Chapter 1

STQL — A SPATIO-TEMPORAL QUERY LANGUAGE

Martin Erwig

Oregon Sate University
Department of Computer Science
Corvallis, OR 97331, USA
erwig@cs.orst.edu

Markus Schneider

University of Florida

Department of Computer and Information Science and Engineering
Gainesville, FL 32611, USA

mschneid@cise.ufl.edu

Abstract Integrating spatio-temporal data as abstract data types into already existing data
models is a promising approach to creating spatio-temporal query languages.
Based on a formal foundation presented elsewhere, we present the main aspects
of an SQL-like, spatio-temporal query language, called STQL. As one of its
essential features, STQL allows to query and to retrieve moving objects which
describe continuous evolutions of spatial objects over time. We consider spatio-
temporal operations that are particularly useful in formulating queries, such as
the temporal lifting of spatial operations, the projection into space and time,
selection, and aggregation. Another important class of queries is concerned with
developments, which are changes of spatial relationships over time. Based on
the notion of spatio-temporal predicates we provide a framework in STQL that
allows a user to build more and more complex predicates starting with a small set
of elementary ones. We also describe a visual notation to express developments.

Keywords: Moving object, spatio-temporal predicate, development, projection, selection,
aggregation, abstract data type

DRAFT April 22, 2002, 10:50am D RAFT

1. I ntroduction

Motivated by the deep relationships between temporal and spatial phenom-
ena there has recently been an increased interest in designing spatio-temporal
data models and spatio-temporal databases that deal with geometries chang-
ing over time. Our main objective in this area is to provide a DBMS data
model and query language capable of handling such time-dependent geome-
tries. Thereby, we especially focus on geometries changing continuously over
time, and we call them moving objects. Our modeling also includes the sim-
pler, discrete case where temporal evolutions are stepwise constant. Two fun-
damental abstractions are moving points (like cars, planes, animals, people)
and moving regions, or better: evolving regions (like storms, people, temper-
ature zones, high/low presure areas), which describe objects for which only
the time-dependent position, or position and extent, respectively, are of inter-
est. We propose to represent such time-dependent geometries as attribute data
types with suitable operations and predicates. In other words, our approach is
based on defining an abstract data type extension to a DBMS data model and
query language. The main benefit of this approach is that our type system is
in principle independent of a specific DBMS data model and can be embedded
into any query language, like a relational, object-relational, or object-oriented
language.

Based on a formal foundation published in earlier papers (see next section),
we introduce in this chapter the essential features of STQL as a spatio-temporal
query language for moving objects. We have placed STQL into a relational set-
ting as an extension of the well known standard relational query language SQL.
We demonstrate how an integration of spatio-temporal operations and predi-
cates into SQL can be performed. This integration profits very much from the
abstract data type approach for integrating complex objects into databases. The
spatio-temporal operations that we consider include those that are obtained by
temporal lifting of spatial operations, projections into space and time, selec-
tion, and aggregation. A special concern relates to spatio-temporal predicates
as components of so-called developments which describe temporally chang-
ing spatial relationships of moving objects. Finally, we demonstrate how the
user queries employing spatio-temporal predicates can be supported by a visual
query language interface.

The rest of this chapter is structured as follows. In Section 2 we discuss
related work. Section 3 describes the underlying data model and presents
the main foundations for spatio-temporal operations, predicates, and devel-
opments. In Section 4 we present the essential features of STQL by query
examples. Section 5 sketches how visual languages and query interfaces can
be employed for a simple, user-friendly formulation of powerful queries. Fi-
nally, Section 6 draws some conclusions.

DRAFT April 22, 2002, 10:50am D RAF T

STQL — A Spatio-Temporal Query Language 3

2. Related Work

So far, a few data models for spatio-temporal data have been proposed. In
[Worboys, 1994] a spatial data model has been generalized to become spatio-
temporal. Spatio-temporal objects are defined as so-called spatio-bitemporal
complexes whose spatial features are described by simplicial complexes and
whose temporal features are given by bitemporal elements attached to all com-
ponents of simplicial complexes. On the other hand, temporal data models
have been generalized to become spatio-temporal and include variants of Ga-
dia’s temporal model [Gadia and Nair, 1993] which can be found in [Cheng
and Gadia, 1994; Bohlen et al., 1998]. The main drawback of all these ap-
proaches is that they are incapable of modeling continuous changes of spatial
objects over time.

The constraint-based approach to modeling spatio-temporal data, which is
pursued, for example, in [Grumbach et al., 1998], considers spatio-temporal
objects as point sets in a multi-dimensional space. The description of objects is
given by logical formulas (constraints). Moreover, queries are also expressed
by logical formulas. Although the logical/constraint-based approach is very
general, it is not clear, for example, whether it can be efficiently implemented.
Other possible problems are the handling of objects that require non-linear
constraints and the treatment of metric operations (for example, computing
distances).

Our approach, which will be the basis of this chapter, introduces the concept
of spatio-temporal data types [Erwig et al., 1998b; Erwig et al., 1998a; Erwig
et al., 1999; Giiting et al., 2000]. The definition of a temporal object in gen-
eral is based on the observation that anything that changes over time can be
expressed as a function over time. A temporal version of an object of type «
is then given by a function from time to «. Spatio-temporal objects like mov-
ing points and evolving regions are regarded as special instances of temporal
objects where « is a spatial data type like for points and regions [Guting and
Schneider, 1995].

Similar to the approach just mentioned, in [Yeh and Cambray, 1993; Yeh and
Cambray, 1995] based on the work in [Segev and Shoshani, 1993] behavioral
time sequences are introduced. Each element of such a sequence contains a
geometric value, a date, and a behavioral function, the latter describing the
evolution up to the next element of the sequence. Time sequences could be
used as representations for our temporal objects.

