
Inferring Templates from Spreadsheets∗

Robin Abraham
School of EECS

Oregon State University

abraharo@eecs.oregonstate.edu

Martin Erwig
School of EECS

Oregon State University

erwig@eecs.oregonstate.edu

ABSTRACT
We present a study investigating the performance of a
system for automatically inferring spreadsheet templates.
These templates allow users to safely edit spreadsheets, that
is, certain kinds of errors such as range, reference, and type
errors can be provably prevented. Since the inference of
templates is inherently ambiguous, such a study is required
to demonstrate the effectiveness of any such automatic sys-
tem. The study results show that the system considered
performs significantly better than subjects with intermedi-
ate to expert level programming expertise. These results are
important because the translation of the huge body of exist-
ing spreadsheets into a system based on safety-guaranteeing
templates cannot be performed without automatic support.
We also carried out post-hoc analyses of the video recordings
of the subjects’ interactions with the spreadsheets and found
that although expert-level subjects needed less time and de-
veloped more accurate templates than less experienced sub-
jects, they did not inspect fewer cells in the spreadsheet.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement; H.4.1 [Information Systems
Applications]: Office Automation—spreadsheets

Keywords
Spreadsheet Specification, Template Inference, End-User
Software Engineering

1. INTRODUCTION
A study conducted this year based on data from the U.S.

Bureau of Labor Statistics shows that there are currently
as many as 11 million end-user programmers in the United
States, compared to only 2.5 million professional program-
mers [32]. Many of these end-user programmers develop

∗This work is partially supported by the National Science
Foundation under the grant ITR-0325273 and by the EUSES
Consortium (http://EUSESconsortium.org).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
International Conference on Software Engineering 2006, Shanghai, China
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

spreadsheets. Moreover, the number of American workers
who use spreadsheets is even higher, about 23 million work-
ers, which amounts to 30% of the workforce. Numerous
studies have shown that existing spreadsheets contain er-
rors at an alarmingly high rate [6, 19, 23, 33]. Some studies
report that up to 90% of real-world spreadsheets contain er-
rors [27]. These errors impact people directly because they
use spreadsheet systems, and indirectly by the decisions that
are based on spreadsheet calculations.

Spreadsheet systems offer users a high level of flexibility.
This aspect makes it easier for people to get started work-
ing with spreadsheets. The downside is that this freedom
also offers ample opportunity to create erroneous spread-
sheets. Errors during creation of a spreadsheet are made
as well as when modified by other users. The problem gets
further exacerbated when the people who use or modify the
spreadsheet do not fully understand its functionality. This
situation arises because spreadsheet systems do not offer
any higher-level abstractions. Moreover, data and compu-
tation are not separated in spreadsheets, and the immedi-
ate visual feedback mechanism makes traditional coding and
program compilation/execution steps indistinguishable from
each other. These factors make widespread reuse of spread-
sheets difficult and prone to errors.

Since a spreadsheet is essentially a program, we address
the problem along the lines of traditional Software Engineer-
ing approaches to software development. The key aspect of
our approach is that we separate the modeling and data-
entry aspects of spreadsheet development. We have devel-
oped a visual language called Vitsl (an acronym for visual
template specification language) [3] for modeling spread-
sheet templates. The user can import a Vitsl template into
Gencel [11, 12], a spreadsheet system we have developed as
an add-on to Excel, and create and edit spreadsheets that
are guaranteed to conform to the template.

In Figure 1, on the left, we show how spreadsheets are
usually developed. In this case, the application-level and
data-level updates are both performed on the spreadsheet
directly. On the right we show the Vitsl/Gencel model
of spreadsheet development. In this case, the application-
level updates are performed on the Vitsl template, while
the safe data updates are performed on the spreadsheet.
The updates are safe in the sense that they are customized
according to the template and the user is only allowed to
change data values. The system prohibits direct changes to
the spreadsheet formulas. Formulas will be automatically
updated whenever rows or columns are inserted or deleted.
The spreadsheet generator component of the framework al-

lows the user to generate the spreadsheets from the Vitsl
template.

Spreadsheet

Model Updates

Safe Data
Updates

Template

Spreadsheet GeneratorTemplate Inference

Spreadsheet

Model Updates

Data Updates

Figure 1: Vitsl/Gencel model of spreadsheets.

In the original scenario, once a template was created and
loaded in Gencel, it was not possible to change the tem-
plate and have the changes propagate to the already created
spreadsheet data. Moreover, templates had to be developed
from scratch. That is, there was no way of inferring a tem-
plate from an already existing spreadsheet, which limits the
applicability of this approach and makes a transition very
costly.

In this paper we address this problem and describe a
method for inferring templates from spreadsheets. The
template inference component shown highlighted in Fig-
ure 1 complements the spreadsheet generator and enables a
broader and more flexible use of the Vitsl/Gencel approach.
However, a challenge is presented by the fact that the tem-
plate inference process is inherently ambiguous. Therefore,
in order to judge the effectiveness of the developed method,
we have performed a study to assess the reliability of tem-
plate inference.

The rest of this paper is structured as follows. In the
next section we describe our template-based approach that
protects spreadsheet users from a large class of errors. In
Section 3 we describe a method that we have developed to
extract templates from spreadsheets and discuss the imple-
mentation and working of the system with a couple of ex-
amples. In Section 4 we describe a study we carried out to
evaluate the system. Related work is described in Section 5,
and we present future work and conclusions in Section 6.

2. TOWARDS SAFER SPREADSHEETS
In this section, we illustrate some common problems in

existing spreadsheet systems through an example. In partic-
ular, we illustrate how errors can be introduced into spread-
sheets. We then show how the errors can be avoided by
using the Vitsl/Gencel system.

