
Story Programming:
Explaining Computer Science Before Coding

Jennifer Parham-Mocello
Oregon State University, USA
parhammj@oregonstate.edu

Shannon Ernst
Oregon State University, USA

ernstsh@oregonstate.edu

Martin Erwig
Oregon State University, USA

erwig@oregonstate.edu

Lily Shellhammer
Oregon State University, USA

shellhal@oregonstate.edu

Emily Dominguez
Oregon State University, USA
domingue@oregonstate.edu

ABSTRACT

Story Programming is an approach for teaching complex
computational and algorithmic thinking skills using simple stories
anyone can relate to. One could learn these skills independent of a
computer or with the use of a computer as a tool to interact with the
computation in the tale. This research study examines the use of Story
Programming before teaching coding in a computer science orientation
course to determine if it is a viable alternative to the code-focused way
of teaching the class in the past. We measure the viability of the Story
Programming approach by evaluating student-success and learning
outcomes, as well as student reactions to post-survey questions.

CCS CONCEPTS
• Social and professional topics ~ Computational thinking • Social and
professional topics ~ Computer science education • Applied computing
~ Interactive learning environments

KEYWORDS
Story Telling; Computer Science Pedagogy; Introduction to Computer
Science

ACM Reference format:

Jennifer Parham-Mocello, Shannon Ernst, Martin Erwig, Lily Shellhammer, and
Emily Dominguez. 2019. Story Programming: Explaining Computer Science
Before Coding. In Proc. of the 50th ACM Technical Symposium on Computer
Science Education (SIGCSE ’19), Feb. 27-March 2, 2019, Minneapolis, MN, USA.
ACM, NY, NY, USA, 7 pages. https://doi.org/10.1145/3287324.3287397

1 INTRODUCTION
Many approaches to introducing computer science to students are
predicated on programming, that is, they require an understanding of
how to code an algorithm in a programming language. This approach
is used in efforts such as code.org that promote coding and computer
science to younger children, but the abstract nature of programming
languages (block based or not) can pose a significant barrier to entry.

A code-first approach can be effective when students have a good
understanding of programming or are willing to acquire it. Since
computer science is not synonymous with programming, there is no
inherent necessity to tie the orientation to computer science to coding
activities. Students who are not sure whether they want to study
computer science but are curious about the subject should not be
excluded because they are reluctant to the idea of having to become a
programmer as a prerequisite to understanding computer science. The
same applies to laypeople who want to get some basic understanding
of a field of growing importance for society. Therefore, efforts to
explain computer science without a computer, such as csunplugged.org,
have gained popularity, especially among the K-12 community, and
studies show that this approach broadens participation [3].
 The researchers in this study believe that the state-of-the-art
introductory computer science education at the university level could
benefit from more creativity and computational thinking without the
use of a computer. To reach a wide audience with a diverse background
and set of expectations, we use an approach that uses well-known
stories and everyday situations to explain computer science concepts
before teaching coding [8]. Explaining computational concepts
through popular stories has three complementary advantages.
 First, identifying computing concepts in stories and everyday
situations shows that computation is a universal phenomenon that
does not only occur in machines. Pointing out the occurrence of
computing in everyday situations emphasizes the relevance of
computing and provides motivation for understanding basic concepts
of computer science independent of the goal to become a programmer
or computer scientist.

Second, the use of well-known stories can help with making the
learning curve gentler, since students only need to understand the link
between the story elements and the computing concepts. If they know
the story, the objects and events are readily available as building blocks
for computing metaphors. This is different in approaches that invent
new stories to explain computing such as [2, 14] where students first
have to absorb and understand the story and only then can process the
links to computing concepts.

Third, stories can make people empathize more with the problems.
Considering the problem of finding the shortest path from the couch
to the fridge may be important, but it does not reach the level of
importance of the path-finding problem that Hansel and Gretel face.
Being emotionally engaged in a problem often means to care more
about a problem, which helps to make the explanation provided by the
story more memorable and effective. This aspect is probably stronger

* This work is partially supported by the National Science Foundation under the grant
CCF-1717300.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5890-3/19/02…$15.00
https://doi.org/10.1145/3287324.3287397

Paper Session: Story & Video SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

379

by using existing popular stories whose impact on the audience has
already been demonstrated through their popularity.