An issue that has been intensively discussed in temporal data modeling is
whether a tuple-timestamped or an attribute-timestamped data model should
be preferred. Tuple-timestamped models (for example, [Ariav, 1986; Clifford
et al., 1993; Snodgrass, 1993] expand the schema of a relation by one or more
explicit temporal attributes that are used for describing the lifespan or validity

DRAFT April 22, 2002, 10:50am D RAF T

4

period of a whole tuple. Each time an attribute of a tuple changes its value, the
tuple has to be duplicated and modified. Hence, the information about an object
is scattered over one or more relations. This approach impedes the modeling
of continuous changes of spatial objects and the definition of corresponding
operations and predicates; thus they are inappropriate for our purposes.

Instead of adding additional attributes to the relation schema, attribute-time-
stamped models (for example, [Clifford and Croker, 1993; Clifford et al., 1993;
Gadia and Nair, 1993; Segev and Shoshani, 1993]) aim at gathering informa-
tion about an object into a single tuple and allow complex attribute values.
These complex values incorporate the temporal dimension and are frequently
modeled as functions from time into a value domain. From this perspective,
attribute-timestamped models are very similar to and fit very well with our
model.

However, our model additionally encapsulates (spatio-) temporal objects as
ADT objects that can be integrated as complex values into databases [Stone-
braker et al., 1983; Stonebraker, 1986]. The ADT approach has several advan-
tages. The first very important benefit is that employing ADTSs is more expres-
sive than relying on attribute-timestamped models, let alone tuple-timestamped
models, since continuous changes can be modeled [Erwig et al., 1999]. The
second benefit is that a definition of ADT values is valid regardless of a par-
ticular DBMS data model and query language. The reason is that ADT values
are not modeled by concepts of a DBMS data model and that they therefore do
not depend on them. This facilitates an easy and elegant conceptual integration
of ADT values into relational, complex-object, object-oriented, or other data
models and query languages.

The query facility of SQL is provided by the well known SELECT-FROM-
WHERE clause. The integration of predicates like “<” or “<>" for standard data
types such as integers or strings is well understood. In particular, there are only
a few of them which allows one to include them as built-in predicates. When
considering more complex and more structured data such as points, lines, or
regions, one can try to systematically derive all reasonable predicates. The
so-called 9-intersection model [Egenhofer and Franzosa, 1991; Egenhofer and
Herring, 1990] provides such canonical collections of predicates for each com-
bination of spatial data types. For example, for two regions the eight predicates
disjoint, meet, overlap, coveredBy, covers, inside, contains, and equal have
been identified. A spatial query language based on these predicates and called
Spatial SQL has been proposed in [Egenhofer, 1994].

From an application point of view, we have found that expressing and query-
ing temporal changes or developments of spatial objects is an important feature
of a spatio-temporal query language. For this purpose spatio-temporal predi-
cates are needed, which model these developments and which can be used in

DRAFT April 22, 2002, 10:50am D RAF T

STQL — A Spatio-Temporal Query Language 5

the query part of STQL. A spatio-temporal predicate makes statements about
the validity of the behavior of two spatio-temporal objects for some period.

In [Erwig and Schneider, 2002] we have introduced the concept of spatio-
temporal predicates as functions mapping spatio-temporal objects into booleans.
Moreover, we have described a generic way to construct spatio-temporal predi-
cates from spatial predicates by lifting and temporal aggregation. For example,
compute a binary spatial predicate for all the spatial values that are obtained
from two spatio-temporal objects along the time axis and aggregate the result-
ing temporal boolean. The problem is tackled on the basis of the 9-intersection
model and on the basis of the work in [Egenhofer and Al-Taha, 1992] which
considers possible topological transitions (that is, changes) of topological re-
lationships.

Between a moving point and an evolving region we have identified a canon-
ical collection of 28 spatio-temporal predicates, and between two evolving re-
gions we have obtained not less than 2198 predicates [Erwig and Schneider,
2002]. The large numbers practically impede a naming of all these predicates
and their reasonable employment from a user perspective. A first solution
to this problem could be to furnish the user with a small, fixed, application-
specific set of predicates, which might be too restrictive. An alternative could
be to pursue a strategy like in [Clementini et al., 1993]. There, an extension
of the 9-intersection model by additionally taking the dimension of the inter-
sections into account leads to 52 possible relationships for all combinations of
point, line, and region objects. The large number of predicates is reduced by
grouping all topological cases into five overloaded topological predicates and
by providing two boundary operators. These five predicates are mutually ex-
clusive and capture all possible topological relationships. In our case, the num-
ber of predicates is much larger. Moreover, new predicates can be constructed
from already existing ones. Hence, we advocate an extensible approach and
provide a simple framework for composing spatio-temporal predicates. The
integration into SQL becomes possible by an appropriate macro mechanism.
This is similar to the way in which composite events are specified in [Motakis
and Zaniolo, 1995]. The main difference is that events occur always at some
instant in time whereas we also deal with predicates over whole time periods.

3. The Data M odd

For illustration purposes, we confine ourselves here to the well known re-
lational model and to SQL as its most popular query language. A relation
scheme R is written as R(A; : Di,..., A, : D,) where the A; are the at-
tributes and the D; are their respective value domains. For a relation r :
R(Ay : Dy,..., A, : Dy)holds r C D; x Dy x ... x D,. The domains
can be standard types like integers, reals, booleans, or strings but also more

DRAFT April 22, 2002, 10:50am D RAFT

6

complex types encapsulated into ADTs and including a comprehensive set of
operations and predicates. Examples are spatial data types like points, lines,
and regions [Giiting and Schneider, 1995] or graphs [Erwig and Giiting, 1994].

