transforma-
tion. An accumulation can serve as a query defined in [12] but is

more general. The following function computes the salary bill for a
company by traversing the company data structure and accumulates
all salaries.

bill :: Company -> Maybe Float
bill = traverse Accum NoCtx Full FromTop FromLeft

(always col) 0
where col a (S s) = a + s

The local function col takes an accumulator, which is the sum
collected so far, and a Salary and adds the salary to the sum. In
the end of the traversal, the accumulator is the sum of all salaries.

1.1 Possible Extensions

1.1.1 Accumulation and Transformation

Suppose we not only want to increase everyone’s salary, but also
need the total amount being increased. We keep traversing the
company data structure, increasing everyone’s salary and modify
the total amount at the same time. Again, we need to resort to a
combinator that is similar to everywhere, but can maintain a state
for the total. Such a function can be defined as follows. Upon a
successful return, the result consists a total amount and a modified
company value.
incBill :: Float -> Company -> Maybe (Float,Company)
incBill k = traverse AccTrans NoCtx Full FromTop FromLeft

(always (colS k)) 0

colS :: Float -> Float -> Salary -> (Float, Salary)
colS k a (S s) = (a+k*s, S (s*(1+k)))

A similar application in program transformation occurs when we
need to generate new variables that do not conflict with any exist-
ing variables in the original program. We need to keep track of vari-
ables that have been already generated to keep the variable names
unique. In general, a transformation might need to access infor-
mation accumulated from the nodes visited so far in the traversal.
Accumulations find a broad range of applications in language pro-
cessing area. Examples include counting certain nodes, collecting
variables, collecting other constructs, etc.

1.1.2 Partial Traversals

In some applications, not all the nodes in a term have to be vis-
ited. Consider a local transformation where we only want to apply
the transformation to a certain part of the term. One such applica-
tion is increasing salaries in a certain department rather than the
whole company. This problem is addressed in Section 6.2 in [12]
with a function incrOne defined using the gmapT function, which
is rather complicated to come up with for ordinary programmers.
Since a similar pattern can be observed in many applications, it
would be beneficial to provide a general solution once and for all.
An elegant way to realize such a transformation is to employ a so-
called stop-traversal [11]. A stop-traversal tries to apply a visit to
all nodes. If the visit succeeds on a node, the traversal continues
without descending into that node. In this example, another traver-
sal is passed as a visit argument to the outer traversal. The nested
traversal is the increase function. It is applied to nodes that are
departments with a matching name. The mwhenever function is
used to construct a conditional visit and will be explained in Sec-
tion 3.1.

incOne :: Float -> Name -> Company -> Company
incOne k d = traverse Trans NoCtx Stop FromTop FromLeft

(increase k ‘mwhenever‘ isDpt d)

isDpt :: Name -> Dept -> Bool
isDpt d (D n _ _) = n==d

We can also consider once-traversals [25] where we only want
to apply a transformation once. These are also a special case of
partial traversals. For instance, we can increase the first salary we
encounter when traversing the company data.

incFst :: Float -> Company -> Maybe Company
incFst k = traverse Trans NoCtx Once FromTop FromLeft

(always (incS k))

1.1.3 Traversal with Contexts

Transformations that depend on non-local data are also difficult
to express in the original SYB approach. Let us consider a more
complicated application of increasing salaries. Say we want to
adjust the increase rate according to the department. A context,
which is the increase rate, is carried through the traversal. It is
initialized to a default rate and is updated whenever the traversal
is descended into a node so that all salaries inside that node will
get increased by the new rate (unless the rate gets changed again
before that salary is reached).

incDpt :: Float -> Company -> Maybe Company
incDpt = traverse Trans Ctx Full FromTop FromLeft

(mk (\c d -> lookupRate d))
(always incS)

Compared to the previous examples, this contextual traver-
sal takes as an additional argument a context updater
(\c d -> lookupRate d), where the function lookupRate
determines the increase rate for the department. Similar to visits,
a context updater will be applied to terms of any type. Therefore,
it needs to be generic as well. The mk function is used to wrap a
specific context updater and make it generic. It will be explained
in Section 3.1 along with combinators for visits.

The careful reader might have noticed that the visit in this
example, expressed by always incS, has a different type than
before. Here, incS is used as a contextual visit, which takes an
extra parameter, the context. The types of all 6 visits are listed in
Table 2. The always function is overloaded in order to provide a
uniform interface to the programmer.

We can also consider an application in language processing.
Suppose we want to implement a beta reduction for lambda cal-
culus. A beta redex is a lambda abstraction applied to an argument.
The body of the lambda abstraction is traversed so that all the free
occurrences of the bound variable are replaced by the argument.
However, we have to be careful not to replace locally bound vari-
ables with the same name. When we descend into the term, we need
to keep track of a collection of bound variables. The transformation
needs to check against these variables.

From these two problems, we can generalize a pattern of con-
textual traversal. An initial context is passed to the traversal and it
gets updated by an update function when descending into subterms.
A beta reduction carries a list of bound variables as the context and
it gets extended at lambda abstractions.

1.2 Contribution and Organization of This Paper

The shown applications can be generally implemented by employ-
ing the generic fold operator gfoldl defined in [12]. However, this
is not at all a trivial task. Our goal is to generalize the design pattern
and extend it to support these applications. The approach we take is
to combine contributions from SYB, Strafunski, and Stratego and
to create a fully typed generic traversal library consisting of catego-
rized recursive traversal strategies and implement the library with
strategy combinators.

Lämmel and Visser present a combinator library for generic
traversals and a set of traversal schemes as part of Strafunski [15,
16, 11]. However, it relies on DrIFT to generate the instances of
type class Term. Also, it is not a fully statically-typed approach.

Stratego
untyped

standalone

strategy combinators

SYB

Integrated in Haskell

Static typing

Strafunski

DrIFT

Traversal hierarchy

Mother of traversals

Figure 1. Haskell Recursion Library integrating ideas and con-
cepts from Stratego, Strafunski, and SYB

One uses an abstract datatype for generic functions to separate
typed and untyped code. In [11], Lämmel presents a hierarchy
of traversals and defines a traverse function that can be highly
parameterized. We make use of this “mother of traversals” to derive
all traversals.

Stratego [25, 24, 2] defines an abundant set of traversal strate-
gies. Our main motivation comes from the need to apply these
traversal strategies in our program transformation tool [7]. How-
ever, we want to use them in the context of Haskell. We also want
the static type safety, which is not found in Strafunski and Stratego.
We are also motivated by the need for a concise program interface
without using complex data types such as monads. Therefore, we
propose the approach of defining a generic traversal library with a
simple and general programming interface and a rich set of traver-
sal strategies. In this experimental implementation, we focus on the
concepts rather than having a complete set of traversal strategies.
However, with the genericity of the approach, new traversal strate-
gies can be defined easily. The relationship between this library and
Stratego, Stranfunski, and SYB is sketched in Figure 1. The source
code of the library can be obtained online [18]. Features of different
approaches are compared in Table 1.

