
Faster Program Adaptation
Through Reward Attribution Inference

Tim Bauer Martin Erwig Alan Fern Jervis Pinto
Oregon State University

Corvallis, Oregon 97331 USA
{bauertim,erwig,afern,pinto}@eecs.oregonstate.edu

ABSTRACT
In the adaptation-based programming (ABP) paradigm, programs
may contain variable parts (function calls, parameter values, etc.)
that can be take a number of different values. Programs also contain
reward statements with which a programmer can provide feedback
about how well a program is performing with respect to achiev-
ing its goals (for example, achieving a high score on some scale).
By repeatedly running the program, a machine learning component
will, guided by the rewards, gradually adjust the automatic choices
made in the variable program parts so that they converge toward an
optimal strategy.

ABP is a method for semi-automatic program generation in
which the choices and rewards offered by programmers allow stan-
dard machine-learning techniques to explore a design space de-
fined by the programmer to find an optimal instance of a pro-
gram template. ABP effectively provides a DSL that allows non-
machine-learning experts to exploit machine learning to generate
self-optimizing programs.

Unfortunately, in many cases the placement and structuring of
choices and rewards can have a detrimental effect on how an op-
timal solution to a program-generation problem can be found. To
address this problem, we have developed a dataflow analysis that
computes influence tracks of choices and rewards. This informa-
tion can be exploited by an augmented machine-learning technique
to ignore misleading rewards and to generally attribute rewards bet-
ter to the choices that have actually influenced them. Moreover, this
technique allows us to detect errors in the adaptive program that
might arise out of program maintenance. Our evaluation shows that
the dataflow analysis can lead to improvements in performance.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Programming—
automatic analysis of algorithms, program transformation; D.3.4
[Programming Languages]: Processors—optimization, prepro-
cessors

General Terms
Languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GPCE’12, September 26–27, 2012, Dresden, Germany.
Copyright 2012 ACM 978-1-4503-1129-8/12/09 ...$15.00.

Keywords
Partial Programming, Program Adaptation, Reinforcement Learn-
ing

1. INTRODUCTION
Programs that implement deterministic algorithms require an ex-

act and detailed specification of all steps and conditions. However,
many algorithms are easier to specify if we are permitted to insert
a modicum of uncertainty in the program that can be figured out
later (for example, through learning from repeated program execu-
tions). Furthermore, this flexibility of leaving some program parts
under-specified can benefit problems where the best algorithm de-
pends on characteristics of the algorithm’s input distribution and
expected use, which are often unclear before the program is actu-
ally run. For example, many algorithms contain a cutoff threshold
to decide when to switch strategies, such as merge-sort implemen-
tations that switch to insertion sort on sufficiently small sub-lists.
Exactly what is “sufficiently small” is such an uncertainty.

In previous work [6, 7] we have introduced a programming
paradigm to support a form of partial programming [5] called
adaptation-based programming (ABP) whereby the programmer
can write non-deterministic self-optimizing program templates
(adaptive programs), which can be instantiated into a sequence of
improving programs. In ABP programmers express uncertainty via
choices and indicate program performance via feedback signals,
called rewards. The adaptive program utilizes reinforcement learn-
ing (RL) [14] to self-optimize itself over multiple runs. Any choice
in an adaptive program can be passed information about the pro-
gram state as a parameter, which is remembered by the RL agent
during execution to later associate rewards with choices made in
specific program situations. For each choice the RL agent will
select an adaptive value based on the current information about
program state and the performance of the different choices learned
from previous program executions. As choices are made and re-
wards are encountered, the RL agent learns and adapts its future
choices in such a way as to maximize its total expected reward.

An additional benefit of the ABP programming model (or any
learning model) is that the adaptive program is optimized over the
specific inputs it sees. For example, if an adaptive program was
learning a cutoff point to switch from merge sort to insertion sort
and then operated in an environment with nearly sorted lists, it
would learn a cutoff favoring insertion sort for longer since that
algorithm operates efficiently in such cases.

Another goal of ABP is to offer an easy-to-use programming
model to users with little or no experience in RL. State-of-the-art
RL tends to be quite complicated and requires considerable exper-
tise to be used effectively. For instance, programs using RL must
be structured carefully to respect assumptions that various RL al-

103

gorithms make. ABP programs, on the other hand, consist of just
choices and rewards, which are then mapped into an RL problem
that can then be solved using standard techniques.

The more relaxed program structure makes ABP easier to use for
the non-RL-expert (which we simply call non-expert from now on).
However, this freedom comes at a price since not all program struc-
tures are equally conducive to effective learning, and a seemingly
innocent adaptive programs can behave quite poorly in terms of the
time it takes to learn. Since the unwary non-expert does not know
the ins and outs of RL algorithms, it is the duty of ABP to abstract
away as many of those details as possible so they may focus fully
on their problem.

A very common class of errors that a non-expert can make in-
volves mis-attributing rewards to the wrong choices. RL algorithms
perform much better if rewards are given nearer to the choices
that affect them—ideally right after them. Since the non-expert
user is probably unaware of this requirement, a seemingly innocent
program restructuring can cause rewards to be associated with the
wrong choices, leading to a degradation of learning performance.

We refer to the problem of associating rewards with the choices
that influence them as reward attribution. RL has worked on this
problem under the name credit assignment [13]. However, these
approaches do not consider program structure as those algorithms
do not have the user’s program available in a form they can use.
In contrast, the ABP paradigm provides the novel capability to an-
alyze the user’s program and exploit facts gathered through data-
flow analysis to improve the RL algorithm’s behavior.