31 Moving Objects

Similarly, we model spatio-temporal data as abstract data types which can be
employed as attribute types in a relation. The relation itself has only a container
function to store attribute data in tuples. The design of the model for spatio-
temporal data is as follows: for compatibility with smoothly changing spatio-
temporal objects we choose a continuous model of time, that is, time = IR. The
temporal version of a value of type « that changes over time can be modeled
as a temporal function of type 7(a) = time — «. We have used temporal
functions as the basis of an algebraic data model for spatio-temporal data types
[Erwig etal., 1998b; Erwig et al., 1998a] where « is assigned a spatial data type
like point or region. For example, a point that changes its location over time is
an element of type 7(point) and is called a moving point. Similarly, an element
of type 7(region) is a region that can move and/or grow/shrink. It is called an
evolving region®. In addition, we also have changing numbers and booleans,
which are essential when defining operations on temporal objects.

3.2 Temporal Lifting

To make notations more comprehensible we generally denote non-temporal
types, entities, functions, and predicates by lower case letters while their tem-
poral counterparts start with capital letters. For example, the spatial operation
distance takes objects of type point and region and computes a number of type
real, whereas its lifted version Distance = Tdistance maps elements of type
Region = 7(region) and Point = 7(point) to Real = 7(real) (temporal re-
als). For instance, we could be interested in computing the (time-dependent)
distance of an airplane and a storm. This could be achieved by an operation:

Distance : T(point) x 7(region) — 7(real)
In principle, we can take almost any non-temporal operation and “lift” it so
that it works on temporal objects returning also a temporal object as a result.

More precisely, for each function f : a7 x ... x a,, — [its corresponding
lifted version is defined by [Guiting et al., 2000]:

1fi7(ar) X ... X T(an) — 7(6)

1Currently, we do not consider a temporal version of lines, mainly because there seem to be not many
applications of moving lines. A reason might be that lines are themselves abstractions or projections of
movements and thus not the primary entities whose movements should be considered [Erwig et al., 1999].
In any case, however, it is principally possible to integrate moving lines in much the same way as moving
points or moving regions if needed.

DRAFT April 22, 2002, 10:50am DRAFT

STQL — A Spatio-Temporal Query Language 7

with

TF(S1y.--,80) == {(t, f(S1(t),...,Sn(t))) | t € time}
For example, we have Distance = Tdistance. Note that this definition implies
lifting also for constant objects of a non-temporal type «, thatis, T : a — 7(«)
with Tc := {(¢,¢) | t € time}. Temporal lifting is, of course, also applicable
to spatial predicates. Consider the spatial predicate

inside : point x region — bool
The lifted version of this predicate has the type
Tinside : Point x Region — Bool

with the meaning that it yields true for each time at which the point is inside
the region, undefined whenever the point or the region is undefined, and false
in all other cases.

3.3 Spatio-Tempor al Predicates and Developments

A spatio-temporal predicate is essentially a function that aggregates the val-
ues of a spatial predicate as it evolves over time. In other words, a spatio-
temporal predicate can be thought of as a lifted spatial predicate yielding a
temporal boolean, which is aggregated by determining whether that temporal
boolean was sometimes or always true. Thus, a spatio-temporal predicate is a
function of type 7(«) x 7(8) — B for «, 5 € {point, region}.

Consider again the definition of Tinside. We can define two spatio-temporal
predicates sometimes-inside and always-inside that yield true if Tinside yields
true at some time, respectively, at all times. Whereas the definition for sometimes-
inside is certainly reasonable, the definition for always-inside is questionable,
since it yields false whenever the point or the region is undefined. This is not
what we would expect. For example, when the moving point has a shorter
lifetime than the evolving region but is always inside the region, we would ex-
pect always-inside to yield true. We can distinguish different kinds of “forall”
quantifications that result from different time intervals over which aggregation
can be defined to range. In the case of inside the expected behavior is obtained
if the aggregation ranges over the lifetime of the first argument, the moving
point. This is not true for all spatial predicates. The chosen aggregation de-
pends on the nature and use of each individual predicate. For example, two
spatio-temporal objects are considered as being equal only if they are equal on
both objects’ lifetimes, that is, the objects must have the same lifespans and
must be always equal during these.

In this sense, we have identified four different kinds of meaningful “forall”
quantifications and associated the most suitable one to each spatio-temporal
version of the eight basic spatial predicates for two regions; for details and the
formal definitions see [Erwig and Schneider, 2002]. For the purpose of this

DRAFT April 22, 2002, 10:50am D RAFT

8

chapter it is sufficient to know that the lifted spatial predicate has to be true for
all times of the first, the second, the union, or the intersection of both objects’
lifetimes as indicated in the following table:

| first second union intersection
Disjoint, Meet, Overlap X
Equal X
Covers, Contains X
CoveredBYy, Inside X

The table defines the predicates for two evolving regions; for a moving point
and a moving region we have just the three basic predicates Disjoint, Meet, and
Inside, which are defined as above.

The defined spatio-temporal predicates are the basic building blocks of a
language for specifying changes of spatio-temporal objects, called develop-
ments [Erwig and Schneider, 1999a]. In fact, with these basic predicates alone
we cannot describe changes in the topological relationships of spatio-temporal
objects. Therefore, we we need operations to combine them into more com-
plex predicates. The most important operation is composition, written as “”.
For example, the composition

Digoint > Meet

defines a spatio-temporal predicate that yields true only for two objects that
were disjoint for some time and after that met for some time. We can also
compose spatial predicates with spatio-temporal ones. For example, the com-
position

Digjoint > meet > Inside

defines a spatio-temporal predicate that yields true for a moving point entering
an evolving region. Between being outside and inside there is one instant of
time when the point is on the border of the region.