Reclib Stratego Strafunski SYB
Typed X X

Integrated in Haskell X X X

Strategies X X X

Concrete Syntax X

Table 1. Feature comparison of Haskell Recursion Library, Strat-
ego, Strafunski, and SYB.

In the rest of this paper, we categorize in Section 2 the prob-
lem domain of traversals by extracting five parameters that are,
to a large extent, orthogonal to each other. In Section 3, we de-
scribe a high-level programming interface. This interface provides
a means to parameterize traversal strategies that cover all possible
combinations of those five parameters. In the core of the interface,
we define one generic traversal strategy that is the “mother” of all
one-pass traversal strategies we explored. An intermediate layer of
programming interface is also defined for users who require more
than one-layer traversals. This interface is concise and clean. Two

fixpoint strategies, innermost and outermost, are studied and im-
plemented using the interface as examples for extendibility. Sub-
sections 3.4 3.5, and 3.6 elaborate implementation details and can
be skipped without jeopardizing understanding of the programming
interface. In Section 4 we illustrate more examples that make use
of the library in greater detail. In Section 5, we present a practical
application of our library. We discuss and compare related work in
Section 6. In Section 7 we present conclusions and directions for
future work.

2. Design Space
In a typical traversal, all or part of the nodes are visited in a
particular order. We use the term visit to refer to one access to
a particular node. During a visit, information is retrieved from
the node, and/or the node is modified. The information and the
modification might depend on the information retrieved from the
nodes already visited in the traversal and/or the path from the node
to the root.

A visit that retrieves information does so by taking already ac-
cumulated information and returning the new accumulator, which
is threaded through all the visits in the traversal. We distinguish
three kinds of visits. A transformer modifies a node without re-
trieving information, an accumulator retrieves information without
modifying the node, and an accumulating transformer does both si-
multaneously. We borrow this categorization from [20]. Every visit
may either succeed or fail. Therefore, the result of a visit is wrapped
in a Maybe data type.

In the example of increasing salaries for people in a certain de-
partment, the traversal combinator needs to carry some information
related to the path from the current node to the root. We call this
a context. The combinator updates the context by applying a user-
provided context function. It then passes the updated context to all
the children of the node.

Therefore, there are all together six kinds of visits whose types
are listed in Table 2. As a convention, we use c to denote a context
type, a for an accumulator type and t for a term type.

Contextual Non-contextual
1 c -> t -> Maybe t t -> Maybe t

2 c -> a -> t -> Maybe a a -> t -> Maybe a

3 c -> a -> t -> Maybe (a,t) a -> t -> Maybe (a,t)

1. Transformation 2. Accumulation 3. Accumulating transformation

Table 2. Types of 6 Kinds of Visits

A traversal can be categorized regarding the number of times
every node is visited. A one-pass traversal traverses a tree in
one pass and visits each node at most once. A typical example
is a depth-first search. A fixpoint traversal [2] applies a visit to
a tree using a certain strategy repeatedly until it is not applicable
anymore. Innermost and outermost traversals fall into this category.
We implement both kinds of traversals in our library, but we focus
more on one-pass traversals.

In a one-pass traversal, it is not always desirable to visit all
the nodes in a term. A typical scenario of a partial traversal is
when we abort the traversal after a single successful visit. This
kind of coverage is called once as opposed to full where all nodes
are visited sequentially unless stopped by a failed visit. Another
common situation is a so-called stop-traversal that tries to apply a
visit to the root node of a tree. If it fails, it then tries to recursively
apply it to all children. Otherwise, it stops. Effectively, a stop-
traversal visits nodes on a frontier of a tree. A typical application
for such traversals is optimization. We can significantly decrease
the number of nodes visited by focusing on interesting nodes.
Symmetrically, a spine-traversal visits a chain of nodes from the

root to a leaf. A spine-traversal fails if no spine exists such that
the visit succeeds on every node on the spine. Figure 2 illustrates
these four different kinds of coverage. In the figure, the dashed line
connects all nodes that are successfully visited, but does not include
those tried but failed.

f

1 g

3 4 5

h

x y

f

1 g

3 4 5

h

x y

f

1 g

3 4 5

h

x y

f

1 g

3 4 5

h

x y

Full Stop

Spine Once

Figure 2. Traversals of 4 Kinds of Coverage

Furthermore, there are two kinds of directions that affect the
order in which the nodes are visited: the vertical direction and the
horizontal direction. A vertical direction can be either top-down or
bottom-up. A horizontal direction is either left-to-right or right-to-
left. In a top-down traversal, a root is visited before its descendants.
In a bottom-up traversal, the children are visited before their parent.
Top-down and bottom-up traversals are also often referred to as
preorder and postorder traversals, respectively. The order in which
the siblings of a common parent are visited is determined by the
horizontal direction, which can be either from the left or from the
right. The directions usually matter for the accumulating traversals
or once-traversals. Figures 3 and 4 illustrate vertical and horizontal
directions, respectively.

f

1 g

3 4 5

h

x y

f

1 g

3 4 5

h

x y

Top-down Bottom-up

Figure 3. Vertical Direction

In summary, five parameters determine a (one-pass) traversal:
kind of the visit, context, coverage, and two directions. These
parameters are mostly orthogonal to each other. We can obtain a
rich set of traversals by customizing all these parameters.

3. Programming Interface
Our goal is to provide an easy-to-use and effective programming
interface to users who wish to program generic traversals. In this

f

1 g

3 4 5

h

x y

f

1 g

3 4 5

h

x y

Left-to-right Right-to-left

Figure 4. Horizontal Direction

section, we will describe the generic traversal combinators and
some necessary helper functions. The interface is divided into two
layers. A higher-level interface is provided to users who do not
have profound knowledge in generic programming and term traver-
sals. They can easily program their own traversals using provided
combinators and compose necessary arguments using the auxiliary
functions. The library is flexible and extensible in the sense that an
intermediate layer is exposed to users who wish to write traversal
strategies that are not found in our library to meet their own needs.
As an example, the implementation of fixpoint traversal combina-
tors innermost and outermost will be presented. Other example
traversals include downup and updown strategies [23, 2]. They, too,
can be implemented with the intermediate layer of our library.