2.1 A Scenario
Sharon is an elementary school teacher who has created

a grading spreadsheet for her class, in which she records
points for students on individual assignments, see Figure 2.
This spreadsheet contains one row for each student and two
columns for each assignment. Since different assignments
have different total number of points in general, the spread-
sheet stores for each student and assignment, the number
of points earned by the student as well as the percentage of
that number with respect to the total number of points for
that assignment. The overall performance of each student
is computed in the rightmost column by an average of the
percentages over all the assignments.

After having added several students, Sharon notices that
her formula for computing percentages, =B3/B2, was not

Figure 2: Grade sheet.

properly propagated to the newly inserted rows. After some
time she figures out that the column number of the cell
containing the total number of points must not be relative,
but an absolute address. Therefore, she changes the formula
to =B3/B$2.1

After she has graded a new assignment, Sharon adds the
results into the spreadsheet. She inserts two columns and
fills in the data. However, she notices that the average for
the first student seems to be too low, see Figure 3. Inspect-
ing the formula in cell H3, she learns that Excel has not
automatically updated the formula, which is still =AVER-

AGE(C3,E3), representing an average over the non-contiguous
range.2 Therefore she has to update all the formulas in
column H by hand, that is, she changes the formula in H3

to =AVERAGE(C3,E3,G3), and similarly for cells H4, H5, etc.
The procedure is time consuming and prone to errors. Even
worse, she realizes that she has to repeat this update ordeal
again and again for every new assignment she wants to add.

Figure 3: Grade sheet after updates.

This example demonstrates that update operations of-
fered by existing spreadsheet systems are weak and ill-
defined in the sense that they do not provide adequate safety
guarantees and make it easy to introduce errors. What
makes errors like the one shown particularly harmful is that
they are generally not introduced in a single cell, but can in-
validate many cells at once. The study reported in [6] found
that 65% of all spreadsheet errors are contained in formulas.

The fact that a semantic update operation, the insertion of
a new assignment, has to be implemented by Sharon in terms
of a number of low-level operations (namely, two column in-
sertions, copying of formulas, and adjusting multiple formu-
las) is problematic since it is not enforced by the spreadsheet

1At this point, many non-professional spreadsheet users
would have probably not gone all the way to figure out
the correct referencing mode, which would have caused the
spreadsheet to be already incredibly difficult to maintain.
2If the range was contiguous, Excel would update the for-
mula automatically and include the newly-inserted cell.

system that all the required steps be performed. Therefore,
any omission might leave the spreadsheet in an inconsistent
state. Moreover, each individual step presents another op-
portunity to introduce errors into the spreadsheet.

One reason for this situation is that existing spreadsheet
systems work with a simple programming model of a flat
collection of cells that do not contain any structure other
than their arrangement on a grid. This lack of modular-
ity and abstractions has been reported as a major weak-
ness of spreadsheet systems [20]. One particular problem is
that cells are identified by global row and column numbers
(letters) so that references to cells or subareas of a spread-
sheet have to be expressed using these global addresses. The
global cell addressing schema has been blamed for compli-
cating the comprehension of spreadsheets and for location
errors [58].

The lack of structure and abstraction puts current spread-
sheet systems into the category of assembly languages when
compared to the state of the art in other programming lan-
guages. This situation is peculiar because spreadsheet sys-
tems are equipped with very sophisticated user interfaces
offering many fancy features, which can distract from their
intrinsic language limitations. The rigid, global addressing
scheme makes computations vulnerable to changes in the
structure of the spreadsheet—much like in the old days of
assembly language programming where the introduction of
a new item into the memory could cause some references to
become invalid. Related is the problem of viscosity, which
means the difficulty of changing one part of a program with-
out changing other parts [16]. In the presented example,
high viscosity can be observed, for example, when the to-
tal number of points per assignment is moved one cell to
the right. In that case, it is necessary to change all percent-
age formulas in that column afterwards. Studies have shown
that users try to exploit the surface structure of spreadsheets
[30] and that spreadsheets should therefore make their in-
herent structure visible.

Next we will outline an approach for explicitly represent-
ing and enforcing structure in spreadsheet applications that
follows these insights. By separating model and data up-
dates into two layers, many of the described problems can
be avoided. In particular, a large class of spreadsheet errors
can be exterminated from spreadsheets altogether.

2.2 Safer Spreadsheets with ViTSL/Gencel
The model layer of a spreadsheet application can be de-

scribed by a visual language for structuring spreadsheets,
allowing reuse and preventing errors. The idea originates by
noticing that a given spreadsheet may evolve in a number
of predictable ways, and various instances of a spreadsheet
could emerge from a common template. The visual lan-
guage Vitsl provides a method for modeling the template
of a spreadsheet and the ways it can evolve [3].

Vitsl templates are constructed with an editor and are
loaded into Gencel [11], which is an Excel extension that
manages the evolution of a spreadsheet from a Vitsl tem-
plate. This environment automatically handles all formula
generation and spreadsheet structure modification, ensuring
that all spreadsheet formulas are correct and allowing the
user to focus on data entry and analysis. Templates also
act as a documentation to describe the functionality of the
spreadsheet without reference to particular instances.

From the example presented in Section 2.1 we can observe

that once the structure of the spreadsheet application has
been fixed, the teacher progresses by performing basically
three kinds of updates: add another student (row), add an-
other assignment (two columns), or update points and labels
(for assignments or student names). The teacher may also
choose to delete an assignment or a student, although this
is probably less common.

On a closer look, we can observe that each of these op-
erations can be broken down into a fixed set of necessary
steps, in particular, adding rows or columns and updating
formulas and data. In this way, an initial spreadsheet with
one assignment, a spreadsheet with two assignments, and
a spreadsheet with seven assignments are all related. In
this sense, the spreadsheets from Figures 2 and 3 (once cor-
rected) can be thought of as deriving from the one shown in
Figure 4 (shown in formula view).