One direct way of achieving accurate reward attribution for ABP
would be to explicitly represent choice-reward dependencies. For
example, whenever a user creates a choice, they could be asked to
provide both the value of the choice and a token to identify that
choice explicitly. Then when giving a reward later, the user could
be also required to explicitly supply a list of the choices that influ-
enced it. However, burdening the user with this requirement suffers
several major problems.

• Tracking the choices made incurs an undue cognitive burden
on the user. The goal of allowing relaxed choice and reward
placement is to allow the user full flexibility in the structure
of their partial program.

• Users could get the annotations wrong; they might mis-
takenly annotate a choice as being influential for a reward
when it is not, or conversely miss an important choice in-
fluence on a reward. Even when planned carefully, data-
flow analysis can be quite tricky, and asking users to do
this by hand can easily lead to mistakes. Furthermore, when
code gets moved around during maintenance, failure to main-
tain the correspondingly changing dependences would inval-
idate the information. The requirement to update the choice-
dependency information “by hand” severely impacts pro-
gram maintainability.

In this work we illustrate how we can compute a data-flow relation
between choices and the rewards that they might influence and thus
automate the process of reward attribution. We then show several
mistakes a programmer could easily make and how the relation can
be used to automatically detect and fix these problems.

Our main contributions are:

• A formal description for a static data-flow analysis that re-
lates choices to rewards that they influence (the R relation).

• A learning algorithm that successfully exploits the relation.

Statements
s ::= v := e assignment

| if e then s else s alternation
| while e do s iteration
| s; s sequence
| l:a adaptivity

Adaptive statements
a ::= reward(e) reward

| choose(v,e,ē) choice
ē ::= [e,. . .,e] alternatives

Figure 1: Syntax for a Simple Language

• A demonstration of the utility of the algorithm by applying it
to various ABP programs and showing the improvement.

The rest of the paper is structured as follows. In Section 2 we give a
brief overview of ABP. We provide a formal description of the data-
flow inference algorithm in Section 3 and illustrate it with several
small examples. Next, we use this data-flow information in Sec-
tion 4 to further improve programs containing loops. In Section 5
we discuss the learning algorithm used by ABP and the modifica-
tions we make in order for it to benefit from the reward attribution
relation data. In Section 6 we perform evaluations to show the im-
provement our modified algorithm provides on various programs.
Section 7 discusses related work and Section 8 concludes.

2. ADAPTATION-BASED PROGRAMMING
Previously we presented the idea of ABP in higher-level lan-

guages such as Java and Haskell [6, 7]. However, to illustrate this
work, we present ABP within the context of a small imperative lan-
guage with very simple semantics.

As shown in the figure 1, the syntax provides basic language con-
structs for a typical imperative language, extended by two adaptive
statements for describing choice and providing rewards. The syn-
tax above implicitly refers to expressions as e, variables as v, and
labels as l. Labels and variables are assumed to be unique through-
out the program (for example, there is no name shadowing for vari-
ables). Adaptive operations are prefixed with labels to simplify the
formal description of the choice-reward (R) and choice-choice (C)
influence relations with inference rules. (In fact, those labels are
automatically added by our implementation.)

The choice construct choose is passed a variable v, an optional
context expression e, and a list of alternatives to choose from (given
in the form of expressions). The context expression indicates infor-
mation that this choice depends on. In some cases this context is ir-
relevant and will be omitted defaulting to some unique fixed value.
One of the alternatives will be chosen and bound to the variable v.

The reward construct takes a numeric expression for a reward
value. This value is passed to the learning algorithm to indicate
positive or negative program performance to the ABP learning al-
gorithm.

We start by outlining the basic ideas of ABP at a high level with
the following simple example adaptive program.

r := 0

c1:choose(x,[0,1])

c2:choose(y,[0,1])

if x then

r1:reward(1)

else

r := y + 2

r2:reward(r)

104

Intuitively, we can see that the reward statement labeled r1 depends
only on the adaptive value chosen at c1 (stored in x). However, the
reward at r2 depends on both c1 and c2, which can be seen as
follows. The value of the reward passed in r1 depends on the value
of x, hence it depends on c1. The influence from c2 arises since
the value of r at the reward statement r2 may be defined in terms
of y, which is set by that choice.

This discussion also alludes to the fact that our view of this re-
lation is a static and conservative one. Because of the way the RL
algorithms work, we must never accidentally disassociate a reward
with a choice, we can however include false positives. Hence, if a
variable may have several definitions at any given point, we assume
it is influenced by all possible definitions.

Finally, the example above also illustrates what we mean by
“program template”. We can actually view the adaptive program
as four possible programs to which it can be instantiated by (inde-
pendently) choosing the values 0 and 1 for each of the variable x

and y. Over repeated runs ABP will converge on those choices that
generate a program that produces the highest reward. In the exam-
ple, this will result in the following program (choosing 0 for x and
1 for y).

r := 0

x := 0

y := 1

if x then

r1:reward(1)

else

r := y + 2

r2:reward(r)

Of course, the resulting program can be simplified further by re-
moving the reward statements that are no longer needed and apply-
ing other (algebraic) program transformations.

3. REWARD ATTRIBUTION ALGORITHM
We now formally detail the reward attribution algorithm with a

set of inference rules.
The reward attribution relationship computation has the follow-

ing general type.