3.1 Building Generic Functions

The visits as well as context updaters are generic in the sense that
they are applicable to values of any type. The mkT function de-
scribed in [12] creates a generic function of type a -> a out of
a specific function, and extT extends a generic function with a
specific function. However, this approach of using two combina-
tors does not work for our purpose for two reasons. First, our visits
return Maybe values. Second, we cannot expect one set of combi-
nators to work for all kinds of visits, because they generally have
different types, as we have seen in Table 2. Having a separate set
of such mkT and extT combinators for each kind of visit is very
cumbersome. Therefore we decided to provide a universal mech-
anism for composing visits and hide the differences and details.
The decision resulted in the design that the generic traversal func-
tion traverse (which will be explained in Section 3.2) takes a
list of specific visits (and possibly context updaters) rather than a
generic one. This also relieves the users of the burden of applying
the extending combinator. We need to encapsulate specific context
updaters and visits with rank-2 polymorphic data types so that they
can be put into lists. An example of such a data type for a contex-
tual accumulating transformer is the data type GenCAT, defined as
follows.
data GenCAT c a = forall t. Typeable t =>

GenCAT (c -> a -> t -> Maybe (a,t))

Specific visit functions that work on different types of nodes (but
on the same context and accumulator types) can be wrapped with
the data constructor GenCAT and put in a list which is passed to
the traverse function. For each kind of visit listed in Table 3,
a separate data type is required. The context updater works in a
similar way.
data GenU c a = forall t. Typeable t =>

GenU (c -> t -> c)

To hide the differences between these data constructors, one over-
loaded function mke is provided. It serves a similar purpose as mkT
function except that it works for all visits and context updaters. A
specific visit or context updater is passed to the mke function, and a

generic one is constructed. For contextual accumulating transform-
ers, its type is the following.
mke :: (c -> a -> t -> Maybe (a,t)) -> GenCAT c a

Since in many cases a generic function is built from just one
specific function, a function mk is defined to further hide the list
structure.
mk x = [mke x]

In fact, even if two or more specific functions are used to compose
a generic one, the mk function can be used, and the results can be
concatenated using ++ operator. Therefore clients usually do not
need the mke function.

In addition to the mk combinator, we provide two sets of combi-
nators for composing visits. To selectively apply one of two visits
depending on the node, a combinator mcond is provided, which
takes one predicate and two visits. It implements a conditional. In
cases where the else part is missing (indicating a failed visit), the
combinator mwhenever can be used. To apply a visit uncondition-
ally, the combinator malways is used. A visit returns a Maybe value
to indicate a success or failure. For visits that do not fail, it is an
extra burden to handle the Maybe data type. We define three sym-
metric combinators cond, whenever, and always that take visits
that do not return Maybe values. In the salary-increasing example,
the visit can be composed using always: always (incS k). A
visit that increases every salary inside a node if the node is a cer-
tain department can be composed with the increase function and
a predicate, that takes the department name as a parameter d.
increase k ‘mwhenever‘ \(D n _ _) -> n==d

Such a visit can be used to compose a stop-traversal. It is recur-
sively tried on every node in a term but has no effect on the node
unless it is a department whose name matches d, in which case
the increase function is applied recursively to the subtrees of that
node.

3.2 Traversal Engine

The main component of the interface is a heavily overloaded func-
tion traverse that can be customized by all the five parameters
we mentioned. And since it is an overloaded polymorphic func-
tion, its type varies. It is defined as a member function of type class
Traversal:
class Traversal u v c a t x | u v c a t -> x where

traverse :: u -> v -> Coverage -> VD -> HD-> x

What is common to all instances are the first five parameters that
identify a traversal. Type variable u represents the kind of visit, and
v is either Ctx or NoCtx representing the presence or absence of the
context. As explained in Section 2, type variables a, c, and t rep-
resent the types of the accumulator, context and term, respectively.
The functional dependency helps the type system determine the in-
stance of traverse when it is applied but the result type is not
explicitly specified. The reader might wonder whether c, a, and t
are really needed since they do not appear in the type of traverse.
The answer is yes, they are indeed required, because x, the type of
the traversal, depends on them.

Presented below are the data type definitions for the parameters
of traverse..

v = Ctx v = NoCtx

1 [GenU c a] -> [GenCT c a] -> [GenT c a] ->
c -> t -> Maybe t t -> Maybe t

2 [GenU c a] -> [GenCA c a] -> [GenA c a] ->
c -> a -> t -> Maybe a a -> t -> Maybe a

3 [GenU c a] -> [GenCAT c a] -> [GenAT c a] ->
c -> a -> t -> Maybe (a,t) a -> t -> Maybe (a,t)

1. u = Trans 2. u = Accum 3. u = AccTrans

Table 3. Types of Traversals

data Trans = Trans
data Accum = Accum
data AccTrans = AccTrans

data Ctx = Ctx
data NoCtx = NoCtx

data Coverage = Full | Spine | Once | Stop
data VD = FromTop | FromBottom
data HD = FromLeft | FromRight

Kind of visit and context presence are defined using one data
type for each kind as opposed to the other three parameters in
which each kind is represented by just one data constructor. This
is simply a means for the compiler to choose the correct instance of
traverse function. The rest of the parameters and the result type
are all combined in x, which is the traversal type, determined by
u, v, and the types of the accumulator, the context and the term.
For example, an instance of contextual accumulating transformers
takes the following form.
instance Data t => Traversal AccTrans Ctx c a t

([GenU c a] -> [GenCAT c a]
-> c -> a -> t -> Maybe (a,t))

where ...

A complete list of correspondence between x, u, and v is listed in
Table 3.

A list of context updaters ([GenU c a]) has to be provided
for contextual traversals. A list of visit functions is required for
all traversals. The type of the visit depends on the kind of the
visit and presence of context. The most general visit, a contextual
accumulating transformer, has the following type, defined as a type
synonym (GCAT is not an abstract data type and should not be
confused with GenCAT previously mentioned).
type GCAT c a = forall t. Data t =>

c -> a -> t -> Maybe (a, t)

where c is the type of the context, a is the type of the accumulator,
and t is a universally quantified type variable, which means that a
visit is a rank-2 polymorphic function that should be applicable to
values of any type. We provide auxiliary combinators for compos-
ing such generic functions out of specific functions as we have seen
in Section 3.1. The result type of this visit, Maybe (a,t), captures
the nature of an accumulating transformer. Upon success, a new
accumulator and a modified node are returned. The visit returns
Nothing to signal a failure. The action to be taken upon a failed
visit depends on the traversal: Full-traversal or spine-traversal fail
immediately, whereas once- and stop-traversals continue. However,
while a once-traversal continues with the subterms only until a suc-
cessful visit, a stop-traversal continues even after a successful visit,
it only stops descending into subterms. The types of other kinds of
traversal can be deduced naturally. For non-contextual visits, the c
is omitted, transformers will not have the a, and an accumulator
returns a value of type Maybe a instead.