Figure 4: Grade sheet in Gencel.

From this sample sheet, any number of spreadsheets may
be derived using the operations provided by Gencel. These
operations, which consist of row or column insert, value up-
date, and row or column delete, are specialized for this par-
ticular sample sheet to ensure that updates occur correctly
with all necessary changes. For example, if Sharon presses
the insert column button (see right panel in Figure 4) when
the cursor is within an assignment group, two new columns
representing a new assignment will be inserted at once and
all the formulas (the percentage formulas as well as the av-
erage formula at the far right) will be correctly updated
instantly.

The Gencel system provides these specialized updates to
ensure the correctness of formulas. Since the sample sheet
is generic with respect to the actual students and assign-
ments, and other labels and values, it may be reused by
various users at different times. In all cases, the safety and
correctness of the formulas and structure within the Gencel
system is assured.

From the sample sheet shown in Figure 4 it is not immedi-
ately clear which columns and rows are fixed and which are
expandable, which makes the inference process challenging.
However, the creator of the grading spreadsheet application
would know about the intended behavior and could specify
the corresponding information, in this case a two-column
horizontal expanding group, called hex group, which forms
an assignment, and a single-row vertical expanding group,
called vex group, for each student. In addition, an aggrega-
tion formula that computes the average of the percentages
for each student is contained in the hex group to the right
of the vex group, and so on. By abstracting out the build-
ing blocks from the concrete Gencel spreadsheet in this way,
we can fully and formally describe the operations required

to create a spreadsheet. This is the purpose of Vitsl—to
provide a visual specification language for spreadsheets and
their evolutions. The Vitsl template for the above Gencel
spreadsheet is shown in Figure 5. The vex group is repre-
sented by the ellipsis

... following row 3, which can be ex-
panded. Similarly, the hex group is represented by the ellip-
sis · · · . The fact that the hex group consists of two columns
is represented by the absence of the separating line between
the column headers B and C. In addition to the formulas, the
template consists of labels, such as Assg and Name, that will
generally not be edited in the generated Gencel spreadsheet
and the sample values, such as 10, abc, and 0, that will be
edited.

Figure 5: Grade sheet template in Vitsl.

Using Gencel, Sharon simply has to load the Vitsl tem-
plate and then press the insert column button two times
to create the assignments. All formulas are updated cor-
rectly and automatically and are protected against unin-
tended changes. Similarly, for adding a new student, press-
ing the insert row button is all that is needed to update the
formulas in the spreadsheet. Therefore, Sharon can concen-
trate on entering data and does not have to worry about
formulas. In particular, the errors illustrated in Section
2.1 would have been prevented using Gencel. In general,
Gencel provably eliminates the following kinds of errors from
spreadsheets [12].

• Range errors (for example, omitted or additional cells
in aggregations)

• Reference errors (for example, references to wrong
cells or circular references)

• Type errors (for example, using strings in numeric
computations)

The impact of these errors have been extensively docu-
mented. For example, a range error has caused a Florida
construction company to underbid a project by a quarter
of a million dollars [17]. An example of a type error is the
illegal interpretation of a date as a numeric value, which
caused an operating fund of the Colorado Student Loan
Program to be understated by $36,131 [34]. Finally, a refer-
ence error caused a hospital’s records to overstate its Med-
icaid/Medicare crossover log by $38,240 [35]. The use of
Gencel would have prevented all these errors.

3. EXTRACTING TEMPLATES FROM
SPREADSHEETS

We anticipate that Gencel will be used by spreadsheet
users working with Vitsl templates developed by domain

experts who have some programming experience. In the
case of legacy spreadsheets, it would be vital (from an
adoption point of view) to have tools that extract the tem-
plates automatically. In this section we discuss algorithms
for extracting Vitsl templates from spreadsheets. This
effort is a first step towards reverse engineering spread-
sheets. In related work, we have developed ClassSheets [10],
which is a more expressive form of spreadsheet specifica-
tions. ClassSheets could potentially also be the target of
future reverse-engineering efforts.

There is a high level of ambiguity associated with spread-
sheet template inference since spreadsheets are the result
of a mapping of higher-level abstract models in the user’s
mind to a simple two-dimensional grid structure. Moreover,
spreadsheets do not impose any restrictions on how the users
map their mental models to the two-dimensional grid (flexi-
bility is one of the main reasons for the popularity of spread-
sheets). Therefore the relationship between the model and
the spreadsheet is essentially many-to-many, and we suspect
that template inference of spreadsheets will generally require
user input to resolve ambiguities. The current version of the
system only displays one (the first) template it comes up
with. In future versions we plan to incorporate interaction
mechanisms by which the user can pick from a list of possi-
ble templates. Another problem is that, in some cases, the
spreadsheet being considered might not have enough infor-
mation for the correct template to be inferred. For example,
in the spreadsheet shown in Figure 2, if data for only one
student was present, the template inference system should
be able to identify the hex group but it simply does not have
information to identify the vex group (for the student data).

While developing the algorithms for the system, we were
guided by two principles.

1. The generated template should be the smallest pos-
sible, starting from which the user should be able
to generate the target spreadsheet using only Gencel
insert/delete row/column commands and changes to
data cells.

2. The system should be tolerant to errors within the
spreadsheet. The user should be able to control the
tolerance threshold.

In the following subsections we discuss the steps involved in
extracting Vitsl templates from spreadsheets. We use the
corrected version of the grade sheet shown in Figure 3 as a
running example to explain the steps involved in template
inference.