When we consider in more detail how spatial situations can change over
time, we observe that certain relationships can be observed only for a period of
time and not for only a single time point (given that the participating objects do
exist for a period of time) while other relationships can hold at instants as well
as on time intervals. Predicates that can hold at time points and intervals are:
equal, meet, covers, coveredBy; these are called instant predicates. Predicates
that can only hold on intervals are: disjoint, overlap, inside, contains; these are
called period predicates.

It is interesting to note that (in satisfiable developments) instant and period
predicates always occur in alternating patterns, for example, there cannot be
two spatio-temporal objects that satisfy Inside immediately followed by Dis-
joint. In contrast, Inside first followed by Meet (or meet) and then followed by
Disjoint can be satisfied.

DRAFT April 22, 2002, 10:50am D RAF T

STQL — A Spatio-Temporal Query Language 9

Sequential temporal composition is just one possibility to build new spatio-
temporal predicates. Other operations are alternative and reverse. For ex-
ample, consider a moving point on a border of a region. The situations that
can arise when the point leaves the border are captured by the alternative
Disjoint|Inside. An example for reverse will be shown in Section 4.

Finally, when we are interested only in an initial or a final part of a develop-
ment, it is helpful to have a kind of “wildcard” spatio-temporal predicate that
can be used to express “don’t care” parts of developments. Therefore, we have
defined a spatio-temporal predicate True that yields always true for two spatio-
temporal objects. By composing True with other spatio-temporal predicates
we can achieve the effect of specifying “don’t care” parts of developments; an
example is given in the next section.

4, Querying with Spatio-Temporal Operations

In this section we demonstrate by example queries how spatio-temporal data
types and operations can be embedded into our spatio-temporal query lan-
guage called STQL. The full extent of available operations, their signatures
and semantics, as well as more advanced query constructs and facilities can be
found in [Giiting et al., 2000; Erwig and Schneider, 2002]. The intention here
is to illustrate some new Kkinds of queries that can be posed against a spatio-
temporal database.

4.1 Design Aspects and Application Scenarios

From a design point of view, our intention is not to devise a new spatio-
temporal query language from scratch but to appropriately extend the widespread
database query language standard SQL. We profit from the fact that the under-
lying data model rests on the ADT approach which necessitates only conserva-
tive extensions to SQL. These are essentially: (i) a set of spatial data types, op-
erations, and predicates (taken for granted), (ii) a set of spatio-temporal oper-
ations (obtained for free by temporal lifting), (iii) temporal selection, (iv) pro-
jection operations to space and time, (v) spatio-temporal aggregation, (vi) a set
of basic spatio-temporal predicates, and (vii) an extension mechanism for the
construction of new, more complex spatio-temporal predicates.

The benefit of this approach is the preservation of well known SQL con-
cepts, the high-level treatment of spatio-temporal objects, and the easy incor-
poration of spatio-temporal operations and predicates. Users can ask either
standard SQL queries on standard data or use STQL features to inquire about
situations involving spatial, temporal, or spatio-temporal data.

We will consider queries from three (simplified) application scenarios. The
first scenario refers to a flight-weather information system. Flight and weather

DRAFT April 22, 2002, 10:50am D RAFT

10

conditions play a central role for the feasibility of flights and the safety of
passengers. Here we use the following relations:

flights(id:string, Route:Point)
weather(kind:string, Extent:Region)

Pointand Region are the two types for moving points and evolving regions,
respectively. The attribute 1d identifies a flight, and Route records the route
of a flight over time. The attribute kind classifies different weather events
like hurricanes, high pressure areas, or snowfall; Extent yields the evolving
extent of each weather event.

The second scenario is related to forest fire control management which pur-
sues the important goal of learning from past fires and their evolution. We
assume a database containing relations with schemas

forest(forestname:string, Territory:Region)
forest_fire(firename:string, Extent:Region)
fire_fighter(fightername:string, Location:Point)

The relation Forest records the location and the development of different
forests (attribute Territory)growing and shrinking over time through clear-
ing, cultivation, and destruction processes, for example. The relation for-
est_fire documents the evolution of different fires from their ignition up to
their extinction (attribute Extent). The relation Fire_fighter describes
the motion of fire fighters being on duty from their start at the fire station up to
their return (attribute Location).

The third scenario, finally, relates to a database about the migration of birds
in order to explore their behavior patterns over the years.

birds (swarm:string, Movement:Point)

4.2 Temporal Selections

The first queries refer to the flight-weather information system. A temporal
selection extracts the value of a moving object at a certain instant or the tem-
poral development over a certain period. We can then ask queries like “Where
was United Airlines flight 207 at time 8:00 am?”.

SELECT Route(8:00) FROM flights
WHERE id = "UA207"

This query shows the functional character of a spatio-temporal object by de-
termining the value of the object at a certain time through a simple function
application. A more general version of this query asks where the plane was
between 7:00 am and 9:00 am.

DRAFT April 22, 2002, 10:50am D RAF T

STQL — A Spatio-Temporal Query Language 11

SELECT Route(7:00..9:00) FROM flights
WHERE id = "UA207"

The “. .” notation specifies a range of time values, that is, a time interval. If a
spatio-temporal object is applied to a time interval (or a collection of disjoint
time intervals separated by commas), this expression yields a spatio-temporal
object restricted to that time interval (function restriction).