A, I,R ` s⇒ I,R

The set A ∈ 2L is the set of active influences, and it consists of
choice labels (L is the set of all labels), that is, those labeling
choose locations. Throughout the algorithm A represents the set
of choices that might influence the current execution path. This
set is typically modified by control flow constructs such as if and
while statements since these statements dictate control flow. Vari-
able binding operations such as assignment and choice all use A to
determine which choices influenced the new definition.

The second set I ⊆V ×L is the influence map (V is the set of all
variable names), and relates variables to choices that influence their
value. If a variable or value is currently influenced by some choice,
we say it is adaptive (an adaptive value or an adaptive variable).

The set R is the algorithm’s result; it associates choice locations
with reward locations that they influence. (The I also appears on the
right-hand side of the judgement as a result value since I consists
of state information that must be threaded through the algorithm.)

We now proceed through the inference rules that define the infer-
ence algorithm, given formally in Figure 2. We use the following
auxiliary functions and notation. The projection of the influence
map I with respect to a set of variables X , written as is defined as
follows.

I[X] = {l | (v, l) ∈ I∧ v ∈ X}.

REWARD

A, I,R ` r:reward(e)⇒ I,Ae×{r}

CHOICE

A, I,R ` c:choose(v,e,ē)⇒ I[v := Ae,ē∪{c}],R

ASSIGNMENT

A, I,R ` v := e⇒ I[v := Ae],R

SEQ

A, I,R ` s1⇒ I1,R1 A, I1,R1 ` s2⇒ I2,R2

A, I,R ` s1;s2⇒ I2,R2

IF
Ae, I,R ` st ⇒ It ,Rt Ae, I,R ` se⇒ Ie,Re

A, I,R ` if e then st else se⇒ It ∪ Ie,Rt ∪Re

WHILE
Ae, I,R ` s⇒ I,R′

A, I,R ` while e do s⇒ I,R∪R′

Figure 2: Inference Rules for Reward Attribution

We write I[v :=C] for updating the influence map I for the variable
v with the set C. Formally, we have:

I[v :=C] = {(x, l) ∈ I | x 6= v}∪{(v,c) | c ∈C}

Finally, we write Ae1,...,en for the set A∪ I[vars(e1, . . . ,en)] where
vars(e1, . . . ,en) returns the set of all variables contained in the ex-
pressions e1, . . . ,en.

The REWARD rule states that a reward statement relates the
(point of) reward r with all the current active influences as given
by the set A. Furthermore, the numeric reward expression e passed
to reward also might be influenced by choices and must also be
considered to influence this statement. To this end, the function
vars computes all the variables contained in e, and the projection
operator on I selects the choices that influence those variables.

The CHOICE rule describes how to handle a choice. Nothing in
this statement directly affects control flow so A remains unchanged.
However, the rule does modify the influence mapping I since v is
being (re)defined here. The new definition of v depends on three
pieces: the choice c itself, the current set of choices influencing ex-
ecution flow (A), and any influences on variables in the argument
expressions; that is, the context expression e and argument expres-
sions ē.

The ASSIGNMENT rule is very similar to the CHOICE rule in that
we are redefining a variable. The main difference is that since this
is not an adaptive assignment there is no choice label c to associate
with the new definition of v. Consider the example below.

v := v + 2*x + y

Assume the following initial definitions of A and I.

A = {c1} and I = {(v,c2),(x,c3),(y,c3),(y,c4)}

Then I changes as follows. First, we subtract old definitions of
v since v is being redefined thus removing {(v,c2)}. Next, we
take the union of all influences of the expression on the right-hand
side, that is, all influences on the variables within the expression.
In this example this ends up being {v,x,y}. These are the choices
{c2,c3,c4}. Finally, we include A, just {c1} in this case. We cross
these choices with {v} to get the new definition for I given below.

I = {(v,c2),(v,c3),(v,c4),(x,c3),(y,c3),(y,c4)}

105

Sequential composition of statements, described by SEQ, threads I
and R through both statements, nothing terribly special or exciting
happens with this rule.

The IF rule extends the set of active influences by whatever influ-
ences are in the guard condition e (yielding the set Ae) for both the
then and else statements st and se. The IF rule merges the results
Rt with Re and It with Ie by taking their union.1

Similar to IF, the WHILE rule extends A based on adaptive vari-
ables in the guard expression e. However, this construct also con-
siders the output of the loop body statement s since variables used
in e may be redefined within that body. The I in this rule must sat-
isfy both the invariant and premise of the rule. This fixed point can
be computed via a forward-maybe iterative data-flow analysis [3].

We now illustrate some of these rules through a few examples.

r := 0

c1:choose(x,[0,1])

if x then

c2:choose(y,[0,1])

r1:reward(1)

if y then

m := 2

r2:reward(m)

Consider the above example consisting of two choices (both with-
out explicit context values). Initially A, I, and R are all empty. The
ASSIGNMENT rule assigning 0 to r has no effect since nothing is
influenced by any choices here. However, after the first choice, the
CHOICE rule adds the pair (x,c1) to the I relation to indicate that
x is currently being influenced by c1.

As we descend into the if statement the IF rule extends A by
c1 since that choice influences its guard expression x. Next, the
second choose at c2 associates itself to the variable it is defining,
adding (y,c2) to the I relation. In addition this rule adds (y,c1)
to I since this definition of y depends on x, which in turn depends
on c1. Hence, I ends up as {(x,c1),(y,c2),(y,c1)} within this
conditional statement.