In the remainder of this paper we report on a study that researches
an approach called Story Programming as an alternative for teaching a
computer science orientation course, CS 0. This approach is based on
the book Once Upon an Algorithm: How Stories Explain Computing [7],
and this research investigates whether this approach is a viable option
for teaching a university-level computer science course. We define
viable in terms of satisfying learning outcomes and positive student
reactions to post-survey question.

2 BACKGROUND

The two most closely related areas to our approach are the so-called
“unplugged” computational thinking approach and the other existing
approaches to using stories for explaining computing concepts.

2.1 Unplugged Computational Thinking
Activities

The most well-known approach to teaching computer science
concepts without the use of a computer is the approach taken in
csunplugged.org [4]. It is a collection of engaging activities that can
illustrate computing concepts, but it does not use stories. Story
Programming uses the idea of unplugged activities performed without
a computer, but the actual activities in this project are different and
relate to the stories in the book or stories students create.
 Unplugged activities are primarily used in K-12 [1, 5, 11, 17, 18], but
this research study employs the idea of teaching computational
thinking without a computer at the university level. Most alternatives
for teaching introductory computer science courses in institutions
focus on changing the curriculum in their introductory computer
science classes to improve success and retention [9, 16] and make
topics covered more relevant and broader [15]. Some institutions have
created interest-based classes allowing students to choose a class
section based on what they like, such as game development, robotics,
music, and mobile applications [9, 20], while others focus on adding
computational thinking to their curricula with and without the use of
a computer [10, 13, 16, 19]. These studies show that teaching
computational thinking helps students think about different ways to
attack problems, making them more effective problem solvers. This
study uses a Story Programming approach to teach computational
thinking skills using stories without a computer before teaching
programming skills.

2.2 Story Programming Approaches

The use of stories to explain computing is not new. Computational
Fairy Tales describes algorithms and data structures as part of a story
about a princess on a quest to save her father's kingdom [14]. The
target audience is middle school children, and the treatment of
concepts is often quite brief. The selection of topics is ad hoc, and the
book does not cover any language aspects. Lauren Ipsum [2] employs
a similar approach. It tells a story about a girl who gets lost in a forest
and wants to find her way back home. In her adventure, she has to
solve several problems, which serve as a hook to introduce concepts of
algorithms and math on a very high level. The target audience is also
middle school children, and the story is like Alice in Wonderland with

its playful and clever use of names. It contains an appendix that
provides additional explanations of the concepts mentioned in the
story, but it also does not cover any language aspects.
 One study used Computational Fairy Tales to help the retention and
academic performance of computer science majors, mostly aimed at
students with little to no programming experience [16]. It found that
“CS0 students without prior programming experience got significantly
higher grades in CS1 than CS0 students who had programmed before”;
the students were split on how useful the book was to their learning.
This is different than the study presented in this paper, which
determines if Story Programming is a viable alternative to the
traditional programming-focused approach for teaching a computer
science orientation class. Another study used physical simulations in
class to explain concepts, which students said helped them to
understand the computational concepts [13], arguing that computer
science or programming concepts could be explained effectively using
stories if the connection between concept and story is strong. One
study claimed that using a story to learn a concept will be easily
accessible because that is how many of us learn to begin with [12].
These claims align with the rationale for using Story Programming,
but the study presented in this paper does not investigate these claims.
One other study used “unplugged” activities and storytelling to
introduce teachers to computational thinking, but it focused on teacher
training and used contextual stories to relate different “unplugged”
activities to specific computational skills for teachers as the storytelling
approach [6].