4.3 Projectionsto Spaceand Time

Projection operations on moving objects map either to their spatial or to
their temporal aspect. Assume that we are interested in the geometric locations
where the plane was between 7:00 am and 9:00 am. These can be obtained by:

SELECT trajectory(Route(7:00..9:00))
FROM flights
WHERE id = "UA207"

The trajectory operation computes the spatial projection of a spatio-temporal
object onto the Euclidean plane. For a moving point it yields an object of the
spatial type line. Note that isolated stationary points that can, in general, also
occur are ignored. For an evolving region the trajectory operation returns an
object of the spatial type region which results from projecting the union of the
region values at all times onto the Euclidean plane.

The next query asks for the lifespan of a spatio-temporal object: “How long
took the flight 207?”

SELECT duration(dom(Route)) FROM flights
WHERE id = "UA207"

The dom operator collects the times when the flight UA207 is defined (tempo-
ral projection). In this way inverse temporal functions can be computed. The
duration operation computes the length of an interval or of several intervals.

4.4 Aggregations

The following query inquires about the largest snow areas at all times.

SELECT Area(max(Extent)) FROM weather
WHERE kind = *‘snow"

The query demonstrates an example of a spatio-temporal aggregation opera-
tion max which is an extension of the well known aggregation operator in SQL
of the same name. It is here applied to a collection of evolving regions con-
tained in a relation column and computes a new evolving region. Internally,

DRAFT April 22, 2002, 10:50am DRAFT

12

this operator is based on a binary function max s applied to two evolving re-
gions Ry and R and yielding a new evolving region in the following way:
mazst(R1, R2) = {(t,r) |t €time Ar = mazgeo(R1(t), R2(t))}

This definition uses a function maz 4., which is applied to two regions r; and
ro and which returns the larger of both regions:

MaTgeo(r1,72) = {

Altogether this means that for »n evolving regions Ry, . .., R, we first compute
the evolving region R = maz g (R, ..., mazg(R,—1, Ry) . ..). Afterwards,
we apply the lifted operator Area to R, which computes the area of R at all
times as a temporal real number. Alternatively, we can answer the query by

r1 if area(r1) > area(rz)
ro Otherwise

SELECT max(Area(Extent)) FROM weather
WHERE kind = "'snow"

Here, first the Area operator is applied to each snow area and returns a tem-
poral real. Then the max operator takes the collection of temporal reals and
produces a new temporal real by selecting the largest of all real values occur-
ring in the temporal reals at each time.

4.5 Temporally Lifted Operations

The concept of temporal lifting has been discussed in Section 3.2. It al-
lows us to lift all spatial operations to the temporal dimension. The following
examples are taken from the forest-fire control-management scenario.

The first query asks for the total size of the forest areas destroyed by the fire
called “The Big Fire”.

SELECT sum(size) FROM
(SELECT size AS area(traversed(
Intersection(Territory, Extent)))
FROM forest_fire, forest
WHERE firename = "The Big Fire'" AND
ever(Intersects(Territory, Extent)))

The lifted predicate Intersectsis part of the spatio-temporal join condition
of the nested subquery. If the name of a forest fire is “The Big Fire” and if
its extent overlaps with the territory of a forest at least at one time (ever),
the intersection is computed by the lifted spatial operation Intersection.
Finally, from the resulting evolving region the area of its spatial projection is
determined.

The next query asks for the times and locations when and where the spread
of fires was larger than 500 km?2.

DRAFT April 22, 2002, 10:50am D RAF T

STQL — A Spatio-Temporal Query Language 13

SELECT Extent(dom(at(Area(Extent)>500,true)))
FROM forest_fire
WHERE not(isempty(dom(at(Area(Extent)>500,true))))

The at operation takes a lifted predicate (Area(Extent) > 500) and a
boolean constant (true) as operands. The lifted predicate itself contains a
lifted Area function which determines the areas of Extent over all times
of its lifespan and thus produces a temporal real. The lifted predicate now
computes a temporal boolean testing for each time of the lifespan of the tem-
poral real whether the real value at that time is larger than 500 km? or not.
The at operation then extracts those times and boolean values from the tem-
poral boolean where the boolean value is true. The 1sempty predicate tests
whether a set is empty.

Another query asks how long fire fighter Th. Miller was enclosed by the fire
called “The Big Fire” and which distance he covered there.

SELECT time AS duration(dom(
Intersection(Location, TheBigFire))),
distance AS length(trajectory(
Intersection(Location, TheBigFire)))
FROM fire_fighter
WHERE fightername = "Th. Miller™

We assume that the value TheBigFire has already been determined before,
and that we know that Th. Miller was in this fire (otherwise time and distance
will be returned as zero). This time, the Intersection operation is applied
to a moving point (Location) and an evolving region (TheBigFire). It
yields that part of the moving point lying inside the evolving region. The op-
eration Iength determines the length of a line, which is here obtained as the
result of the spatial projection of a moving point.

Finally, we give an example query using a lifted constant, that is, a non-
moving spatio-temporal object. With respect to our flight-weather information
system we ask when a plane was over the Eiffel Tower.

SELECT dom(Intersection(Route, "EiffelTower))
FROM flights

We assume that Ei FFel Tower describes a point containing the coordinates
of the Eiffel Tower. In STQL the lifting operator is denoted by ~. It is here
applied to a point as a non-temporal object and yields a stationary point over
time, that is, a moving point does not move.

4.6 Querying Developmentsin STQL

We first give a motivation why spatio-temporal predicates are needed and
then show some queries.