We encounter the reward statement on line five, and (c1,r1) is
added to R. The if statement following that reward extends A fur-
ther adding its guard expression y’s influences {c1,c2}. The as-
signment within that nested if-statement m := 2 marks the new
definition of m as influenced by all the choices in A, which adds
both (m,c1) and (m,c1) to I.

Finally, the last reward again extends R by adding all the influ-
ences on its argument m, which are (c1,r2) and (c2,r2) yielding
the final result given below.

R = {(c1,r1),(c1,r2),(c2,r2)}

As a second example we consider a program with a small loop.

i := 0

while i < 8 do

i := i + 1

c:choose(x,[0,1])

if x then

i := i + 1

r:reward(1)

This program executes a loop no more than 8 times collecting a
reward of 1 each iteration. However, within the loop we adaptively
decide whether to speed it up by advancing the loop counter an
extra iteration. Hence, the loop counter’s behavior is adaptive.
1If we intersected sets here, we would get the definite influences
instead of the potential influences as we currently have.

More precisely, the WHILE rule is applied to empty A and R sets.
However, the I relation will contain (i,c) at the top level; I is a
fixed point chosen to satisfy the loop body as well as the I input to
the loop, and within this loop body I must reflect the influence of c
on i.

As the algorithm descends into the loop body, x is bound to an
adaptive value at choice c, and the CHOICE rule marks x as be-
ing influenced by that choice (I is extended to reflect this). Next,
we descend into the if statement and apply the IF rule, causing A
to be extended to include c since that choice influences the guard
expression x. Consequently, when we reach the following assign-
ment statement that increments i, the A set contains the choice c as
an influence, which makes the new definition of i adaptive (influ-
enced by c). When we reach the reward on the next line I consists
of {(x,c),(i,c)}, and as mentioned already, A contains choice c

within the loop body. Hence, the REWARD rule adds the influence
pair (c,r) to R to reflect the influence of the choice on the reward.

4. CHOICE INVALIDATION
A related problem encountered when mapping adaptive pro-

grams to learning problems is determining what constitutes a full
test episode. The RL methods used by ABP all employ the concept
of an episode, which roughly corresponds to a single program run,
round, or match. Rewards and choices are independent across an
episode boundary. Indeed, if one wins a chess match, they should
not credit moves made in prior matches. Moreover, the notion of
an episode can be applied at choice granularity rather than program
run granularity.

We illustrate this with the example below.

i := 0

while i < 10 do

i := i + 1

c:choose(a,[0,1])

if a == 1 then

r:reward(1)

This program makes a choice within a loop and, if correct, receives
a reward.

Without the loop the problem is very simple. However, with the
loop it is much harder to learn. Suppose choice c chooses the cor-
rect value for the first iteration and an incorrect value the second
iteration. The learning algorithm requires we collect these rewards
until the end of the program run and only then apply them. Hence,
it cannot tell if the first or second value it selected at choice c im-
proved the reward more.

An RL expert could see that each loop execution is independent,
choices made in one iteration do not influence rewards in any fu-
ture iteration. Hence, what constitutes a “program run” should be
a single loop execution. Now, we could provide some means to al-
low the user to explicitly indicate such points in their program, but
this suffers from the same disadvantages as forcing users to explic-
itly indicate reward-choice influence. That is, novices and experts
alike might miscompute this boundary by failing to see a data de-
pendency that exists, or by thinking one exists when it does not.
Maintaining this information as the program is modified might also
pose a challenge.

However, what an RL expert does to determine if loop iterations
are independent episodes is exactly the same as a data-flow analy-
sis. The expert asks, “Is the effect of a choice made confined to a
single loop iteration or can it affect a future reward?”

Using the sets defined in Figure 2 we can determine the set of
choices definitely invalidated at each binding construct (a choice

106

or assignment operation in our example language). For any state-
ment that (re)defines v we compute the invalidated set as follows.

invalidated = I[v]− live(I[v :=∅]∪A)

I[v] is the set of choices that any definition of v depends on, that
is, the initial candidate set of choices potentially being invalidated
by this rebinding of v. From this we subtract those kept alive either
by other variables (I[v :=∅]) or those in the active influence set (A).
Finally, the live function tightens up the estimate by removing any
choices that are not used in reachable adaptive rewards (another
variable might be influenced by a choice that will never be used
again). This function can be implemented with similar data-flow
analysis techniques as described in [3].

Because R is a conservative estimate (all the choices that may
influence a particular statement) our invalidation estimate is also
conservative. Specifically, there may be cases were we fail to de-
tect a choice’s invalidation at a binding construct (a false negative),
however, if a choice is reported as invalid, we are certain it cannot
influence future rewards.

We illustrate choice invalidation with the example below.

c1:choose(x,[0,1])

c2:choose(y,[0,1])

z := x + y

...

z := 0

r2:reward(x)

Consider the choices killed at assignment statement z := 0. Here,
A = ∅ and I = {(x,c1),(y,c2),(z,c1),(z,c2)}. I[z] =
{c1,c2} (z depends on both choices) I[y:=∅] = {c1,c2} (x de-
pends on c1 and y on c2, but is never used again) giving the result
below.

{c1,c2}− live({c1,c2}∪∅) = {c1,c2}−{c1}= {c2}

With this information we can very accurately inform the learning
algorithm when a choice can no longer affect any rewards and bar
that choice from seeing later rewards that do not affect it.