3.1 Identifying Tables in Spreadsheets
We have observed in some cases that end users put unre-

lated information in the same spreadsheet (maybe so they
have all their data in the same sheet). We define a table
as (part of) a spreadsheet that is an instance of a Vitsl
template. In case the user has unrelated information in the
same spreadsheet, we are faced with the scenario of a single
spreadsheet containing multiple tables. It is therefore im-
portant to identify the different tables within a spreadsheet
since inferring a common template for unrelated data that
just happens to be in the same sheet would be a mistake.
We have reused some spatial analysis algorithms from the
UCheck tool [1] to break up the spreadsheet into connected
cell areas we treat as tables. In the grade sheet shown in
Figure 3, the cell area from A1 to H5 is a single table.

Figure 6: CP-similar regions in grade sheet.

3.2 Identifying “Similarity” Regions Within
Tables

Once areas containing different tables have been found,
the next step is to identify regions within each table area
containing similar formulas. The idea is to reduce sets of
similar formulas to hex and vex groups. We follow a strat-
egy of identifying maximal sets of similar formulas which
maximizes the number of instances of repeating groups and
thus minimizes the size of the inferred template. Since the
described approach hinges on the notion of cell similarity,
we will discuss this notion next.

Two formulas are similar if they satisfy the cp-similarity
criterion described in [8]. Two cells are cp-similar if their
formulas could have resulted from a copy/paste action from
one of the cells to the other. An absolute reference points
to a particular cell in the spreadsheet and will point to the
same cell even if the reference is copied to another cell in
the sheet. A relative reference refers to a cell based on its
position relative to the cell containing the reference. If a
relative reference is copied to another cell, it will point to
a cell at the same relative position with respect to the new
location. Excel allows two reference schemes in cells.

1. In the A1-style referencing scheme, relative references
are of the form A2 (both the row and column change
when the reference is copied to a new cell) and abso-
lute references are of the form A$3 (the row number
remains unchanged if the reference is copied to a new
location), $A3 (the column number remains unchanged
if the reference is copied to a new location), or A3

(both the column and rows remain unchanged if the
reference is copied to a new location.

2. In the R1C1-style, a reference B3 in cell C3, for ex-
ample, would be represented as RC[-1]—reference the
cell in this row and one column to the left of this one.
Along similar lines, a formula =B3/B$2 in cell C3 could
be represented as =RC[-1]/R2C[-1] in the R1C1 style.

We follow the approach described in [8] and decide two for-
mulas are cp-similar by comparing their R1C1 -style repre-
sentations.

The cp-similar formula cells in the grade sheet have been
marked in Figure 6. Note that column headers are num-
bered in R1C1 -style in Excel. The cells enclosed by the
blue rectangles all have the formula =RC[-1]/R2C[-1]. All the

cells within the brown rectangle (in column 8) have the for-
mula =AVERAGE(RC[-5],RC[-3],RC[-1]). Simply by comparing
the R1C1 -style representations of the formulas, the system
can infer the two cp-similar regions (the one enclosed by the
blue rectangles and the one enclosed by the brown rectangle)
within the spreadsheet.

The cells whose formulas have been found to be cp-similar
are grouped on the basis of rows and columns. The cp-
similar blocks are indicators for repeating groups. For ex-
ample if the formula cells in one row are cp-simlar to cells
in the same columns in another row, the two rows could be
instances of the same vex group. The system does a column-
wise and then a row-wise partitioning of the cp-similar cells.
This sequence is followed simply because Vitsl only allows
nesting of vex groups within hex groups. Note that this
representation is as expressive as only allowing nesting of
hex groups within vex groups. The column-wise partition-
ing generates the lists [C3,C4,C5], [E3,E4,E5], and [G3,G4,G5]
as potentially belonging to the same hex group. Similarly,
the row-wise partitioning generates the lists [C3,E3,G3,H3],
[C4,E4,G4,H4], and [C5,E5,G5,H5] as (parts of) potential ex-
pansions of the same vex group.

3.3 Inferring Templates
Once the cells within a table area have been partitioned

into regions containing cp-similar formulas, the system tries
to overlay them (along with the regions they refer to) to
generate the templates. In addition to the formula cells,
we also compare the referenced data cells in the two rows
to check if they have the same type. If the corresponding
formula cells are cp-similar and the corresponding data cells
are of the same type, we have a perfect match. For example,
based on the column-wise partitioning of the cp-similar cells,
the system tries to overlay the cells in the lists [C3,C4,C5] and
[E3,E4,E5]. The cells in the first list have references to the
cells B2, B3, B4, and B5, and the cells in the second list
have references to the cells D2, D3, D4, and D5. The system
compares the corresponding referenced cells to check that
they have the same types. If this condition is satisfied, we
have strong indication that columns D and E together come
from the same hex group as columns B and C. The same
reasoning is applicable to columns F and G as well, and they
too can be considered to be instances of the same hex group
as columns B and C. Along similar lines, rows 3, 4, and 5 are
inferred to be the instances of the same vex group.

In some cases, the data cells might not agree, for example,
if the data in a cell has been omitted. Figure 7 shows part
of a grade sheet that was used in the study. The rows that
store information for each of the students are all part of the
same vex group. The data in row 10 differs from the others
since the student dropped the course in week 2. Because of
this, the lab and quiz score entries for this student are all
blank from E10 onwards in the row. The system is tolerant
to such minor deviations (integer values for the scores in the
other rows and blanks in the corresponding cells in row 10)
and can nevertheless distill the template for the spreadsheet.

Figure 7: Deviations from template.

3.4 Template Inference in Action
In our system, the user can open an Excel spreadsheet

and then click the button labeled “Template” (on the right
toolbar in Figure 5). The system carries out the automatic
extraction of the spreadsheet template as described above
(for the grade sheet in the example shown in Figure 5) and
displays it in a new worksheet with “-Templ” appended to
the name of the original worksheet.

Figure 8: Automatically inferred grade sheet tem-
plate.