DRAFT April 22, 2002, 10:50am D RAF T

14

46.1 M ativation. In the Introduction we have emphasized that tuple-
timestamped models are too inflexible for our purposes and that we prefer
attribute-timestamped approaches. But even the latter approaches are restricted
in the sense that they are incapable of modeling temporal developments of con-
tinuously evolving spatial relationships between moving objects. For example,
consider the query “Determine the time when flight UA207 flew into a hurri-
cane”. We cannot express this query with languages like TempSQL [Gadia and
Nair, 1993], which uses attribute timestamps, for two reasons. First, it is not
possible in TempSQL to express and to query continuous developments, but
only stepwise changes. Second, there is no interpolation mechanism telling
when an event happened within a time interval. However, by employing our
ADT approach, we can formulate the query as follows:

SELECT min(dom(Intersection(Route, Extent)))
FROM flights, weather
WHERE id = "UA207' AND
kind = "hurricane"

The lifted Intersection operation is here applied to a moving point and an
evolving region. It yields that part of Route lying inside Extent. The min
operator here computes the minimum of all time values when the intersection
is defined.

If we formulate this query a little bit more generally like “Determine the
times when airplanes flew into hurricanes”, a lot of plane-hurricane combina-
tions might produce undesired null values because the flight and the hurricane
just considered did not intersect at all. (Note that this is also possible in the
more restricted previous query.) In this case, a spatio-temporal predicate could
be used in the WHERE clause to avoid these null values in the result relation.
Such a predicate could investigate in advance whether or not a flight and a hur-
ricane came into contact. In the next section we will see how these predicates
can be defined.

A second query showing the necessity of spatio-temporal predicates, in par-
ticular, for temporal developments, asks: “Determine the flights entering a
hurricane”. The problem here is that for each plane/hurricane combination
we have to check the validity of different spatial predicates during a series of
events and periods in a given temporal order. This means, we have to examine
whether there has been a constellation when the plane and the hurricane were
disjoint for a while, when afterwards they met at one point in time, and when
finally the plane was inside the hurricane for a while. The development of en-
tering a hurricane is only true if each of the three subqueries can be answered
in the affirmative and if they have occurred one after the other. The series is
like a specification that has to be matched at least once by each plane/hurricane
combination. We can express this query by the following STQL statement:

DRAFT April 22, 2002, 10:50am D RAF T

STQL — A Spatio-Temporal Query Language 15

SELECT i1d FROM flights, weather
WHERE kind = "hurricane™ AND
not(Route(min(dom(Route))) inside
Extent(min(dom(Route)))) AND
Route(max(dom(Route))) inside
Extent(max(dom(Route)))

Obviously, this query is very complicated. It works as follows: after the
computation of the departure time of the flight (nin(dom(Route))), the
Route object is applied to this value and yields a point. The Extent ob-
ject is applied to the same time value and yields a region. Using the spa-
tial predicate 1nside, we check whether the point lies inside the region.
If this is not true, we know that at the departure time of the flight the plane
was outside of the hurricane. Similarly, we compute the arrival time of the
flight (max(dom(Route)))and apply both Route and Extent to this time
value. Again, we check whether the point lies inside the region, and if this is
true, we know that Route must have entered the Extent object. This, in
particular, implies that they met at the border of the hurricane. A limitation of
this query is that we cannot determine whether plane and hurricane met only
for one moment (straight entering) or whether the plane ran along the border
for a while and then entered the hurricane (delayed entering). We will see how
to express queries like these much more concisely in the following.

4.6.2 Querying. For integrating spatio-temporal predicates and devel-
opments into STQL, we extend it by (i) the set of eight basic spatio-temporal
predicates and (ii) by a facility to assemble new complex predicates from more
elementary ones.

We again consider the flight-weather information system. Let us first recon-
sider the example query of finding out all planes that ran into a hurricane. With
a predicate combinator >> that has the semantics of temporal composition >
we can formulate the query as:

SELECT id FROM flights, weather
WHERE kind = "hurricane’™ AND
Route Disjoint>>meet>>Inside Extent

Since some compound predicates will be needed more frequently and since
some of them have quite longish specifications, we introduce a macro defini-
tion facility as part of the data definition language to introduce new predicates.
The syntax is given in Figure 1.1. As basic predicates (p-basic) we allow all
the elementary spatio-temporal predicates introduced in Section 3.3.

We use the convention that | binds stronger than >> and that combinators
>>and | bind stronger than predicate application. (This is the reason that we

DRAFT April 22, 2002, 10:50am D RAFT

16

p-def — DEFI NE p-name AS p-expr
p-expr — p-basic

| p-name

| pexpr >> p-expr

|

p-expr | p-expr
r ev(p-expr)

Figure 1.1. Predicate definition macro language.

were able omit the brackets around the spatio-temporal predicate in the above
example query.)
Now we can define a predicate Enters as follows:

DEFINE Enters AS Disjoint>>meet>>Inside

Hence, we can formulate the query asking for planes entering a hurricane also
as:

SELECT * FROM flights, weather
WHERE kind = "hurricane'™ AND
Route Enters Extent

As further examples, consider the definition of the predicates Leaves, Crosses,
and Bypass:

DEFINE Leaves AS rev(Enters)
DEFINE Crosses AS Enters>>Leaves
DEFINE Bypasses AS Disjoint>>Meet>>Disjoint

Note that the predicate Crosses is equal to the definition

DEFINE Crosses
AS Disjoint>>meet>>Inside>>meet>>Disjoint

because rev(Enters) = Inside>>meet>>Disjointand Inside>>
Inside = Inside. General laws expressing relationships like these are
given in [Erwig and Schneider, 2002].

The following example illustrates the construct of alternative. The query is
to find all planes that either crossed or bypassed a snowstorm.