3.3 Syntactic Sugar

The traverse function is the ultimate interface for the pro-
grammers. However, programmers are not always interested in all
the traversal parameters. In the example of increasing everyone’s
salary, the traversal order has no effect on the result. For cases like
this, we define instances of the traverse function using default
values. We introduce 96 functions, each of which is a partial ap-
plication of traverse function to a combination of the traversal
parameters. The functions follow a naming convention. The name
consists of a verb and an optional prefix and three optional suffixes.
The verb is either transform, accumulate, or acctrans. The
prefix specifies the coverage, which defaults to full, when omitted.
The first suffix is the presence of the context. A letter C follows the
verb to obtain a contextual traversal, an absence indicates a non-
contextual traversal. What follows is the vertical direction. A letter
B indicates a bottom-up traversal. When it is omitted, a top-down
traversal is obtained. Finally, a ’ symbol can be appended to the end
to obtain a right-to-left traversal instead of the default left-to-right
version.

According to these naming rules, a contextual, bottom-up, right-
to-left accumulation corresponds to function accumulateCB’ of
the following type.
Data t => [GenU c a] -> [GenCA c a] ->

c -> a -> t -> Maybe a

With the conventions, the functions defined in Section 1.1 can be
given in a more succinct way:
increase k = transformB (always (incS k))
bill = accumulate (always col) 0
incBill k = acctrans (always (colS k)) 0
incOne k d = stopTransform (increase k ‘mwhenever‘ isDpt d)
incFst k = onceTransform (always (incS k))
incDpt k d = transformC (mk (\c d -> lookupRate d))

(always incS))

3.4 Crafting Traversals

The combinators we presented above provide enough flexibility for
defining commonly used one-pass traversals. But more complicated
traversals, such as a fixpoint traversal innermost which might visit
some nodes more than once, cannot be expressed. To help users
who have knowledge in traversal strategies and need to define
special traversals, the library also exposes an intermediate layer.
In the rest of this section we explain how the recursive traversal
strategies are defined using the intermediate layer.

A basic component of every traversal strategy is a one-layer
strategy. Such a strategy does not apply a visit recursively. Instead,
it applies another strategy to the immediate subterms. We define
four such combinators. Strategy all_l applies a strategy to all
the immediate subterms of a node in a left-to-right order. Strategy
one_l tries a strategies on all subterms of a term and stops after a
successful application. The other two, all_r and one_r, are their
right-to-left counterparts. Recursive traversals can then be built on
these one-layer strategies. For instance, a top-down full-traversal
can be conceptually defined as follows.1

fulltd(v) = v; all(fulltd(v))

where v is the visit to be applied. The sequential composition
operator ; [24] takes two strategies and applies them sequentially.
Failure of either one will cause the failure of the whole strategy.
Instantiating all [24] in the above definition with all_l and all_r
will result in left-to-right and right-to-left versions of top-down
full-traversals. A one-layer strategy does not need to take into

1 The definition is taken from that of the topdown strategy in [25], but
renamed here for the naming consistence.

consideration the context because all immediate subterms will have
the same context. It is the job of the recursive traversal strategies to
update the context and pass it to one-layer traversals. We define a
type synonym for a one-layer traversal without a context:
type GAT a = forall t. Data t => a -> t -> Maybe (a,t)

It is a generic function that takes an accumulator and a term of any
type and returns a new accumulator and term upon success. All
the one-layer combinators take a strategy of this type and return
a strategy of the same type. They are defined with the help of the
gfoldl function [8, 12] which works more or less the same way as
list folding.

gfoldl � f (C t1 t2 . . . tn) = f(C)� t1 � t2 · · · � tn

The unary operator f is applied to the constructor C, then the result
is passed to the binary operator � with the first subterm, obtaining
a result which is again passed to the binary operator along with the
second subterm, and so on. Thus all_l is defined as follows, and
will be explained below.
newtype Xall_l a t = Xall_l {unXall_l :: Maybe (a,t)}

all_l :: GAT a -> GAT a
all_l s a t = unXall_l (gfoldl k z t)

where z d = Xall_l (return (a, d))
k (Xall_l x) t = Xall_l (do (a,d) <- x

(a’,t’) <- s a t
return (a’, d t’))

If this looks awfully complicated, it is the auxiliary data type
Xall_l that is to be blamed. Its sole purpose is to make the
type system happy. Otherwise, the definition of all_l could be
simplified as follows.
all_l s a0 = gfoldl k z

where z d = return (a0,d)
k x t = do (a,d) <- x

(a’,t’) <- s a t
return (a’,d t’)

Passed along the fold are an accumulator and a partially applied
term, encapsulated in Maybe. A Nothing value indicates a failure
in the previous computation and thus should be propagated (this
is hidden by using the monad instance of Maybe). Otherwise, the
value is passed to the binary operator k whose second parameter
is the current subterm. k applies the visit to the current subterm
resulting in a new accumulator and a new term. The partially
applied constructor is applied to the changed term and is returned
along with the new accumulator. The initial value for the fold is
obtained from the unary operator z which, when applied to the data
constructor, returns the initial accumulator and the constructor.

Having understood the logic, we can then examine the type of
gfoldl, which is the reason why the above simplified code does
not type-check.
gfoldl :: (forall a t. Data t => c (t -> a) -> t -> c a)

-> (forall g. g -> c g)
-> b -> c b

Understanding the above type signature is difficult. The first line is
the type for the binary operator; the second line is the unary oper-
ator. It is not surprising to see that both operators have polymor-
phic types because they are applied to all direct subterms that do
not necessarily have the same type. The term to fold is of type b
and the result is of type c b. The same type constructor is used
for the unary and binary operators. In the case of all_l, the pair
whose type is Maybe (a,b) does not match the form c b. This is
why the auxiliary data type is needed, that is, the type constructor
Xall_l a plays the role of c here.

Defining a right-to-left traversal is more tricky, because no

gfoldr is available. We need to do a left fold and incrementally
generate a function along the fold.2 The function, when applied to
an accumulator, applies the traversal to the current term and the ac-
cumulator, and then passes the result to the function generated from
the previous term.
newtype Xall_r a t = Xall_r {unXall_r :: a -> Maybe (a,t)}

all_r :: GAT a -> GAT a
all_r s a t = unXall_r (gfoldl k z t) a

where z d = Xall_r (\a -> return (a,d))
k (Xall_r g) t =

Xall_r (\a -> do (a’,t’) <- s a t
(a’’,d) <- g a’
return (a’’,d t’))

The other two one-layer strategies one_l and one_r are slightly
more involved, but can be defined similarly.