The system shades vex groups light blue and hex groups
pink. Cells in the template that are part of vex and hex
groups are shaded purple. In case you are reading a black
and white printout of this paper, A3 and D3 have been
shaded blue, B1, B2, C1, and C2 have been shaded pink,
and B3 and C3 have been shaded purple by the system. The
system retains some of the values from the spreadsheet as
default values in the templates. We made this design choice
under the assumption that the default values would serve as
an example and help the user get started with the task of
modifying the spreadsheet. The default values might also
serve as documentation and remind the users of the original
spreadsheet from which the template is inferred. Besides
the default values, the template shown in Figure 8 is the
exact same one shown in Figure 5 in the Vitsl editor. The
inferred templates can be saved as Vitsl templates and can

be further edited in the Vitsl editor or be directly loaded
into Gencel.

The system described above allows the user to adopt a
very flexible approach to developing safe spreadsheets within
the Vitsl/Gencel framework. The user could start with
a Vitsl template and then work with the spreadsheet in
Gencel or the user could start with an Excel spreadsheet di-
rectly and then infer the Vitsl template using the tool and
then continue using Gencel. The user might also start creat-
ing a spreadsheet with a Vitsl template loaded in Gencel.
At some point, if the user wants to deviate from the ini-
tial template, she could turn off Gencel, work in Excel (in
an unrestricted mode so to speak), invoke the template in-
ference system to generate a Vitsl template for the new
spreadsheet, reactivate Gencel and continue working with
the spreadsheet. The template inference system puts the
safety features of Gencel within the grasp of people and or-
ganizations who have spreadsheets they might have invested
considerable time and effort in developing.

4. EVALUATION
One particular spreadsheet could potentially be generated

from many different templates. This precludes the possibil-
ity of automatically validating the correctness of the tem-
plates generated by our system by an oracle. The creator
of the spreadsheet would be the one in the best position
to decide if the spreadsheet and the template generated by
the automatic extractor match up. We assume this judg-
ment would become more accurate with increasing experi-
ence with spreadsheet systems and the domain. For exam-
ple, an accountant with considerable experience with spread-
sheets would be in a better position to judge the correctness
of a template for an accounting sheet than a person without
any background in accounting.

To judge the performance of our system, we compare tem-
plates generated by the system against those generated by
novice and expert subjects. The main goal is to assess the
effectiveness/performance of a system that automates the
task of extracting templates from spreadsheets. We are also
interested in how experts and novices go about the task of
inferring templates from spreadsheets. This information can
be used for improving the inference tool and its interaction
with the users. More formally, we seek to answer the follow-
ing research questions.

RQ1: How well does the system perform compared to
expert and novice test subjects in extracting templates from
spreadsheets?

RQ2: Are there any patterns of behavior exhibited by
novice and expert subjects when they are trying to under-
stand spreadsheets in order to develop their templates?

4.1 Participants
Nineteen students from a 300-level course on Software

Engineering at Oregon State University participated in the
study. We refer to this group of subjects as Group N. The
course primarily dealt with the specification and design of
software. UML was presented as the de facto standard mod-
eling language for software, and Vitsl was presented as a
language for modeling spreadsheets. Prior programming ex-
perience ranged from two to ten years (in two to four lan-
guages) and all the participants had between two and eight
years of experience using spreadsheets. We chose students
from this course as the test subjects because the target audi-

ence for Vitsl are people with a beginning to intermediate
level of programming and spreadsheet expertise.

We also enlisted help from four doctoral students working
in the area of Programming Languages to serve as expert
subjects. These subjects had five to ten years of program-
ming experience (in two to five programming languages) and
many years of experience with spreadsheets. They all also
have experience with specification languages as part of their
Ph.D. studies. We refer to this group of subjects as Group
E.

4.2 Study Tasks
For the study, we decided to use spreadsheets from the

EUSES spreadsheet corpus [14]. The corpus has 4498
spreadsheets collected from various sources. Since Gencel
is not useful for spreadsheets that do not contain formu-
las, we first isolated the 1977 spreadsheets in the corpus
that had formulas in them. We then randomly selected 29
spreadsheets from this set for the purpose of the study.

The 29 spreadsheets were then randomly assigned to the
participants in Group N such that each participant was
working with 5 or 6 spreadsheets. The participants were
asked to look at the spreadsheets assigned to them and de-
velop the Vitsl templates that could be used to generate
those spreadsheets. They were asked to sketch the Vitsl
template they had come up with on paper and also provide
short descriptions for their templates. We were hoping the
descriptions would be useful in cases in which the Vitsl
templates developed by the participants were ambiguous or
in cases in which the participants were not comfortable with
Vitsl. We made video recordings of the participants’ inter-
actions with the spreadsheets and later used the videos for
some of our analyses.

We also asked the participants in Group E to go through
the spreadsheets and develop the Vitsl templates for them.
Each participant in Group E was randomly assigned the
spreadsheets so that each spreadsheet would have two par-
ticipants from Group E working on it. Again, we made
video recordings of the participants’ interactions with the
spreadsheets for post-hoc analyses.

We ran the system on the 29 spreadsheets and inferred the
Vitsl templates for the spreadsheets. One of the authors
sketched the templates inferred by the system on paper so
that the final output would look similar to the work done
by participants from Group N and Group E.

We then randomly assigned all the templates to the ex-
perts (ensuring no expert graded their own template) and
asked them to grade them on the basis of their correctness.
The experts graded the templates on the five-point scale
shown in Table 1.

Each template was graded by two experts who were not
told whether the template was developed by a participant
from Group N, Group E, or generated by the system. As a
matter of fact, the graders were not even aware that some
of the templates had been generated by a system.