5. A MODIFIED LEARNING ALGORITHM
In this section we discuss how the learning algorithm exploits

the R relation to make better decisions.
Our ABP learner uses a Monte-Carlo algorithm with ε-greedy

exploration [14]. We refer to this initial algorithm as MC and de-
scribe it here before extending it to use the R relation.

When confronted with a choice for a given context (that is,
part of the program state), the algorithm randomly picks between
exploiting the best known action (with high probability) for that
context and exploring an alternate action (with low probability).
Whenever a reward has been seen, it is awarded to all previous
choices made. After the program has run, for each choice and ac-
tion chosen for that choice, we total the rewards that occurred after
that point and average that sum with estimates from previous runs.

To illustrate the idea and some problems that arise consider the
example below.

c1:choose(a,[0,1])

if a then

r1:reward(10)

c2:choose(b,[0,1])

if b then

r2:reward(9)

Over multiple runs, the learning algorithm will try different values
for a and b and encounter different rewards as a result.

In general the learning algorithm cannot see the structure of the
adaptive program. It only sees the program arrive at choices and
rewards and experiences this as a serial list of events (sometimes
called a trace or trajectory).

A Monte-Carlo learning algorithm is unbiased meaning it makes
no assumptions about which previous choices a reward belongs to
and thus simply associates rewards with all previous choices made.
Given enough runs the algorithm will slowly learn the best choices.
However, it can take a considerable number of tests to determine
the best action to take under each situation.

Learning algorithms all assume that the choice made at c1 has
something to do with getting us to c2. Hence, rewards are propa-
gated back to all choices instead of just the last. Yet with a quick
inspection of the program we can see that the choices are not re-
lated and that these are two different learning problems composed
together in sequence; they can and should be solved separately. Un-
fortunately, a learning algorithm cannot see this structure, and can-
not make this distinction. It is unlikely an end user would make this
critical observation either.

Continuing with the algorithm anyway, if the MC algorithm
chose 1, for example, for both choices, it would see a reward of
9 for the second choice (which is correct), but erroneously see a
19 = 10+ 9 for the first (since rewards get propagated back to all
previous choices).

Worse, the structural freedom in ABP permits programmers to
order choices and rewards however they please. A transformation
that would seem perfectly reasonable to a non-expert might change
the previous program into the following, which we will call the
TANGLED-IF program.

c1:choose(a,[0,1])

c2:choose(b,[0,1])

if b then

r2:reward(9)

if a then

r1:reward(10)

This program structure is even worse than the previous one. Now
both choices will accrue each others’ rewards incorrectly. Adding
more choices and new rewards under conditional statements makes
the problem worse.

However, by applying the algorithm from Figure 2 ABP can de-
termine the correct targets for each reward using the R relation.

Our modified algorithm, which we will refer to as MCRA (MC
with Reward Attribution), extends the previous algorithm only
slightly. When confronted with a reward at r, MCRA is also passed
the contents of the R relation (computed statically). Rewards are
only propagated back to choices that may have influenced the cur-
rent execution path. This small change allows the algorithm to dis-
card a major source of statistical noise in its sampling and learn
more efficient choices quicker.

To support the choice invalidation as described in Section 4 we
further modify MCRA as follows. At each binding statement we
first compute the invalidated set as described in Section 4. When-
ever a choice is invalidated, for any choice context and action, if
that context is not used by any other choice (also not invalidated by
that assignment), we remove it from the history, tally its rewards,
and reset it as we would at the end of an episode thus preventing
future rewards from being misattributed to that choice.

107

5.1 MCRA Has Reduced Variance
Since choices do not see rewards that they do not influence, our

learner can more effectively estimate the value of various choices.
Mathematically, this manifests itself as reduced variance in the re-
ward signal. We give details here.

We define Q(c,a) to be our estimate of the expected total reward
our program will receive after making choice a when encountering
context c. (Both MC and MCRA estimate this as a running average.)

Consider the sequence of reward terms when updating these Q
values. For the original MC algorithm, this sequence can be split
into two terms. The first contains only the reward terms potentially
influenced by that choice while the second is a residual containing
the sum of the remaining terms which provably cannot have been
influenced by that choice. Notice that the expected sum of rewards
is the definition of the Q value and so we can relate the two Q
estimates made by the MCRA and MC algorithms as follows:

QMC(c,a) = QMCRA(c,a)+Res(c,a)

Therefore,

Var(QMC(c,a)) = Var(QMCRA(c,a)+Res(c,a))
= Var(QMCRA(c,a))+Var(Res(c,a))

+2Covar(QMCRA(c,a),Res(c,a))

The variance of the new Q estimate for (c,a) will be less than that
of the standard estimate as long as,

Var(Res(c,a))>−2Covar(QMCRA(c,a),Res(c,a))

Since the term on the left is always positive, the above condition
only fails when there is a large negative correlation between the
sum of influential reward terms and the rest. Although such a neg-
ative correlation may occur in pathological cases, it is hard to con-
struct any real examples where this occurs. We are able to verify
that a dominant negative correlation does not occur in any of the
examples that we studied. In all those cases, the variance in the
residual dominates and the modified estimate (QMCRA) has smaller
variance than the standard estimator as expected.

5.2 Spurious Rewards and Choices
Associating choices with the rewards and other choices they in-

fluence provides a wealth of knowledge within adaptive programs
while permitting the user’s program to retain its original structure.