Now, to define the recursive traversal fulltd, we still need a se-
quential composition combinator, which can be defined as follows.
compose :: GAT a -> GAT a -> GAT a
compose s1 s2 a t = do (a’,t’) <- s1 a t

s2 a’ t’

With all_l and compose, we are ready to define the top-down
full-traversal strategy.

3.5 The Mother of All Traversals

Before we present the definition of the top-down full-traversal,
let us first examine all the coverages we mentioned, namely, full,
spine, stop, and once. If the horizontal direction is ignored, all the
four variations can be summarized as follows.3

fulltd(v) = v; all(fulltd(v))
spinetd(v) = v; one(spinetd(v))
stoptd(v) = v + all(stoptd(v))
oncetd(v) = v + one(oncetd(v))

The choice combinator + takes two strategies, and tries the first
one. Only if it fails, the second one is applied. Since the visits return
Maybe values, the choice combinator can be defined in Haskell as
follows.
choice :: GAT a -> GAT a -> GAT a
choice s1 s2 a t = s1 a t ‘mplus‘ s2 a t

Now we can observe a strong similarity among all these traversal
strategies: they all have the same form, the only differences being
all/one and the ;/+ combinators. Examining the bottom-up versions
reveals the same similarity:

fullbu(v) = all(fullbu(v)); v
spinebu(v) = one(spinebu(v)); v
stopbu(v) = all(stopbu(v)) + v
oncebu(v) = one(oncebu(v)) + v

In fact, we can observe that these bottom-up strategies are just the
flip side of the top-down strategies. Take this literally, replacing ;
and + with their flipped versions in the definitions of the top-down
strategies, we obtain exactly the bottom-up counterparts. Thus, we
can generalize the pattern and define a “mother of all traversals”
[11] that can generate all these traversal strategies given appropriate
parameters.

mother(s) = s · f(mother(s))

The combinator f is a one-layer strategy, which can be either
one_l, one_r, all_l, or all_r. The combinator · is taken from
compose, choice, compose’ and choice’ where compose’

2 This approach is called second-order fold [19, 26].
3 stoptd is also called alltd in [22]

and choice’ are the flipped versions, with the two parameters
swapped.4

compose’ s1 s2 = compose s2 s1
choice’ s1 s2 = choice s2 s1

Each combination of parameters uniquely determines the behavior
of the traversal. Table 4 lists all possible combinations.

↓ ↑

compose choice compose’ choice’
all_l full stop full stop

→
one_l spine once spine once
all_r full stop full stop

←
one_r spine once spine once

Table 4. Children of the Mother of Traversals

With the mother of all traversals, traversals of different cover-
age, vertical, and horizontal directions are just a matter of partial
applications of fixed parameters. The actual definition of mother
in Haskell takes into consideration the context.

mother :: (GAT a -> GAT a -> GAT a) ->
(GAT a -> GAT a) ->
GCU c ->
GCAT c a ->
GCAT c a

mother g f u s c a t = (s c
‘g‘
f (mother g f u s (u c t))
) a t

The context c is updated by the context updater u and passed to
one-layer strategy combinator f.

The mother function is used to define instances of traverse
by fixing the parameters g and f as shown in the next subsection.

3.6 Failure and Continuation

One issue worth mentioning is that a visit either fails or succeeds
on a node. Continuation depends on the recursive traversal strat-
egy. In the case of generic traversals, since the generic visits are
converted from specific visits, there is in fact a third case. That is,
none of the visits is applicable to the node. Handling such cases
requires discretion from the designers. In our library, it is handled
differently depending on the coverage of the traversal. In a full or
spine-traversal, such cases are regarded as successful visits that do
not change the term nor the accumulator. The rationale behind this
is that users write specific visits and apply them everywhere appli-
cable. If they want to stop a traversal, they should explicitly signal a
failure. Under this assumption, the users are able to perform traver-
sals even if they do not have complete knowledge of the whole tree.
Therefore, in a full or spine-traversal, the traversal never fails un-
less a visit fails.

However, in a stop or once-traversal, a non-applicable visit is re-
garded as a failure. This is because in these two kinds of traversals,
the traversal continues after failed visits. In a once or stop-traversal,
the traversal succeeds only when there is a successful visit. Simi-
larly, if a user does not have complete knowledge of the whole term,
she is still able to handle those she is interested in and ignore others.

As we have seen in Section 3.5, we need to pass generic visit
functions to the core combinator. However, the traverse function
takes a list of specific functions. The gap is filled by type extension.
Similar to the mkT and mkQ functions from [12], a generic function
is used as the unit value for a fold operation over the list. The binary

4 We would have defined them using the flip function, but the type system
prevented us from doing so, due to the rank-2 polymorphism.

operator for the fold is the type extension function ext0 defined in
the Data.Generics.Aliases module of the Haskell Hierarchical
Libraries [8]. The unit value is chosen based on the policy we just
described. For full or spine-traversals, it is a function that always
succeeds.

vsucc :: GAT a
vsucc a t = return (a,t)

For stop- or once-traversals, it is a function that always fails.

vfail :: GAT a
vfail _ _ = mzero

One of the two above combinators is chosen based on the coverage
and used as a unit for the fold on the list of specific visits. In cases
when the context updaters are present, they are also folded, with
the unit being the constant function. The parameters g and f of the
mother function presented above are chosen based on the coverage
and traversal directions by looking up Table 4. For instance, the
instance of the traverse function for contextual accumulating
transformations is given as follows.

instance Data t => Traversal AccTrans Ctx c a t
([GenU c a] -> [GenCAT c a]
-> c -> a -> t -> Maybe (a,t))

where traverse _ _ cov vd hd us vs =
travt cov vd hd (foldC us)

(foldV (catchv cov) vs)

The function travt looks up the table and partially applies mother
to appropriate parameters.

travt :: Coverage -> VD -> HD -> GCU c
-> GCAT c a -> GCAT c a

travt cov v h = mother (g cov v) (f cov h)
where g :: Coverage -> VD -> GAT a -> GAT a -> GAT a

g Full FromTop = compose
g Spine FromTop = compose
g Once FromTop = choice
g Stop FromTop = choice
g Full FromBottom = compose’
g Spine FromBottom = compose’
g Once FromBottom = choice’
g Stop FromBottom = choice’
f :: Coverage -> HD -> GAT a -> GAT a
f Full FromLeft = all_l
f Stop FromLeft = all_l
f Spine FromLeft = one_l
f Once FromLeft = one_l
f Full FromRight = all_r
f Stop FromRight = all_r
f Spine FromRight = one_r
f Once FromRight = one_r

foldC folds the specific context updaters. It begins with the unit
(the const function), extends with the specific functions in the list.
foldV does the same for the visits. However, for the visits, the unit
will be determined by the coverage as we have just explained. This
is realized by the function catchv, which determines the unit value
for foldV as follows.

catchv :: Coverage -> GAT a
catchv Full = vsucc
catchv Spine = vsucc
catchv Once = vfail
catchv Stop = vfail

Other instances of traverse are defined similarly. In cases where
the context is not present, a default value for the context is needed.
We use undefined since we need a value of type a and since it will
never be accessed in a lazy evaluation setting. Transformations and

accumulations are converted to accumulating transformations by
providing a default implementation for the missing part and passed
to the mother function and the result is converted back. We omit
the tedious details here for simplicity.