SELECT id FROM flights, weather
WHERE kind = "snowstorm™ AND
Route Crosses|Bypasses Extent

We can use development predicates also within GROUP BY clauses (spatio-
temporal grouping). For example, we might be interested in the number of
planes that were, respectively, were not entering snowstorms or fog areas:

DRAFT April 22, 2002, 10:50am D RAF T

STQL — A Spatio-Temporal Query Language 17

SELECT COUNT(*) FROM flights, weather
WHERE kind = "‘snowstorm”™ OR kind = *"fog"
GROUP BY Route Enters Extent

To demonstrate the use of developments on two evolving regions we switch
to the forestO-fire control-management scenario. We could be interested, for
example, in all forests that were completely destroyed by a particular fire. The
fact that a forest is destroyed means that it is, at least from some time on,
completely inside of (or equal to) the fire region, that is, after the fire is over,
the forest does not exist anymore. But before that many different relationships
between the fire and the forest are possible, for example, the fire ignition can
happen within the forest, at its border or outside. Since we do not want to
care about all these possibilities, we can use the predicate True as a wildcard
preceding the final condition, which we denote in STQL by . This leads to
the following query:

SELECT name FROM forest, fire
WHERE Territory >>Inside]Equal Extent

This means that for a certain period of time we do not care at all about the
relationship between the forest and the fire, which is expressed by _ that con-
stantly yields true; we only require the existence of a time point after which
Inside or Equal holds.

Finally, as an example for querying spatio-temporal developments of two
moving points, consider the relation recording the migration of birds.

We might be interested in swarms that fly together, then take different routes
for some time and finally meet again. This can be expressed as an STQL query:

DEFINE Remeets
AS >>Meet>>Disjoint>>Meet>>

SELECT A.swarm, B.swarm
FROM birds (A), birds (B)
WHERE A.Movement Remeets B.Movement

5. Visual Querying

Having defined powerful query facilities, we might ask ourselves who else
will be ever able to use them? In particular, non-computer scientists do not
want to learn new languages (programming languages, query languages, or
others); they just want to get their job done, which means that, in particular,
end users, need an easy access to spatio-temporal data and queries.

One possible answer to this problem is to implement a couple of queries and
offer these hardwired at a tailor-made user interface. This strategy, however,
means a severe access restriction for end users.

DRAFT April 22, 2002, 10:50am D RAFT

18

Another approach is to define visual query languages that allow the user to
express arbitrary queries without having to master the syntax of a rigid textual
query language. For example, we have defined a visual language and query
interface that allows users to draw sketches of object traces, which can then be
automatically translated into queries using spatio-temporal predicates [Erwig
and Schneider, 2000; Erwig and Schneider, 1999b]. A sketch for the spatio-
temporal predicate Inside > meet > Disjoint is shown in Figure 1.2.

Figure 1.2. A visual predicate specification.

There are at least two ways in which these visual predicate sketches can
be utilized for spatio-temporal query languages: (1) Sketches can be embed-
ded directly into queries to replace spatio-temporal predicates. This approach
leads to a heterogeneous visual languages as investigated in [Erwig and Meyer,
1995]. On the other hand, we can extend the visual notation by allowing tex-
tual attachments to graphical objects. The text fragments are meant to identify
objects in the database that have an attribute that correspond to the sketched
trace. With these additional specifications we are able to translate sketches
into complete queries.

For example, consider the visual query in Figure 1.3.

Weather (kind="hurricane’)

Flights

Figure 1.3. A visual query.

The names associated with the graphical objects are interpreted as the rela-
tions whose spatio-temporal objects are depicted (here, Route and Extend),
and the condition in brackets is treated as a condition that is just added to the
WHERE clause. Together with the translation of the depicted trace, the visual
query can be translated into the query given at the beginning of Section 4.6.2.

DRAFT April 22, 2002, 10:50am D RAF T

STQL — A Spatio-Temporal Query Language 19

6. Conclusions

Based on an ADT approach to the integration of spatio-temporal data types
into data models we have shown how to extend SQL to a spatio-temporal query
language called STQL. We have shown how to obtain query operators by tem-
poral lifting and how to express temporal selections and aggregations. A dis-
tinctive feature of the ADT approach is that ADT operations can be integrated
smoothly into SQL so that existing query mechanisms like grouping can be
used together with the new operations. Observing that querying developments
of spatial objects is of particular interest, we have demonstrated how to define
basic and compound spatio-temporal predicates as specifications for develop-
ments textually and visually.

DRAFT April 22, 2002, 10:50am D RAFT

References

Ariav, G. (1986). An Overview of TQuel. ACM Transactions on Database Sys-
tems, 11(4):499-527.

Bdhlen, M. H., Jensen, C. S., and Skjellaug, B. (1998). Spatio-Temporal Database
Support for Legacy Applications. In ACM Symp. on Applied Computing,
pages 226-234.

Cheng, T. S. and Gadia, S. K. (1994). A Pattern Matching Language for Spatio-
Temporal Databases. In ACM Conf. on Information and Knowledge Man-
agement, pages 288-295.

Clementini, E., Felice, P., and Oosterom, P. (1993). A Small Set of Formal
Topological Relationships Suitable for End-User Interaction. In 3rd Int. Symp.
on Advances in Spatial Databases, LNCS 692, pages 277-295.

Clifford, J. and Croker, A. (1993). The Historical Relational Data Model (HRDM)
Revisited, pages 6-27. In [Tansel et al., 1993].

Clifford, J., Croker, A., and Tuzhilin, A. (1993). On the Completeness of Query
Languages for Grouped and Ungrouped Historical Data Models, pages 496—
533. In [Tansel et al., 1993].