3 RESEARCH METHOD

At Oregon State University, students in the College of Engineering are
required to take an orientation course to fulfill a degree requirement,
and Computer Science Orientation (CS 0) is offered once a year to
fulfill that requirement for students interested in majoring in CS. This
course is primarily taken by incoming first-year students who are
declared Computer Science majors, but students with prior computer
science experience or outside the major may take the course as well.
In the past, Python was used as the coding language with students
beginning to write small programs as early as week two in a ten-week
term. The lectures are focused on teaching basic Python including
variables, control flow (both conditional statements and looping),
functions and lists with exposure to how to design solutions to
computer science problems and the idea of testing. In-class exercises
are completed in groups and used to stimulate learning in a computer-
free environment.

We divided the Fall 2017 CS 0 course into three sections. One
section remained taught in the traditional fashion with a focus on
programming in Python. The other two sections were taught using a
new approach supported by Once Upon an Algorithm. One Story
Programming section was taught using Python in the second half of
the class, and the other section used Haskell to investigate differences
in language choice with the new approach. All sections were taught by
the same instructor, and the students were placed in sections at
random.

3.1 Course Structure

All three sections had about 100 students per lecture and utilized
presentation slides to teach concepts, as well as live coding

Paper Session: Story & Video SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

380

demonstrations through a terminal when programming was being
taught. Every week students engaged in in-lecture, group exercises.
While the traditional section primarily focused on programming
concepts, these activities did not involve a computer. They often
centered around writing pseudocode, designing a solution to a
problem, or analyzing code. The Story Programming in-class exercises
did not focus on pseudocode or code analysis until half way through
the term, and most of their exercises focused on understanding the
stories used in the book Once Upon an Algorithm from a computational
perspective, coming up with new stories to explain computational
concepts, and developing and tracing algorithms. Since these activities
did not use a computer, they were referred to as computational
thinking (CT) activities rather than coding activities.

The students in the Story Programming sections were required to
read relevant chapters of the book before class with a weekly online
quiz. Chapters were generally covered in a sequential fashion with
some occasional skipping to group like concepts together. The
traditional section did not have a textbook, but students were
encouraged to use online documentation for Python to supplement
their learning where needed. The use of the book in the Story
Programming sections changed the emphasis placed on some of the
concepts, allowing for greater breadth and depth of concepts. For
example, the Story Programming sections covered the concept of data
structures and decidability more deeply than the traditional section,
which gave a cursory view of data structures only through lists and
only mentioned the idea that not all problems are solvable.

Each section had one two-hour lab per week, but while the
traditional section labs focused on programming activities beginning
in week 1, the first 5 Story Programming labs focused on small group
activities applying concepts to the real world. For example, one of the
first activities examined path finding algorithms using the tale of
Hansel and Gretel, and students were presented with three variants of
the algorithm that they had to act out with pebbles. Another activity
helped students learn about the runtime of different algorithms by
having to count and transfer beans across the classroom using different
methods. The programming activities in the last 5 labs mirrored in
code the concepts that were covered in earlier labs, rather than relating
to the new concepts.

Each section had weekly assignments. For the traditional section
these focused on programming. The students were presented with a
problem statement and were asked to implement a solution in Python
by the end of the week. These programs often focused on interacting
with a user. The Story Programming sections focused on describing
algorithms and connecting concepts they were learning from the book
to the real world. When the students in the Story Programming
sections began programming, their programs were much smaller toy
problems and did not involve user input. The problems given to the
Story Programming sections were also slightly different depending on
the programming language.

3.2 Research Questions

With clearly defined sections, a formal study on the differences in
pedagogy can address the following broad research questions, which
we will outline in more detail in section 4.
RQ1: Does the Story Programming approach satisfy the learning
outcomes?

RQ2: How do students react to the Story Programming approach?
RQ3: How do students react toward the CT activities versus coding
activities?

3.3 Data Collection

With IRB permission, course-level DWF rates and grade distribution
information were collected from the registrar, and student-level post-
survey data were collected from consenting participants. Conceptual
questions about algorithms, representation, and abstraction on a post-
survey addressed the first research question, and survey questions
with a 4-point Likert scale addressed the other two research questions.