3.7 Fixpoint Traversals

So far all the traversal strategies are one-pass strategies, which
means that they apply a visit at most once to one node. Consider
the case of beta reduction of lambda terms with applicative order.
One step of reduction on a redex might result in a new redex inside
the original one. A bottom-up traversal does not always result in a
beta normal form. In such cases, an innermost traversal is needed.
Such traversal strategies that apply visits to a term repeatedly until
they are not applicable anymore are called fixpoint traversals. An
innermost traversal applies a visit to an innermost subterm and
obtains a new term. It repeats this process until no such subterm
exists that the visit can be successfully applied. The innermost
strategy is defined as follows [25].

innermost(s) = repeat(oncebu(s))

Here the repeat combinator applies a strategy to a term until it fails.
Our library enables the definition in a typed framework. This

combinator, along with several other primitive combinators are part
of the library targeted for advanced users. So far, we have defined
these combinators: a succ is a strategy that always succeeds without
changing the term or the accumulator. This is the vsucc function
we just defined. Note that it is also merely a curried version of the
return function of the Maybe monad. Not very surprisingly, the
strategy fail that always fails is the vfail function we defined in
Section 3.6. The try strategy [25] takes another strategy and tries to
apply it. If it fails, the succ strategy is used:

try :: GAT a -> GAT a
try s = s ‘choice‘ vsucc

Now, the repeat combinator [25] is defined in terms of try recur-
sively.5

rep :: GAT a -> GAT a
rep s = try (s ‘compose‘ rep s)

Note that passing an identity transformation (one that always suc-
ceeds and returns the original term as the modified term) to repeat
will cause an infinite loop. Notice that an outermost strategy is
symmetric to innermost [25]:

outermost(s) = repeat(oncetd(s))

Therefore, they both can be defined as instances of a more general
xmost combinator with the help of mother.
xm :: (GAT a -> GAT a -> GAT a) ->

(GAT a -> GAT a) ->
GCU c ->
GCAT c a ->
GCAT c a

xm g f u s c = rep (mother g f u s c)

By choosing g from choice and choice’ and f from one_l
and one_r, innermost and outermost traversal strategies in both
directions can be defined.

The aforementioned beta reduction application can be defined
with innermost or outermost traversals depending on the reduction
strategy. The following two Haskell functions implement applica-
tive and normal-order beta reductions, respectively.

5 To avoid name clash with Prelude.repeat, it is named rep.

appEval :: Lam -> Lam
appEval = innermost Trans NoCtx FromLeft

(reduce ‘whenever‘ isRedex)

normEval :: Lam -> Lam
normEval = outermost Trans NoCtx FromLeft

(reduce ‘whenever‘ isRedex)

isRedex :: Lam -> Bool
isRedex (App (Abs _ _) _) = True
isRedex _ = False

A visit reduces the term if it is an redex and fails otherwise.
The innermost or outermost traversal strategy applies such a visit
repeatedly to some subterm until it contains no redex anymore. A
one-step reduction is performed by a full traversal searching for
occurrences of the bound variable. A list of locally bound variables
is passed as a context so that they are not substituted. The reduce
function will be presented in Section 4.

4. Examples
In this section, we explore a few more sophisticated traversals and
demonstrate how to implement them with our library. Suppose we
again want to increase salaries in a company, but we only have
a limited budget. We keep traversing the company data structure,
increasing everyone’s salary until the budget is all spent. The incS
function then needs to know the total amount increased for the
already visited people. This problem can be implemented by using
an accumulating transformation. The remaining budget is passed
along the traversal. Whenever we increase a salary, the increment
has to be taken from the budget. The salary should not change if
the budget is exhausted. The visit works on Salary values as did
incS. The difference is that it returns a new budget paired with the
changed salary.
incBud :: Data t =>

Float -> Float -> t -> Maybe (Float,t)
incBud bud k = acctrans (always (incSbud k)) bud

incSbud :: Float -> Float -> Salary -> (Float,Salary)
incSbud k c (S s) = (c-i,S (s+i))

where i = min (s*k) c

In this application, if the budget is exhausted, those who are visited
later in the traversal (in this case, those at the right and the bottom)
are left without an increase, which is not a fair strategy. A more
sophisticated approach is to examine the salaries of all employees
and the budget and then decide what to do with each individual
salary. We can imagine different strategies. A socialisticly inclined
increase would start increasing the lowest salaries first. In a capital-
istic approach, we would start with the highest salaries. Any such
scheme can be passed as a parameter to a smart increase function.
The scheme is a function that takes a list of all salaries and returns a
list of new salaries. The company data structure is traversed and the
salaries are collected in a list passed to the scheme. The salaries are
replaced with the ones in the new list. It appears that two passes are
needed to accomplish the whole task. However, thanks to lazy eval-
uation, we can implement it with just one pass using a trick devised
by Bird in 1984 [1, 5]. The visit, which is an accumulating trans-
former, works on Salary values. The old salary is appended to the
salary list. A new salary is taken out of the new list and replaces the
old salary. The new list is obtained by applying the scheme to the
old salary list, which is just the first component of the result of the
smart increase function. Since the visit never fails and the traver-
sal is a full-traversal, we can safely assume that the return value is
never Nothing.

incSmt :: Data t =>
([Float] -> [Float]) -> t -> ([Float],t)

incSmt scheme t = fromJust (acctrans (always v) [] t)
where v a (S s) = (a++[s],S (new!!length a))

new = scheme (fst (incSmt scheme t))

The above smart increase function provides endless possibilities.
As an example, we show the capitalistic scheme as follows.

capitalism :: Float -> Float -> [Float] -> [Float]
capitalism bud k ys = ys3

where (ys1,xs) = ixSort ys [1..]
(_ ,ys2) = foldr f (bud,[]) ys1
(_ ,ys3) = ixSort xs ys2
f s (b,ys) = let i = min (s*k) b

in (b-i,(s+i):ys)

ixSort :: Ord a => [a] -> [b] -> ([a],[b])
ixSort xs ys =

unzip $ sortBy (\(x,_) (y,_)->compare x y) $ zip xs ys

The list of all salaries is zipped with an index list [1..] and is
sorted by the salaries. We then perform a right fold, which increases
salaries sequentially from the right, to obtain a new salary list
zipped with the indices. The result is then sorted again by the
indices to recover the original order and unzipped. The socialistic
scheme can be similarly defined using a left fold instead.