For any reward r, if r does not appear within the R relation any-
where, then the reward is an orphan. Intuitively, this is indicating
that no choice the ABP library can make will influence our ability
to get that reward, it is spurious.

MCRA could silently ignores these rewards (they are attributed
to the empty set of choices). However, spurious rewards are indica-
tive of a programmer error. For example, maybe a choice that used
to affect this reward was deemed unnecessary by the ABP program-
mer and removed, and they forgot to remove the associated reward.
Previously, that reward would be awarded to the last choice the
learner made and cloud the reward signal with noise.

With the R relation, these orphaned rewards may now be reported
explicitly during translation and before program execution.

An analog to the above, is a choice that affects no rewards. If
a choice does not appear in the domain of the R relation, we can
conclude that it affects no rewards and is also spurious. The impact
of leaving this choice in is relatively minor for the MCRA algorithm
and currently we just ignore the choice. However, though it feels
like unreachable code and harmless, if the programmer is expecting
that choice to improve, they need to give it a reward signal. Hence,
an error message would be quite preferable for this situation.

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35

R
e
w

a
rd

Episodes

Tangled-If

MCRA
MC

Figure 3: The TANGLED-IF Program (m=64)

6. EMPIRICAL EVALUATION
We implemented a translator for a small language very similar to

the one presented in Figure 1 and the algorithm given in Figure 2
to compute the R relation. The translator emits a program, which
interfaces with an implementation of ABP.

Since the learner’s exploration strategy and parts of adaptive pro-
grams are stochastic, evaluation runs into the risk of an initial adap-
tive program getting lucky and quickly finding an optimal policy,
or conversely, getting unlucky and stuck at a local optimum. To
mitigate this possibility, we run m independent copies of the adap-
tive program (each with their own random seeds) in parallel and
average their learning behavior.

We run each of the m learners a few runs and then periodically
sample the optimal learned behavior (its policy).2 In addition,
when testing the policy of each of the m learners we test them t
times so if the adaptive program has random behavior, we can get
an average with respect that policy.

The TANGLED-IF

Figure 3 shows the learning behavior of the TANGLED-IF program
given in a previous section. Even with the reward mis-attribution
the underlying learning problem is remarkably simple to solve, yet
the newer algorithm MCRA clearly learns faster. In less than 10
tries all m = 64 copies of the program learned the optimal policy
while the older algorithm MC took around 25 to 30 attempts to
reach that point.

The OPTIMAL-CONFIGURATION

We can generalize the TANGLED-IF and arrive at an even worse,
but more realistic scenario: a program has to pick a set of con-
figuration options during program initialization and then use those
chosen options throughout the program.

Below is a synthetic program to model the described case, which
we refer to as the OPTIMAL-CONFIGURATION problem.

2No exploration is performed during evaluation and the ABP
learner always chooses the best known option for each choice.

108

 86

 88

 90

 92

 94

 96

 0 50 100 150 200 250 300 350 400 450 500

R
e
w

a
rd

Episodes

Optimal-Config

MCRA
MC

SARSA
RANDOM

Figure 4: The OPTIMAL-CONFIGURATION Problem (m=32,
t=32)

c1:choose(c1,[0,1])

c2:choose(c2,[0,1])

...

c8:choose(c8,[0,1])

t := 0

while t < 32 do

t := t+1

e := uniformR(1,9)

r := normal() + u

if e == 1 then

if (c1) then

r1a:reward(1.0 + r)

else

r1b:reward(0.5 + r)

else if e == 2 then

... similarly

...

else if e == 8

...

To make it bit more interesting we use a stochastic reward, nor-
mal returns a normally distributed 3 random number and uni-

formR(1,9) is used to uniformly select a configuration to “use”
(uniformR selects from a half-open interval). In all cases we make
one configuration option better than its alternate so we can easily
determine optimal behavior analytically for testing.

The results of this algorithm are shown in Figure 4. MCRA per-
forms better than the regular MC algorithm determining the optimal
set of configurations after 100 to 200 attempts whereas the base al-
gorithm has not learned the optimal policy even after 500 episodes
(but is close).

For this program we also compare the algorithm to two others.
The SARSA(λ) algorithm is a venerable and robust learning algo-
rithm and was used in older versions of ABP as the learning algo-
rithm. Like the MC algorithm, it will make an incorrect assump-
tion that each choice is dependent on the next instead of all being
independent as in this example. While it comes in third, it is quite
impressive how well it actually performs considering the ill fit. Fi-

3Note, in a real optimal configuration scenario, the user’s program
would not necessarily know the underlying data distributions of the
rewards and configuration uses.

nally the random algorithm is at the bottom of the plot and is given
to illustrate the estimated reward we would get by guessing ran-
domly.