4 RESULTS AND DISCUSSION

The course-level student success results are out of 277 students, and
the student-level post-survey results are out of 110 consenting
participants (35 Story Python, 25 Story Haskell, and 50 Traditional).
Since the data are not normally distributed and are based on a Likert
scale, non-parametric statistical tests, such as Kendall’s correlation tau,
τ, and the Kruskal-Wallis hypothesis test are used to reject hypotheses
with 95% confidence, α=.05.

RQ1: Does the Story Programming approach
satisfy the learning outcomes?

A college-level learning outcome for this class is student success. Two
measures of student success are DWF rates and the grade distribution
of passing students. A course-level learning outcome in CS 0 is to gain
an understanding of computer science, which is measured using a
post-survey.

DWF Rates

The results in Table 1 do not show a significant difference in the DWF
rates between the two Story Programming sections or between the
Story Programming and traditional approaches.

Sections
Students and DWF rates

Students DWF
Story Python 105 8.6%
Story Haskell 65 9.2%
Traditional 107 6.5%

Table 1: Number of students and DWF in each section

This suggests that the Story Programming and traditional approaches
have comparable student retention and performance, and the choice of
language in the Story Programming approach does not affect this. As
a side note, the average DWF rate across all sections is almost 11%
lower than the previous year, when all students were in one section of
284. This suggests that class size has a bigger effect on retention and
student success than the approach or language used in a computer
science orientation class.

Grade Distribution

Statistical tests show no differences in grade distributions between the
Story Programming populations using different languages or between
the two different approaches. However, it is interesting to note that the

Paper Session: Story & Video SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

381

Story Programming sections differ the most (see Figure 1). The Haskell
section has a lower percentage of As and a higher percentage of Bs.

Figure 1: Grade Distribution among Story Programming
approaches and the traditional programming approach.

Post-Survey Conceptual Questions

Out of the 110 consenting participants across all sections, there are no
differences in the way students from the Story Programming sections
or different approaches answer the conceptual post-survey questions
(see Table 2). Interestingly, approximately half the students answer the
algorithm and abstraction questions correctly, whereas most students
answer the representation questions incorrectly.

Sections

Post-Survey Conceptual Questions

Algorithm (8) Representation (4) Abstraction (4)

Story Python 47.9% 42.1% 60.0%
Story Haskell 54.0% 35.0% 63.0%
Traditional 52.8% 36.5% 61.0%

Table 2: Percentage of students with Correct Answers to Post-
Survey Conceptual Questions

RQ2: How do students react to the Story
Programming approach?

Only students from the two Story Programming sections answer
survey questions about the new approach and the use of the book. The
following questions are answered by comparing these two sections,

Does the chosen language make a difference in how students
feel about the Story Programming approach?

There is a significant difference in the student reactions toward the
Story Programming approach based on the section (pvalue=.003).
Figure 2 shows the distributions of student feelings about the approach
in the two sections. The Story Programming section using Haskell
tends to like the approach more than the section using Python.
However, an average of 65% of the students in both sections really or
somewhat like the Story Programming approach to teaching the
orientation class with only 13% disliking the approach a great deal.

Figure 2: Distribution of students’ feelings about the Story
Programming approach in the different sections.

Figure 3: Percent of students who find the textbook useful to
their learning or interesting.

Does the chosen language make a difference in the way
students feel about the book used?

The two sections do not significantly differ in the responses regarding
usefulness of and interest in the book, which means that students in
both sections are consistent in the way they evaluate the book. This is
observed in the strong positive, τ=0.70, correlation between student
ratings on how useful the book is to their learning and how interesting
it is, and there is a moderately positive correlation between how they
feel about the Story Programming approach and whether they find the
book useful (τ=0.59) or interesting (τ=0.52). Only 25-32% from both
sections do not at all find the book useful to their learning or
interesting, but most only find the book moderately useful or
interesting (see Figure 5).
 Figure 4 shows the students’ favorite chapters are 1 (about
algorithms and computation), 4 (data structures), and 6 (sorting). Since
each of these chapters use different stories, this means that students
are not partial to one specific story. Moreover, no student seemed to
like chapter 15 (about abstraction), which uses Harry Potter as the
story. Interestingly, the two Story Programming sections did not differ
significantly in the choice of favorite chapters, but they did differ
significantly in their least favorite chapters (pvalue=.02). The least
favorite chapters are more evenly distributed with no one disliking
chapter 2 (runtime and resources). It is interesting to note that the
students tend to like the first part of the book more, which is about
algorithmic concepts, in contrast to the later chapters with more
abstract content about language concepts.