Now, let us consider the problem of beta reduction we brought
up in Section 1.1. Our task is to implement a one-step beta reduc-
tion on a redex. This problem can be solved with a contextual trans-
formation.
reduce :: Lam -> Lam
reduce (App (Abs v e) d) = fromJust (

transformCB (mk upd) (always $ subst v d) [] e)
reduce e = e

upd :: [Name] -> Lam -> [Name]
upd bv (Abs v _) = v:bv
upd bv _ = bv

subst :: Name -> Lam -> [Name] -> Lam -> Lam
subst v d bv e@(Var (V v’)) | v’==v && notElem v bv = d
subst _ _ _ e = e

The reduce function performs a bottom-up recursive transforma-
tion on the body of a beta redex. This context-sensitive transfor-
mation substitutes all the free occurrences of the formal parameter
with the actual parameter. The context is a list of bound variables.
It is updated by the upd function. The subst function takes the for-
mal parameter, the actual parameter, a list of bound variable, and a
term. If the term matches the formal parameter and is not bound, it
is substituted by the actual parameter and otherwise unchanged.

5. A Practical Application
The library we have described in this paper has been successfully
applied in a program transformation project that deals with Haskell
programs [7]. The full Haskell abstract syntax consists of about
10 data types and at least 30-40 constructors in total. Repeatedly
implementing recursions over such structures is tedious and non-
modular. In the project, we needed several such recursions. The
generic traversals greatly reduced the amount of code. Here is
a simplified example of a recursion. In this function, we need
to traverse expressions and replace the first subexpression that
meets a certain criterion. The criterion relies on the variables bound
by the surrounding environment. We not only need the changed
expression but also the subexpression that was replaced. The type
of this function is:

f :: [HsName] -> HsExp -> HsExp -> Maybe (HsExp,HsExp)

The arguments are: bound variables, new subexpression, and the
expression to be transformed. The result is an optional pair of the
changed expression and the original subexpression.

We can model the function as a once-traversal with a context
being the bound variables and an accumulating transformation that
does the replacing. The original subexpression replaced is returned
as the result accumulator. We present the pseudo code to illustrate
the essential use of the traversal function.
f bv ne e = onceAcctransC

(mk cfe ++ mk cfd ++ mk cfm)
(malways (qte ne))
(bv,ls)
undefined
e

where qte ne bv e =
if some condition bv e
then Just (e,ne) else Nothing

cfe bv (HsLambda ps _) =
bv ++ variables bound in ps

cfe bv (HsLet ds e) =
bv ++ variables bound in ds

cfe bv _ = bv

cfd (bv,ls) (HsPatBind _ p _ ds) =
bv ++ variables bound in p and ds

cfd c _ = c

cfm bv (HsMatch ...) = ...

In this example, the context, which is given by the collection of
bound variables, is changed whenever a binding is introduced. In
Haskell, an expression, a declaration or a match can each introduce
bindings. They are defined as different data types. Therefore, the
generic context function needs to be composed of three specific
cases. Functions cfe, cfd, and cfm are such specific functions.

6. Related Work
Without generic programming, functional programs suffer from a
scalability problem (not necessarily efficiency wise, but with re-
gard to the design). Generic functions whose behavior is defined
inductively on the structures of the data can be scaled to large data
structures easily without extra effort. They can even be reused for
data types that are not yet defined. Our problem domain is pro-
gram transformation and program generation, in particular, auto-
matic monad introduction [7] and parameterized program gener-
ation [6]. Practical problems on large data structures such as the
abstract syntax of Haskell and Fortran call for generic term traver-
sals. Various approaches can be used for the purpose of generic
term traversals. The program transformation tool Stratego/XT im-
plements a set of strategies many of which are related to generic
traversal [22]. However, the language lacks a strong static type sys-
tem. Generic Haskell [4, 17] is a language extension to Haskell. It
allows one to define purely generic functions. But a generic func-
tion is not a first-class citizen in Generic Haskell, which means that
we can not define higher-order generic functions.

In [16] and [15], a combinator library (Strafunski) including
generic traversal combinators is presented. These papers catego-
rize a strategy into type preserving and type unifying strategies. To
some extent, they correspond to the concepts of transformations
and accumulators proposed in the present paper. A set of traversal
schemes is also defined. These schemes, along with those defined
in Stratego [23, 25, 2] are the main inspiration of our categoriza-
tion of the problem. In [11] Lämmel proposed a highly parame-
terized generic traversal combinator. We implement these traversal

strategies in a statically typed framework proposed in [12, 13, 14].
Hinze, Löh, and Oliveria propose a spine view of data types and
use it to define underlying SYB generic functions [9]. Because they
are mostly compatible with the original SYB functions other than
the embedded type information, this approach can be used to re-
place the underlying mechanism of creating generic transforma-
tions/accumulations as well.

Contextual visits are closely related to scoped dynamic rewrite
rules [21, 3]. Dynamic rules are generated at run-time and can ac-
cess their context. A scope can be imposed to remove rules after
they are not valid anymore. One problem with scoped dynamic
rules is that it is necessary to inline the definition of the traversal
strategy so that the scope can be included in the traversal of sub-
terms. The approach therefore suffers from a modularity problem.
In our library, context is abstracted and modularized. It is taken care
of by the recursive traversal strategy and passed to the visit so that
the visit does not need to worry about the scope.

In [20], van den Brand et al. categorize a traversal into trans-
formation, accumulation, and accumulating transformation. This
agrees with our categorization. In fact, we borrowed these terms
from [20]. They also identify certain properties of traversals and
place them in the corresponding positions in the “traversal cube”.
We have enriched the cube by extending the coverage axis.

7. Summary and Future Work
In this paper, we extended the scrap-your-boilerplate approach pro-
posed by Lämmel and Peyton Jones. We have analyzed the prob-
lem domain of generic traversals and have extracted five orthogonal
parameters of a traversal. We have defined one universal generic
traversal combinator that can be parameterized to cover the whole
problem domain space. In summary, these combinators provide the
programmers these choices:

• The visit. We can perform a transformation that modifies a node,
an accumulation that gathers information from nodes along the
traversal, or an accumulating transformation that does both.