The ROBOT PROBLEM

We now proceed to illustrate a larger ABP program below that ex-
hibits some of these reward-attribution problems in a slightly larger
example. Our program consists of several partially independent
goals.

goods := START_GOODS

goals := 0

c1:choose(sell_threshold,[1,2,3,4])

gx := InitGoalX()

gy := InitGoalY()

x := 0

y := 0

t := 0

while (t < MAX_TIME) do

t := t + 1

price := GoodsPrice()

if (goods > 0 && price > sell_threshold) then

r1:reward(price)

goods := goods-1

c2:choose(m,context(dir(x,gx),dir(y,gy)),

[N,E,S,W,X])

x := ApplyMoveX(m,x)

y := ApplyMoveY(m,y)

if (x==gx && y==gy) then

goals := goals + 1

r2:reward(2)

gx := InitGoalX()

gy := InitGoalY()

if (goods == 0 && goals >= 2)

reward(4)

This program controls a robot with position (x,y) moving around a
grid. The robot gets to move one square each time step (loop itera-
tion) in one of the cardinal directions (N,E,S,W) or it can stay in place
(X). The robot is trying to reach its goal at (gx,gy). Moreover, each
time the robot reaches its goal, it gets a reward and then requests a
new goal by calling the InitGoalX and InitGoalY functions. The
move choice at c2 takes a context consisting of a normalized direc-
tion towards the robot’s goal. The function context pairs those
vectors into one value.

Additionally, there is a partially independent secondary goal.
Initially, we start with a certain number of goods we must sell over
the course of time (we don not know how much). Each time step,
a new random market price for these goods is given and we must
choose to sell or retain the goods. We deal with this uncertainty up
front with choice c1.

As a third and final goal an extra bonus reward is given if we
sell all our goods by the end of the game and achieve at least two
robot-movement goals.

Figure 5 shows the learning behavior of our various algorithms
on this problem. MCRA performed the best, most if not all m = 32
learning trials found the optimal behavior within a few hundred tri-
als. The next best algorithm was SARSA(λ). Instances of this algo-
rithm found the optimal, but some got stuck at sub-optimal policies.

The regular MC algorithm did not perform very well and al-
though some learning runs did find an instance of the best known
policy, far fewer did.

109

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
e
w

a
rd

Episodes

Robot

MCRA
MC

SARSA
RANDOM

Figure 5: ROBOT Problem Learning (t=64,m=32)

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 0 10 20 30 40 50

R
e

w
a
rd

Episodes

Tangled-If-Loop

MCRA
MC

SARSA
RANDOM

Figure 6: The TANGLED-IF-LOOP Program (t=32,m=32)

The TANGLED-IF-LOOP Problem
To test the benefit of the choice invalidation we consider the the
following program.

i := 0

while i < 10 do

i := i + 1

ca:choose(a,[0,1,2,3])

cb:choose(b,[0,1,2,3])

r = normal() + 0.5

if b == 1 then

rb:reward(r + 0.5)

else

rb:reward(r)

if a == 1 then

ra1:reward(r + 0.5)

else

ra2:reward(r)

This program is a variation on the TANGLED-IF problem given pre-
viously. We add a few more options for each choice and randomize
the reward slightly to might it slightly more difficult. However, the
problem still has a unique optimal solution.

Figure 6 shows the result and illustrates that with MCRA all m =
32 learners quickly learn the optimal solution within about 10 runs,
whereas the other methods struggle.

7. RELATED WORK
Recent work in the field of reinforcement learning (RL) [14] un-

der the name of partial programming [5] inspired and influenced the
development ABP. RL is a subfield of artificial intelligence and ma-
chine learning that studies algorithms where an agent (sometimes
called a controller) takes some action given specific environment
information (state). In response the agent (learning algorithm) re-
ceives a reward from the environment (sometimes called a simula-
tor) for the action chosen and transitions to a new state continuing
that way until it reaches a terminal state. The simulator describes
and models the external world, models the domain for the problem
being solved, and feeds information to the agent based on observed
state transitions, rewards, and other events. The aim of the RL
agent is to maximize its total reward received.

In our work the ABP library may be viewed as the RL agent and
any appropriate RL learning algorithm could potentially be used
for that part of the library. Conversely, the user’s partial program
along with its use of ABP roughly corresponds to the simulator,
which monitors and observes the environment and communicates
this information to the agent. Thus RL can be viewed as an extreme
version of ABP with a trivial non-adaptive program that makes a
single choice based on all its observational data each time step and
implements the resultant action the agent returns.

However, successful application of RL to systems requires
knowledge of the specific algorithm being used, complex tuning,
and experimentation to function effectively. Various systems have
experimented with methods of hinting which action is preferred in
a given state or set of states [9]. In a similar vein, [1] experimented
with providing advice via examples of good behavior rather than
classifying it directly with a reward function. However, these ap-
proaches still require an RL expert to apply them as they are still
tightly coupled to RL theory and specific algorithms in RL.

Making RL more accessible to the non-expert user has been stud-
ied prior under the name partial programming [5], and previous
work in this field has influenced the design of ABP. The idea of
partial programming was initially presented in the language AL-
ISP, a direct integration of RL in the LISP programming language
and also in its later variants of that language [4]. ALISP specifies
uncertainty through a choicepoint construct, similar in function to
our choose operation. Over repeated runs a learning algorithm
learns the best options for each choice by observing rewards and
thus completes the program. The focus of the ALISP work is on
hierarchical decomposition of learning problems through subrou-
tine abstraction, and later, through support for concurrent [10] and
semi-independent tasks. None of this work considers programmer
mistakes such as reward mis-attribution or choice invalidation.

A separate approach to partial programming was presented in the
A2BL [8] language, an integration of RL into the Agent Behavior
Language (ABL). A2BL treats sub-agents as independent behav-
ioral components all interacting together rather than one complete
learning problem. The result is a declarative language for specify-
ing behaviors and goals over a hierarchy of agents, and thus this
language has a more limited scope than general-purpose languages
such as ALISP or ABP implementations. Moreover, in A2BL the
programmer indicates exact conditions when an agent should re-
ceive a reward, and no automatic reward attribution is performed.