Paper Session: Story & Video SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

382

Figure 4: Number of students who choose specific chapters in
the textbook as their most and least favorite.

Does prior programming experience, gender, or class standing
change the way students feel about the approach?

Figure 5 shows that many students enter CS 0 with prior programming
experience, and there is not a significant difference between sections.
Since approximately 60-70% of the students have prior programming
experience, this is a variable worth considering.

Figure 5: Prior programming experience across all three
sections.

The data from the two Story Programming sections do not show a
significant difference in the way students felt about the approach based
on prior programming experience, and there is no strong correlation
between prior programming experience and their feelings toward the
Story Programming approach. However, it is interesting to note that
there is a very low negative correlation, which means that there were
a few more students with prior programming experience who have
negative feelings toward the approach. There is also no difference in
the usefulness and interest ratings of the book among those with and
without prior programming experience.

There is no difference in gender or class standing distributions in
the two Story Programming sections, and there is not a significant
difference in class standing across all sections. However, Figure 6
shows a significant difference in gender across the Story Programming
and traditional sections (pvalue=.04). The traditional section has more
male students.

Figure 6: Gender demographics across all three sections.

Just as with prior programming experience, there is not a significant
difference in the way students felt about the approach or textbook
based on gender or class standing, and there is not a strong correlation
between gender or class standing with how they felt about the
approach or book.

RQ3: How do students react toward the CT
activities versus coding activities?

There is a moderate to strong positive correlation, τ=0.57-0.72, between
how students feel about the CT activities helping them learn, whether
they feel the CT activities motivate them to learn more about computer
science, and how engaging they rate the CT activities. There is a
moderate correlation between how a student feels about the Story
Programming approach with how they rate the CT activities. The
students who like the approach are more likely to find the activities
engaging (τ=0.57) or feel that they help them learn (τ=0.49). Likewise,
the rating for the coding activities show similar correlations, τ=0.58-
0.72, between how students feel about the coding activities helping
them learn, whether they feel the coding activities motivate them to
learn more about computer science, and how engaging they rate the
coding activities.

Do the approaches lead to differences in the activities students
consider helpful for learning, motivating, and engaging?

There is a significant difference in student reactions toward CT
activities among the Story Programming sections, but there is not a
significant difference in student reactions toward CT activities in the
sections using different approaches. Students in the two Story
Programming sections differ on whether they feel CT activities help
them learn (pvalue=.03), motivate them to learn more about computer
science (pvalue=.01), and engage them (pvalue=.01). Since the trends
are the same for these students feelings toward CT activities, we
include one figure showing the differences in motivation to learn more
about CS among the various sections. Figure 7 shows that the students
in the Haskell Story Programming section strongly agree more than
those in the Python section, as well as disagreeing less.

Paper Session: Story & Video SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

383

Figure 7: Distribution of agreement about whether
computational thinking activities motivated students’
learning.

There is not a significant difference in student reactions toward coding
activities among Story Programming sections or across the different
approaches. The Story Programming sections have about 10% more
students who feel the coding activities help them learn, motivate them,
and are engaging, but the traditional section has 24% more students
who feel like the coding activities motivate them over the CT activities.
This might be due to a heavier focus on writing code in the traditional
approach, whereas the Story Programming approach focuses on CT
using stories and non-coding activities for the first half of the term.
Overall, the students in the traditional section disagree more about the
helpfulness, motivation, and engagement of both kinds of activities,
but the students in the Story Programming section with Python
strongly disagree more than any other section.

Is there a correlation between the way students rate CT
activities versus coding activities?