• The context. The action might rely on the path from the root
node to the current node. A customized context can be main-
tained by a context updater function and carried to the visit
function.

• The vertical traversal order. A traversal can start from the top
of the term and moves down or the opposite direction.

• The horizontal traversal order. A traversal can visit from left to
right or the opposite direction.

• The coverage. A traversal can visit all the nodes, bypass chil-
dren of certain nodes, visit along a spine from the root to a leaf,
or stop after a successful visit.

The clients can easily choose the appropriate strategy and focus on
the “interesting parts”, the recursion is performed by the generic
traversal combinators.

In addition to this high-level interface, we have also defined a
set of primitive combinators that can be used to define additional
recursive traversal strategies.

However, our library only addresses the problem of transforma-
tions and accumulations on one term. Problems that involve parallel
traversing two terms such as generic zip [13, 10] cannot be han-
dled. Although these combinators are fairly general, there is still
room for improvement. Regardless of the two traversal directions,
we always favor the vertical direction over the horizontal direction,
which means we always implement a depth-first traversal. One pos-
sible extension is to have symmetric breadth-first traversals. More-
over, we only have one and all strategies as our one-layer strategies.
We can also consider strategies that visit only some of of direct sub-

terms of a term. We believe these features will extend the traversal
space and complement the traversal library.

Acknowledgments
We would like to thank Ralf Lämmel for discussing with us initial
ideas of the presented library during a visit at Oregon State Uni-
versity. We also thank the anonymous reviewers for their helpful
feedbacks.

References
[1] R. S. Bird. Using Circular Programs to Eliminate Multiple Traversals

of Data. Acta Informatica, 21:239–250, 1984.
[2] M. Bravenboer, K. Trygve Kalleberg, R. Vermaas, and

E. Visser. Stratego/XT Tutorial, Examples, and Reference Man-
ual (latest), 2006. http://nix.cs.uu.nl/dist/stratego/
strategoxt-manual-unstable-latest/manual.

[3] M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Program
Transformation with Scoped Dynamic Rewrite Rules. Fundamenta
Informaticae, 69:1–56, 2005.

[4] D. Clarke and A. Löh. Generic Haskell, Specifically. In J. Gibbons
and J. Jeuring, editors, IFIP TC2 Working Conference on Generic
Programming, 2002.

[5] O. de Moor. An Exercise in Polytypic Program Derivation: repmin.
Unpublished http://web.comlab.ox.ac.uk/oucl/work/oege.
de.moor/papers/repmin.ps.gz, 1996.

[6] M. Erwig and Z. Fu. Parametric Fortran – A Program Generator
for Customized Generic Fortran Extensions. In 6th Int. Symp. on
Practical Aspects of Declarative Languages, LNCS 3057, pages
209–223, 2004.

[7] M. Erwig and D. Ren. Monadification of Functional Programs.
Science of Computer Programming, 52(1–3):101–129, 2004.

[8] Haskell Hierarchical Libraries. http://www.haskell.org/ghc/
docs/latest/html/libraries/.

[9] R. Hinze, A. Löh, and B. Oliveira. “Scrap Your Boilerplate”
Reloaded. In P. Waldler and M. Hagiya, editors, 8th International
Symposium on Functional and Logic Programming, pages 24–26,
2006.

[10] G. Huet. The Zipper. Journal of Functional Programming, 7(5):549–
554, 1997.

[11] R. Lämmel. The Sketch of a Polymorphic Symphony. In Gramlich B.
and Lucas S., editor, Proc. of International Workshop on Reduction
Strategies in Rewriting and Programming (WRS 2002), ENTCS 70.
Elsevier Science, 2002.

[12] R. Lämmel and S. Peyton Jones. Scrap Your Boilerplate: a Practical
Design Pattern for Generic Programming. In Types in Language
Design and Implementation, volume 38, pages 26–37, 2003.

[13] R. Lämmel and S. Peyton Jones. Scrap More Boilerplate: Reflection,
Zips, and Generalised casts. In 9th ACM International Conference
on Functional Programming, pages 244–255, Snow Bird, UT, USA,
2004.

[14] R. Lämmel and S. Peyton Jones. Scrap Your Boilerplate with Class:
Extensible Generic Functions. In 10th ACM International Conference
on Functional Programming, pages 204–215, Tallinn, Estonia, 2005.

[15] R. Lämmel and J. Visser. Typed Combinators for Generic Traversal.
Technical Report SEN-R0124, Centrum voor Wiskunde en Informat-
ica, 2001.

[16] R. Lämmel and J. Visser. Typed Combinators for Generic Traversal.
In 4th Symposium on Practical Aspects of Declarative Languages,
LNCS 2257, pages 137–154. Springer-Verlag, 2002.

[17] A. Löh, J. Jeuring, et al. The Generic Haskell User’s Guide. Technical
report, Utrecht University, 2005.

[18] Reclib. A Recursion and Traversal Library for Haskell. http:
//eecs.oregonstate.edu/~erwig/reclib/.

[19] T. Sheard and L. Fegaras. A Fold for All Seasons. In 6th Conference
on Functional Programming and Computer Architecture, pages 233–
242. ACM Press, 1993.

[20] M. G. J. van den Brand, P. Klint, and J. J. Vinju. Term Rewriting with
Traversal Functions. ACM Transactions on Software Engineering and
Methodology, 12(2):152–190, 2003.

[21] E. Visser. Scoped Dynamic Rewrite Rules. In van den Brand M.
and R. Verma, editors, Rule Based Programming (RULE’01), volume
59/4 of ENTCS. Elsevier Science Publishers, 2001.

[22] E. Visser. Program Transformation with Stratego/XT: Rules,
Strategies, Tools, and Systems in StrategoXT-0.9. In Lengauer C.
et al., editors, Domain-Specific Program Generation, LNCS 3016,
pages 216–238. Springer-Verlag, 2004.

[23] E. Visser. A Survey of Strategies in Rule-Based Program Transfor-
mation Systems. Journal of Symbolic Computation, 40(1):831–873,
2005.

[24] E. Visser and Z.-e.-A. Benaissa. A Core Language for Rewriting. In
C. Kirchner and H. Kirchner, editors, 2nd International Workshop on
Rewriting Logic and its Applications, ENTCS 15, 1998.

[25] E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building Program
Optimizers with Rewriting Strategies. In 3rd ACM International
Conference on Functional Programming, pages 13–26, 1998.

[26] M. Wand. Continuation-Based Program Transformation Strategies.
Journal of the ACM, 27(1):164–180, 1980.