4.3 Threats to Validity
The threat to external validity is that the subjects in

Group E are not domain experts as far as the spreadsheets
used in the study are concerned. Even so, we think it is
relatively safe to assume that with their substantial pro-
gramming and spreadsheet experience, they can be consid-

5 points Spreadsheet can be generated from the template
by insert/delete row/column commands and data
updates exclusively

4 points Overall structure of the template is correct, and
only data or references in formulas in the template
are incorrect

3 points Some parts of the template structure like a vex or
hex group were missing

2 points Subject showed some understanding of templates
but misunderstood the spreadsheet and got the
template wrong

1 point Template does not make any sense

Table 1: Scoring Criteria for Templates

ered experts for the experiment tasks. Moreover, it would
be difficult to assemble a group of domain experts for a set
of spreadsheet chosen randomly from a large heterogeneous
corpus.

A threat to internal validity is the level of comfort of the
subjects in groups N and E with templates and modeling
languages (especially Vitsl). While the members of Group
E have been exposed to Vitsl for over one year during re-
search group meetings, presentations, and other discussions,
the members of Group N were only exposed to Vitsl dur-
ing the course. We have tried to minimize the impact of this
factor by allowing the subjects to sketch, on paper, the tem-
plates they develop without being too weighed down with
getting the Vitsl syntax right. We also made it clear to
the expert graders during discussion of the grading criteria
shown in Table 1 that the subjects were not to be docked
points for not using correct Vitsl syntax.

4.4 Consistency of Raters
As mentioned earlier, each template was rated by two

experts. To compare the experts (A, B, C, and D), we
determined the Kappa (κ) values for the rating tasks on
which different pairs of experts worked together to see how
well the ratings agree. The κ values for the pairings of the

Graders κ
A–B 0.76
A–D 0.71
B–C 0.70
C–D 0.74

Table 2: κ values for grader pairs.

graders are shown in Table 2, and all of them are greater
than 0.6. Therefore, the agreement between the graders is
good enough.

4.5 Results
Figure 9 shows the boxplots of the scores of the different

groups E and N and for the system (S).
To answer RQ1, which dealt with the performance of the

system when compared to subjects in groups N and E, we
carried out the following analyses of the data we collected.

A pairwise comparison of the scores using the Tukey
method is shown in Figure 10. We see that none of the
95% confidence intervals include 0.

System versus Group N. The scores of the system-
generated templates for the spreadsheets were significantly
better than the scores of the templates developed by the
subjects in Group N (ANOVA: F(1,149)=51.69, p<0.001).
This result shows that the system is more reliable than the

E N S

Level

1

2

3

4

5
S

co
re

Figure 9: Task scores.

(
(

(

)
)

)

E-N
E-S
N-S

-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
simultaneous 95 % confidence limits, Tukey method

response variable: Score

Figure 10: Three-way comparison of scores.

subjects with intermediate level of programming and spread-
sheet experience.

System versus Group E. We also compared the scores of
the system-generated templates against the scores of the
templates developed by the subjects in Group E. We ex-
pected the subjects in Group E (the experts) to perform
better than the system since they have considerable pro-
gramming and spreadsheet experience. Instead, we were
surprised to find that the system performed significantly bet-
ter than the subjects in Group E (ANOVA: F(1,85)=11.75,
p<0.001). One possible explanation for this result could be
that the spreadsheets in the study were too simple for the
experts to outperform the system.

Group N versus Group E. It is reasonable to assume that
the expert subjects would outperform the novice ones on
the assigned tasks. We compared the scores obtained by
subjects in Group N against those obtained by the subjects
in Group E just to confirm that this is the case. We see
that that the subjects in Group E performed significantly
better than those in Group N (ANOVA: F(1,179)=22.17,
p<0.001).

4.6 Discussion
We carried out post-hoc analyses of the video recordings of

the subjects’ interactions with the spreadsheets to determine
how much time they spent on the tasks. The box plots are
shown in Figure 11, and we see that the subjects in Group N
spent significantly more time on the tasks compared to the
subjects in Group E (ANOVA: F(1,132)=32.82, p<0.001).

We also compared the inspection profiles (number of cells
inspected by the subject while inferring the template for a
spreadsheet) of the subjects in Group N against those of the

E N

Level

0

5

10

15

20

25

C
um

.T
as

k.
T

im
e

Figure 11: Time taken (per spreadsheet).

subjects in Group E and found that there is no significant
difference (box plot shown in Figure 12). Our expectation
was that the experts would need to inspect fewer cells to be
able to infer the template for a given spreadsheet. In the
experiment setting, however, we found no significant differ-
ence in the number of expected cells. This fact might be
an indicator that the experts were extremely cautious while
carrying out their assigned tasks.

E N

Level

0

20

40

60

80

100

T
ot

al
C

lic
k

Figure 12: Sheet inspection profile (per spread-
sheet).

To verify if the subjects found it more difficult to in-
fer templates for bigger spreadsheets than for smaller ones,
we ran regression tests comparing their scores on the tasks
against the size of the spreadsheets. We found no significant
correlation between the scores obtained on the tasks and the
size of the spreadsheets for the two groups. This result is
not too surprising since the size of a spreadsheet is not a
particularly good measure of its complexity. More reliable
measures might be the number and complexity of the for-
mulas in the spreadsheet. Moreover, very simple templates
can be used to generate very large spreadsheets. In such sit-
uations, humans might be able to infer the templates very
accurately through visual inspection of the spreadsheet.

We see from the data that the templates automatically
generated by the system score significantly higher than the
subjects in groups E and N. If the time taken by Excel to
load each spreadsheet is ignored, the system takes less than
a second per spreadsheet to automatically infer the tem-
plate. The mean time taken by the subjects in groups E
and N to infer a template are 3.8 minutes and 8.9 minutes,
respectively.

We did not impose any time limit on the subjects for the

completion of the tasks. Two of the subjects from Group
N stopped after an hour because of prior commitments and
one stopped citing fatigue.