Most students who agree the CT activities are engaging also agree the
coding activities are engaging, and this is the same for those who
strongly agree. Even though there is not a strong linear relationship
between most student ratings for CT activities and coding activities,
there are other interesting patterns to observe. Across all sections,
there are no students who strongly agree with the CT activities and
then disagree or strongly disagree with the coding activities.
Interestingly, the Haskell Story Programming section never disagrees
or strongly disagrees to either activity. In all sections, if students
disagree with CT activities, then they tend to agree with coding
activities. However, if they disagree with the coding activities, then
they continue to disagree with the CT activities.
None of the sections show a difference in the way students of different
genders rate the CT or coding activities. Across all sections, there is a
significant difference in the way students of different genders rate the
engagement of coding activities (pvalue=.01), and female students tend
to strongly agree with the engagement of these activities more than
their male peers. However, students with different prior programming
experiences in the Python Story Programming section differ in all their
ratings of CT activities (pvalues=.01-.05), but ratings for the coding
activities in this section do not differ based on prior programming. No
other sections show differences in their ratings of CT or coding
activities based on prior programming, and across all sections, there is
a significant difference among students with prior programming

experience and their ratings for the motivation and engagement of CT
activities (pvalues=.03 and .04).

5 CONCLUSIONS

This study does not show any difference in student success or
conceptual learning among either Story Programming sections or
between the two approaches. However, it is interesting that the choice
of Haskell provides a modest difference in the distribution of As and
Bs. It appears that the approach or language choice across different
sections of an orientation course does not impact DWF rates as much
as having smaller sections does. This result supports making class sizes
smaller and perhaps providing different choices for students when
offering multiple sections of a course.

Student reactions to the Story Programming approach are mostly
positive, and students’ prior programming experience, gender, or class
standing does not seem to impact the way students react to the new
approach or the book. However, the choice of Haskell with the Story
Programming approach seems to create more positive reactions than
Python. In general, students find the book to be moderately useful or
interesting. The students like the chapters in the beginning of the book
the most, which suggests that students in an orientation course like
concrete algorithmic concepts more than abstract computational
concepts.
Interestingly, the two approaches show no significant difference in
student reactions toward CT activities performed without the use of a
computer and coding activities using a computer, but the language
used with the Story Programming approach may affect reactions
toward the CT activities. Students in the Haskell section strongly agree
more than the Python section with the positive impact of the CT
activities, but the reactions toward the coding activities in these
sections do not differ. In all sections, students rank coding activities
higher than CT activities, which suggests that students value coding
more than the CT activities.
 In summary, we conclude that Story Programming is a viable
approach for teaching a CS orientation class with a mixture of students
who do and do not have prior programming experience. The choice of
language used with the Story Programming approach has some impact
on student grades and reactions toward the approach and activities.

REFERENCES
[1] T. Bell, J. Alexander, I. Freeman, and M. Grimley. 2009. Computer Science

Unplugged: school students doing real computing without computers. Journal of
Applied Computing and Information Technology 13, 1.

[2] Carlos Bueno. 2014. Loren Ipsum. No Starch Press.
[3] Thomas J. Cortina. 2015. Reaching a broader population of students through

"unplugged" activities. Commun. ACM 58, 3 (February 2015), 25-27. DOI:
https://doi.org/10.1145/2723671

[4] CS Education Research Group. CS unplugged: Computer Science without a
computer. http://www.csunplugged.org

[5] Paul Curzon. 2013. cs4fn and computational thinking unplugged. In Proceedings
of the 8th Workshop in Primary and Secondary Computing Education (WiPSE '13).
ACM, New York, NY, USA, 47-50. DOI:
http://doi.acm.org/10.1145/2532748.2611263

[6] Paul Curzon, Peter W. McOwan, Nicola Plant, and Laura R. Meagher. 2014.
Introducing teachers to computational thinking using unplugged storytelling. In
Proceedings of the 9th Workshop in Primary and Secondary Computing Education
(WiPSCE '14). ACM, New York, NY, USA, 89-92.
DOI=http://dx.doi.org/10.1145/2670757.2670767.