In our previous work [6] we implemented ABP for Java. The
learning algorithm was controlled by Q-learning [15] initially and
later by SARSA(λ) [14]. Both of these algorithms assume (and

110

leverage) a strong property about the order of choices and rewards
within the program. If this property is correctly adhered to, it can
benefit the learning algorithm, but if violated, can increase the dif-
ficulty of the learning problem.

Later work in ABP [11] showed some simple ABP programs that
violated the ordering constraint and operated sub-optimally as a re-
sult. To address the problem, that work assumed the existence of
a data flow analysis similar to the one defined here and showed an
algorithm that made use of it, however, no exact details of the data-
flow analysis or its computability were considered. The goal was to
illustrate how such an analysis could benefit the learning algorithm
and how it could correct the choice ordering problem, not how the
analysis could be derived. Conversely, we have given a formal def-
inition to such an analysis and are less focused on applying it to the
most sophisticated RL algorithms.

Exploratory implementations of ABP using function approxima-
tion and policy gradient learning methods instead of discrete state-
action spaces show promising results [12]. These methods were
shown to operate effectively on some of the ill-formed programs
given in prior work [11] as well as a few additional cases. How-
ever, this approach incurs a usability cost in that contexts may no
longer be arbitrary values, but must be binary vectors representing
important features of the current program state.

Considerable work has been performed with the goal of optimiz-
ing or transforming template programs safely. For instance work
by Willcock [16] explores the issue of programmable optimizations
for user-defined types. Similarly work by Agakov [2] explores the
issue of how to use machine learning to speed up program improve-
ment via iterative compiler optimization. However, the notion of
optimization in all this work is strictly limited to performance im-
provements (space and time), and the semantics of the underlying
program must remain constant. In contrast, our view of a program
template is a partial program with non-determinism (choices) and
a programmable notion of optimization (rewards). Consequently
different template instantiations are expected to generate programs
with different behaviors instead of performance.

8. CONCLUSION
ABP provides a method for non-experts to use machine-learning

techniques to write adaptive program templates. Over repeated
runs, these templates can be instantiated and generate an improving
sequence of concrete programs.

An important concept in ABP is the freedom we allow the pro-
grammer in structuring their programs. The cost of this freedom is
inefficiency and sub-optimal learning. We have developed a sim-
ple data-flow analysis that corrects many problems that occur due
to mis-attribution of rewards to choices. With data-flow-driven re-
ward attribution, the ABP programmer can focus on their program-
ming problem and ignore complications that arise while mapping
rewards to the choices that influenced them.

Acknowledgments
This work is supported by the National Science Foundation under
the grant CCF-0820286 “Adaptation-Based Programming”.

9. REFERENCES
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse

reinforcement learning. In International Conference on
Machine Learning, pages 1–8, 2004.

[2] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin,
M. F. P. O’Boyle, J. Thomson, M. Toussaint, and C. K. I.
Williams. Using machine learning to focus iterative

optimization. In Proceedings of the International Symposium
on Code Generation and Optimization, CGO ’06, pages
295–305, Washington, DC, USA, 2006. IEEE Computer
Society.

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools (2nd Edition).
Addison Wesley, 2nd edition, 2006.

[4] D. Andre and S. Russell. State abstraction for programmable
reinforcement learning agents. In Eighteenth National
Conference on Artificial Intelligence, pages 119–125, 2002.

[5] David Andre. Programmabler Reinforcement Learning
Agents. PhD thesis, University of California at Berkeley,
2003.

[6] T. Bauer, M. Erwig, A. Fern, and J. Pinto. Adaptation-Based
Program Generation in Java. In ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, pages 81–90,
2011.

[7] T. Bauer, M. Erwig, A. Fern, and J. Pinto. Adaptation-Based
Programming in Haskell. In IFIP Working Conference on
Domain-Specific Languages, pages 1–23, 2011.

[8] S. Bhat, C.L. Isbell, and M. Mateas. On the difficulty of
modular reinforcement learning for real-world partial
programming. In Proceedings of the 21st national
conference on Artificial intelligence - Volume 1, AAAI’06,
pages 318–323. AAAI Press, 2006.

[9] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild.
Giving advice about preferred actions to reinforcement
learners via knowledge-based kernel regression. In
Proceedings of the Twentieth National Conference on
Artificial Intelligence, pages 819–824, 2005.

[10] B. Marthi. Concurrent hierarchical reinforcement learning.
In Proceedings of the 20th national conference on Artificial
intelligence - Volume 4, AAAI’05, pages 1652–1653. AAAI
Press, 2005.

[11] J. Pinto, A. Fern, T. Bauer, and M. Erwig. Robust learning
for adaptive programs by leveraging program structure. In
ICMLA, pages 943–948, 2010.

[12] J. Pinto, A. Fern, T. Bauer, and M. Erwig. Improving policy
gradient estimates with influence information. Journal of
Machine Learning Research, 20:1–18, 2011.

[13] R. Sutton. Temporal credit assignment in reinforcement
learning. PhD thesis, University of Massachusetts Amherst,
1984. AAI8410337.

[14] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, 2000.

[15] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD
thesis, Cambridge University, 1989.

[16] J. Willcock, A. Lumsdaine, and D. Quinlan. Reusable,
generic program analyses and transformations. SIGPLAN
Not., 45(2):5–14, October 2009.

111