5. RELATED WORK
Some researchers have focussed their efforts on guidelines

for designing better spreadsheets so errors can be avoided to
some extent [28, 36, 18, 24, 26]. Such techniques are difficult
to enforce and involve costs of training the user.

Most of the research that has been done in the area of
spreadsheets has been targeted at removing errors from
spreadsheets once they have been created. Following tra-
ditional Software Engineering approaches, some researchers
have recommended code inspection for detection and re-
moval of errors from spreadsheets [22, 31, 21]. However,
such approaches cannot give any guarantees about the cor-
rectness of the spreadsheet once the inspection has been
carried out. Code inspection of larger spreadsheets might
prove tedious, error prone, and prohibitively expensive in
terms of the effort required.

The “What You See Is What You Test” (WYSIWYT)
testing methodology for spreadsheets has been developed
and studied within the Forms/3 framework [29]. User stud-
ies have shown that it is very effective in helping detect er-
rors in spreadsheets. User studies have also been conducted
to evaluate fault localization strategies in the WYSIWYT
system [25]. These studies have demonstrated that end users
are more likely to use a feature if the benefits are made ap-
parent.

We have developed a goal-directed debugger for spread-
sheets that allows users to mark cells with incorrect values
and then specify the expected value in the cell. The sys-
tem then generates a list of suggested changes that would
result in the expected value being computed in the marked
cell. The generated suggestions are ranked on the basis of
heuristics we have developed and the list is presented to the
user. The user can then simply pick a suggestion and apply
it to the spreadsheet [2].

Automatic consistency-checking approaches have also
been explored to detect errors in spreadsheets. Most of the
systems require the user to annotate the spreadsheet cells
with extra information [4, 5, 7, 9, 13]. We have developed a
system, called UCheck, that automatically infers the labels
within the spreadsheet and uses this information to carry
out consistency checking [1], thereby requiring minimal ef-
fort from the user.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a tool to infer the tem-

plates from spreadsheets. This tool is an essential compo-
nent of the Vitsl/Gencel architecture because it enables
a smooth migration from Excel to Gencel, which is indis-
pensable for a widespread adoption of the Vitsl/Gencel
approach.

We have demonstrated that the tool works remarkably
well compared to human subjects. The templates that were
automatically inferred by the system have been shown to be
significantly better than those inferred by the human sub-
jects when rated by experts. In future work we will extend
the functionality of the template inference tool and also per-
form further user study.

As discussed in Section 3.3, the system is tolerant of de-

viations from an exact match. This task might get more
complicated when the spreadsheet has logical errors in it.
In such situations, there might be more than one “correct”
template for the spreadsheet. The current version of the sys-
tem only infers one template. We plan to extend the system
so that it will infer all possible templates for a given spread-
sheet, rank them on the basis of one or more heuristic, and
present them to the user. From the list, the user can pick the
template they think is the most adequate, and the system
can then report the potential errors and other violations (if
any) within the spreadsheet that prevent the template from
being an exact match. Such an extended system can also be
employed to detect errors in spreadsheets.

Even though the subjects in Group E have considerable
experience with programming and spreadsheets, they are
not domain experts as far as the spreadsheets are concerned.
It would be informative to repeat the study in specific
spreadsheet domains with people who work in the respec-
tive domains as subjects. We also plan to carry out studies
aimed at finding out how factors like size of the spreadsheets,
number and types of errors, and complexity and number of
formulas impact the system and user performance.

Acknowledgements
We express our gratitude to Curtis Cook, Simone Stumpf,
Deling Ren, Zhe Fu, Mansour Al-Mutairi, Steve Kollmans-
berger, Cory Kissinger, Joey Lawrence, Laura Beckwith,
and the students of CS 361 of Oregon State University for
helping with the study.

7. REFERENCES
[1] R. Abraham and M. Erwig. Header and Unit Inference

for Spreadsheets Through Spatial Analyses. In IEEE
Int. Symp. on Visual Languages and Human-Centric
Computing, pages 165–172, 2004.

[2] R. Abraham and M. Erwig. Goal-Directed Debugging
of Spreadsheets. In IEEE Int. Symp. on Visual
Languages and Human-Centric Computing, 2005. To
appear.

[3] R. Abraham, M. Erwig, S. Kollmansberger, and
E. Seifert. Visual Specifications of Correct
Spreadsheets. In IEEE Int. Symp. on Visual
Languages and Human-Centric Computing, 2005. To
appear.

[4] Y. Ahmad, T. Antoniu, S. Goldwater, and
S. Krishnamurthi. A Type System for Statically
Detecting Spreadsheet Errors. In 18th IEEE Int.
Conf. on Automated Software Engineering, pages
174–183, 2003.

[5] T. Antoniu, P. A. Steckler, S. Krishnamurthi,
E. Neuwirth, and M. Felleisen. Validating the Unit
Correctness of Spreadsheet Programs. In 26th IEEE
Int. Conf. on Software Engineering, pages 439–448,
2004.

[6] P. S. Brown and J. D. Gould. An Experimental Study
of People Creating Spreadsheets. ACM Transactions
on Office Information Systems, 5(3):258–272, 1987.

[7] M. M. Burnett, C. Cook, J. Summet, G. Rothermel,
and C. Wallace. End-User Software Engineering with
Assertions. In 25th IEEE Int. Conf. on Software
Engineering, pages 93–103, 2003.

[8] M. M. Burnett, A. Sheretov, B. Ren, and
G. Rothermel. Testing Homogeneous Spreadsheet
Grids with the “What You See Is What You Test”
Methodology. IEEE Transactions on Software
Engineering, 29(6):576–594, 2002.

[9] M. J. Coblenz, A .J. Ko, and B. A. Myers. Using
Objects of Measurement to Detect Spreadsheet
Errors. In IEEE Int. Symp. on Visual Languages and
Human-Centric Computing, 2005. To appear.