[7] Martin Erwig. 2017. Once Upon an Algorithm: How Stories Explain Computing.
MIT Press.

Paper Session: Story & Video SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

384

[8] Martin Erwig. 2017. The Real Ghost in the Machine. The World Today, 36-37
(Oct./Nov. 2017).

[9] Michael Haungs, Christopher Clark, John Clements, and David Janzen. 2012.
Improving first-year success and retention through interest-based CS0 courses. In
Proceedings of the 43rd ACM technical symposium on Computer Science
Education (SIGCSE '12). ACM, New York, NY, USA, 589-594.
DOI=http://dx.doi.org/10.1145/2157136.2157307

[10] Peter B. Henderson. 2011. Computing unplugged enrichment. ACM Inroads 2, 3
(August 2011), 24-25. DOI=http://dx.doi.org/10.1145/ 2003616.2003626

[11] Felienne Hermans and Efthimia Aivaloglou. 2017. To Scratch or not to Scratch?: A
controlled experiment comparing plugged first and unplugged first programming
lessons. In Proceedings of the 12th Workshop on Primary and Secondary
Computing Education (WiPSCE '17), Erik Barendsen and Peter Hubwieser (Eds.).
ACM, New York, NY, USA, 49-56. DOI: https://doi.org/10.1145/3137065.3137072

[12] William J. Joel. 2013. A story paradigm for computer science education. In
Proceedings of the 18th ACM conference on Innovation and technology in
computer science education (ITiCSE '13). ACM, New York, NY, USA, 362-362.
DOI=http://dx.doi.org/10.1145/2462476.2466526

[13] Dennis Kafura and Deborah Tatar. 2011. Initial experience with a computational
thinking course for computer science students. In Proceedings of the 42nd ACM
technical symposium on Computer science education (SIGCSE '11). ACM, New
York, NY, USA, 251-256. DOI=http://dx.doi.org/10.1145/1953163.1953242

[14] Jeremy Kubica. 2012. Computational Fairy Tales. CreateSpace Independent
Publishing Platform

[15] David J. Malan. 2010. Reinventing CS50. In Proceedings of the 41st ACM technical
symposium on Computer science education (SIGCSE '10). ACM, New York, NY,
USA, 152-156. DOI: http://dx.doi.org/10.1145/ 1734263.1734316

[16] Cindy Marling and David Juedes. 2016. CS0 for Computer Science Majors at Ohio
University. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (SIGCSE '16). ACM, New York, NY, USA, 138-143. DOI:
https://doi.org/10.1145/2839509.2844624

[17] Brandon Rodriguez, Cyndi Rader, and Tracy Camp. 2016. Using Student
Performance to Assess CS Unplugged Activities in a Classroom Environment. In
Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE '16). ACM, New York, NY, USA, 95-100. DOI:
https://doi.org/10.1145/2899415.2899465

[18] Renate Thies and Jan Vahrenhold. 2013. On plugging "unplugged" into CS classes.
In Proceeding of the 44th ACM technical symposium on Computer science
education (SIGCSE '13). ACM, New York, NY, USA, 365-370. DOI:
http://dx.doi.org/10.1145/2445196.2445303

[19] Michele Van Dyne and Jeffrey Braun. 2014. Effectiveness of a computational
thinking (CS0) course on student analytical skills. In Proceedings of the 45th ACM
technical symposium on Computer science education (SIGCSE '14). ACM, New
York, NY, USA, 133-138. DOI: http://dx.doi.org/10.1145/ 2538862.2538956

[20] Zoë J. Wood, John Clements, Zachary Peterson, David Janzen, Hugh Smith,
Michael Haungs, Julie Workman, John Bellardo, and Bruce DeBruhl. 2018. Mixed
Approaches to CS0: Exploring Topic and Pedagogy Variance after Six Years of CS0.
In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (SIGCSE '18). ACM, New York, NY, USA, 20-25. DOI:
https://doi.org/10.1145/3159450.3159592.

Paper Session: Story & Video SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

385