Egenhofer, M. J. (1994). Spatial SQL: A Query and Presentation Language.
IEEE Transactions on Knowledge and Data Engineering, 6(1):86-95.

Egenhofer, M. J. and Al-Taha, K. K. (1992). Reasoning about Gradual Changes
of Topological Relationships. In Int. Conf. GIS — From Space to Territory:
Theories and Methods of Spatio-Temporal Reasoning in Geographic Space,
LNCS 639, pages 196-2109.

Egenhofer, M. J. and Franzosa, R. D. (1991). Point-Set Topological Spatial
Relations. Int. Journal of Geographical Information Systems, 5(2):161-174.

Egenhofer, M. J. and Herring, J. (1990). A Mathematical Framework for the
Definition of Topological Relationships. In 4th Int. Symp. on Spatial Data
Handling, pages 803-813.

Erwig, M. and Giiting, R. H. (1994). Explicit Graphs in a Functional Model for
Spatial Databases. IEEE Transactions on Knowledge and Data Engineering,
5(6):787-804.

DRAFT April 22, 2002, 10:50am DRAFT

22

Erwig, M., Giting, R. H., Schneider, M., and Vazirgiannis, M. (1998a). Ab-
stract and Discrete Modeling of Spatio-Temporal Data Types. In 6th ACM
Symp. on Geographic Information Systems, pages 131-136.

Erwig, M., Giiting, R. H., Schneider, M., and Vazirgiannis, M. (1999). Spatio-
Temporal Data Types: An Approach to Modeling and Querying Moving
Obijects in Databases. Geolnformatica, 3(3):269-296.

Erwig, M. and Meyer, B. (1995). Heterogeneous Visual Languages — Integrat-
ing Visual and Textual Programming. In 11th IEEE Symp. on Visual Lan-
guages, pages 318-325.

Erwig, M. and Schneider, M. (1999a). Developments in Spatio-Temporal Query
Languages. In IEEE Int. Workshop on Spatio-Temporal Data Models and
Languages, pages 441-449.

Erwig, M. and Schneider, M. (1999b). Visual Specifications of Spatio-Temporal
Developments. In 15th IEEE Symp. on Visual Languages, pages 187-188.
Erwig, M. and Schneider, M. (2000). Query-By-Trace: Visual Predicate Spec-
ification in Spatio-Temporal Databases. In Arisawa, H. and Catarci, T., ed-
itors, Advances in Visual Information Management — Visual Database Sys-

tems, pages 199-218. Kluwer Academic Publishers, Boston, MA.

Erwig, M. and Schneider, M. (2002). Spatio-Temporal Predicates. IEEE Trans-
actions on Knowledge and Data Engineering. To appear.

Erwig, M., Schneider, M., and Giiting, R. H. (1998b). Temporal Objects for
Spatio-Temporal Data Models and a Comparison of Their Representations.
In Int. Workshop on Advances in Database Technologies, LNCS 1552, pages
454-465.

Gadia, S. K. and Nair, S. S. (1993). Temporal Databases: A Prelude to Para-
metric Data, pages 28-66. In [Tansel et al., 1993].

Grumbach, S., Rigaux, P., and Segoufin, L. (1998). Spatio-Temporal Data Han-
dling with Constraints. In 6th ACM Int. Symp. on Advances in Geographic
Information Systems, pages 106-111.

Giting, R. H., Bohlen, M. H., Erwig, M., Jensen, C. S., Lorentzos, N. A.,
Schneider, M., and Vazirgiannis, M. (2000). A Foundation for Representing
and Querying Moving Objects. ACM Transactions on Database Systems,
25(1):1-42.

Giiting, R. H. and Schneider, M. (1995). Realm-Based Spatial Data Types: The
ROSE Algebra. VLDB Journal, 4(2):100-143.

Motakis, I. and Zaniolo, C. (1995). Composite Temporal Events in Active
Databases: A Formal Semantics. In Clifford, J. and Tuzhilin, A., editors,
Recent Advances in Temporal Databases, pages 332-351. Springer Verlag.

Segev, A. and Shoshani, A. (1993). Logical Modeling of Temporal Data. In
[Tansel et al., 1993], pages 248-270.

Snodgrass, R. (1993). A Temporally Oriented Data Model, pages 141-182. In
[Tansel et al., 1993].

DRAFT April 22, 2002, 10:50am DRAFT

REFERENCES 23

Stonebraker, M. (1986). Inclusion of New Types in Relational Database Sys-
tems. In Int. Conf. on Data Engineering, pages 262—-269.

Stonebraker, M., Rubenstein, B., and Guttman, A. (1983). Application of Ab-
stract Data Types and Abstract Indices to CAD Data Bases. In ACM/IEEE
Conf. on Engineering Design Applications, pages 107-113.

Tansel, A. U., Clifford, J., Gadia, S., Jajodia, S., Segev, A., and Snodgrass, R.,
editors (1993). Temporal Databases: Theory, Design, and Implementation.
The Benjamin/Cummings Publishing Company.

Worboys, M. F. (1994). A Unified Model for Spatial and Temporal Informa-
tion. The Computer Journal, 37(1):25-34.

Yeh, T. S. and Cambray, B. (1993). Time as a Geometric Dimension for Mod-
eling the Evolution of Entities: A 3D Approach. In Int. Conf. on Integrating
GIS and Environmental Modeling.

Yeh, T. S. and Cambray, B. (1995). Modeling Highly Variable Spatio-Temporal
Data. In 6th AustraliAsian Database Conf., pages 221-230.

DRAFT April 22, 2002, 10:50am DRAFT