[10] G. Engels and M. Erwig. ClassSheets: Automatic
Generation of Spreadsheet Applications from
Object-Oriented Specifications. In 20th IEEE/ACM
Int. Conf. on Automated Software Engineering, 2005.
To appear.

[11] M. Erwig, R. Abraham, I. Cooperstein, and
S. Kollmansberger. Automatic Generation and
Maintenance of Correct Spreadsheets. In 27th IEEE
Int. Conf. on Software Engineering, pages 136–145,
2005.

[12] M. Erwig, R. Abraham, I. Cooperstein, and
S. Kollmansberger. Gencel — A Program Generator
for Correct Spreadsheets. Journal of Functional
Programming, 2005. To appear.

[13] M. Erwig and M. M. Burnett. Adding Apples and
Oranges. In 4th Int. Symp. on Practical Aspects of
Declarative Languages, LNCS 2257, pages 173–191,
2002.

[14] M. Fisher and G. Rothermel. The EUSES Spreadsheet
Corpus: A Shared Resource for Supporting
Experimentation with Spreadsheet Dependability
Mechanism. In 1st Workshop on End-User Software
Engineering, pages 47–51, 2005.

[15] M. Fisher II, M. Cao, G. Rothermel, C. Cook, and
M. M. Burnett. Automated Test Case Generation for
Spreadsheets. In 24th IEEE Int. Conf. on Software
Engineering, pages 141–151, 2002.

[16] T. R. G. Green and M. Petre. Usability Analysis of
Visual Programming Environments: A ‘Cognitive
Dimensions’ Framework. Journal of Visual Languages
and Computing, 7(2):131–174, 1996.

[17] R. L. Hayen and R. M. Peters. How to Ensure
Spreadsheet Integrity. Management Accounting,
60(9):30–33, 1989.

[18] T. Isakowitz, S. Schocken, and H. C. Lucas, Jr.
Toward a Logical/Physical Theory of Spreadsheet
Modelling. ACM Transactions on Information
Systems, 13(1):1–37, 1995.

[19] J. F. Lerch, M. M. Mantei, and J. R. Olson. Skilled
Financial Planning: The Cost of Translating Ideas
Into Action. ACM Conf. on Human Factors in
Computing Systems, pages 121–126, 1989.

[20] C. Lewis and G. M. Olson. Can Principles of
Cognition Lower the Barriers to Programming? In
2nd Workshop on Empirical Studies of Programmers,
pages 248–263, 1987.

[21] R. Mittermeir and M. Clermont. Finding High-Level
Structures in Spreadsheet Programs. In 9th Working
Conference on Reverse Engineering, pages 221–232,
2002.

[22] R. R. Panko. Applying Code Inspection to
Spreadsheet Testing. Journal of Management
Information Systems, 16(2):159–176, 1999.

[23] R. R. Panko and R. P. Halverson, Jr. Spreadsheets on
Trial: A Survey of Research on Spreadsheet Risks. In
29th Hawaii Int. Conf. on System Sciences, 1996.

[24] S. G. Powell and K. R. Baker. The Art of Modeling
with Spreadsheets: Management Science, Spreadsheet
Engineering, and Modeling Craft. Wiley, 2004.

[25] S. Prabhakarao, C. Cook, J. Ruthruff, E. Creswick,
M. Main, M. Durham, and M. Burnett. Strategies and
Behaviors of End-User Programmers with Interactive
Fault Localization. In IEEE Int. Symp. on
Human-Centric Computing Languages and
Environments, pages 203–210, 2003.

[26] K. Rajalingham, D. Chadwick, B. Knight, and
D. Edwards. Quality Control in Spreadsheets: A
Software Engineering-Based Approach to Spreadsheet
Development. In 33rd Hawaii Int. Conf. on System
Sciences, pages 1–9, 2000.

[27] K. Rajalingham, D. R. Chadwick, and B. Knight.
Classification of Spreadsheet Errors. Symp. of the
European Spreadsheet Risks Interest Group
(EuSpRIG), 2001.

[28] B. Ronen, M. A. Palley, and H. C. Lucas, Jr.
Spreadsheet Analysis and Design. Communications of
the ACM, 32(1):84–93, 1989.

[29] G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A Methodology for Testing Spreadsheets.
ACM Transactions on Software Engineering and
Methodology, pages 110–147, 2001.

[30] P. Saariluoma and J. Sajaniemi. Extracting Implicit
Tree Structures in Spreadsheet Calculation.
Ergonomics, 34(8):1027–1046, 1991.

[31] J. Sajaniemi. Modeling Spreadsheet Audit: A
Rigorous Approach to Automatic Visualization.
Journal of Visual Languages and Computing,
11:49–82, 2000.

[32] C. Scaffidi, M. Shaw, and B. Myers. Estimating the
Numbers of End Users and End User Programmers. In
IEEE Symp. on Visual Languages and Human-Centric
Computing, 2005. To appear.

[33] Thompson SH. Teo and Margaret Tan. Quantitative
and qualitative errors in spreadsheet development.
Proceedings of the Thirtieth Hawaii International
Conference on System Sciences, 3:149–156, 1997.

[34] U.S. Department of Education. Audit of the Colorado
Student Loan Program’s Establishment and Use of
Federal and Operating Funds for the Federal Family
Education Loan Program, July 2003. Report
ED-OIG/A07-C0009.

[35] U.S. Department of Health and Human Services.
Review of Medicare Bad Debts at Pitt County
Memorial Hospital, January 2003. Report
A-04-02-02016.

[36] A. G. Yoder and D. L. Cohn. Real Spreadsheets for
Real Programmers. In Int. Conf. on Computer
Languages, pages 20–30, 1994.

