
 

Temporal Objects for Spatio-Temporal Data Models 
and a Comparison of Their Representations*

 

Martin Erwig & Markus Schneider & Ralf Hartmut Güting
FernUniversität Hagen, Praktische Informatik IV

D-58084 Hagen, Germany
[erwig, markus.schneider, gueting]@fernuni-hagen.de

 

Abstract:

 

 We present a new approach to temporal data modeling based on the
very general notion of 

 

temporal object

 

. Moreover, we propose the database
embedding of temporal objects by means of the 

 

abstract data type

 

 (

 

ADT

 

)
approach. We consider the expressiveness of different temporal database
embeddings, and we discuss the combination of temporal and spatial objects
into 

 

spatio-temporal objects

 

 in (relational) databases. We explain various
alternatives for spatio-temporal data models and databases and compare their
expressiveness.

 

1 Introduction

 

In the past, in spite of many similarities, research in spatial and temporal data models
and databases has largely developed independently.

Spatial database research [Gü94] has focused on modeling, querying, and integrating
geometric and topological information in databases. For the modeling of spatial objects

 

spatial data types

 

 (e.g. [SV89, SH91, GS95, Sc97]) have been identified as appropriate
and efficient abstractions for modeling the geometric structure of spatial phenomena as
well as their relationships, properties, and operations. We base our definition of spatial
objects on the point set approach and on point set topology [Ga64]. A spatial object is
assumed to be represented by a generally infinite point set with certain properties from
which different structures like the boundary or the interior can be identified. There are
mainly two reasons for this way of modeling: spatial objects modeled by the point set
approach are efficiently implementable and can be easily embedded in a (relational)
database. This leads us to the specific subclass of 

 

linear spatial objects

 

 where linearity
is given through polygonal approximations. Moreover, the vast majority of optimization
methods and indexing techniques builds upon such linear representations. Besides, this
approach fits very nicely with our model of temporal objects.

Temporal database research [TCG

 

+

 

93] has concentrated on modeling, querying, and
recording the temporal evolution of facts under different notions of time (valid time,
transaction time) and thus on extending the knowledge stored in databases about the
current and past states of the real world. Traditionally, temporal data has been modeled
by tuple- or attribute-timestamped relations. This is a restricted view essentially pre-
venting the treatment of 

 

continuous

 

 change of temporal data. In contrast, a more general

 

* This research was partially supported by the CHOROCHRONOS project, funded by the EU under the
Training and Mobility of Researchers Programme, Contract No. ERB FMRX-CT96-0056.



 

view is offered by a (simplified) definition of a temporal object as a function mapping
time to a certain codomain under some constraints, and this is the first contribution of
our paper:

1. We present a very general model of 

 

temporal objects

 

 whose definition is based
on the observation that anything that changes over time can be expressed as a
function over time.

Currently, there are increasing integration efforts striving for a combination of space
and time in “spatio-temporal data models and databases”. We have already discussed
evolving problems and have presented a first approach for a data model in [EGSV98].
A few other papers already exist that deal with the integrated modeling of space and
time, for instance, [Wo94,YC93], but they do not address the embedding in databases.

This paper now views the topic from a rather fundamental perspective and addition-
ally makes the following contribution:

2. We propose the database embedding of temporal objects in the spirit of the

 

abstract data type

 

 approach applied to the integration of complex objects into
databases [SRG83, St86].

In spatial database technology, for quite some time, spatial data types have been inte-
grated as ADTs for attributes in relational schemas (e.g. [Gü88, SH91, Sc97]).

 

1

 

 So far,
temporal databases have been essentially based on atomic standard data types extended
by an explicitly or implicitly given type for time. Tuples are associated with time
stamps; each tuple describes the validity and the features of a fact or object. We show
that temporal databases based on the ADT approach are more powerful than current
ones and that a simple extension compensates this difference for a particular class of
temporal objects.

3. We demonstrate the broad spectrum of integration options for temporal and spa-
tial objects into 

 

spatio-temporal objects

 

 in (relational) databases and compare
their expressiveness.

The variety of temporal and spatial data models offers many different possibilities for
combining temporal and spatial objects into 

 

spatio-temporal objects

 

 in (relational)
databases. We discuss this design space and explain different alternatives for spatio-
temporal data models and databases. One of our main conclusions here is:

 

Spatio-temporal objects are special cases of temporal objects 

 

We compare the expressiveness of the different temporal, spatial, and spatio-temporal
data models. We focus on object representations and defer the treatment of operations
and query languages to a subsequent paper. For spatio-temporal data models we estab-
lish a representation hierarchy. An interesting visualization of spatio-temporal objects
for the linear case is a three-dimensional view in the form of 

 

3D-polylines

 

 for moving
points and in the form of 

 

polyhedra

 

 for moving regions [EGSV98], respectively. We

 

1. It is widely known that spatial databases supporting the ADT approach can represent the same
information as those decomposing spatial objects into a set of tuples in flat relations [BS77,
Ro87].



 

show that, surprisingly, the polyhedra model is not comparable to any model of our hier-
archy.

The rest of the paper is structured as follows: Sections 2 and 3 define a model for spa-
tial and temporal objects and describe a representation for their use in databases. We
also consider expressiveness of the different temporal modeling alternatives. Section 4
deals with the design space obtained when combining spatial and temporal objects. Var-
ious spatio-temporal data models are explained, and a number of relationships between
the different models are shown. Section 5 concludes the paper.

 

2 Spatial Objects and Spatial Databases

 

2.1 Spatial Objects

 

Space is assumed to be composed of infinitely many points; it corresponds to the two-
dimensional Euclidean space IR

 

2

 

. Each spatial feature 

 

S

 

 is regarded as an arbitrary, pos-
sibly infinite, point set 

 

S

 

 

 

⊆

 

 IR

 

2

 

. We here take an ADT approach and use 

 

spatial data
types

 

 for points and regions as appropriate abstractions of spatial phenomena. Elements
of spatial data types are called 

 

spatial objects

 

. The set of all spatial objects is denoted
by SO = 

 

Point

 

 

 

∪ 

 

Region

 

 where 

 

Point

 

 and 

 

Region

 

 are the set of all point and region
objects, respectively, and we also speak of the SO-model. Mathematical definitions of
regions can be based on point set topology; to avoid application-specific anomalies we
use regular closed sets and regularized set operations [Ti80, ES97]. For the implemen-
tation we need finite descriptions of point sets, and we employ 

 

linear

 

 approximations
of spatial objects. The set of all 

 

linear spatial objects

 

 is denoted by SO. Out of several
implementation alternatives, our selection is to approximate regions by a type 

 

Polygon

 

consisting of sets of polygons possibly with polygonal holes. The Points remain
unchanged.

 

2.2 Representation of Spatial Objects in Databases

 

A 

 

relation scheme

 

 

 

R

 

 is written as 

 

R

 

(

 

A

 

1

 

 : 

 

D

 

1

 

, ..., 

 

A

 

n

 

 : 

 

D

 

n

 

) where the 

 

A

 

i

 

 are the 

 

attributes

 

of 

 

R

 

. For a relation 

 

r

 

 : 

 

R

 

(

 

A

 

1

 

 : 

 

D

 

1

 

, ..., 

 

A

 

n

 

 : 

 

D

 

n

 

) holds: 

 

r

 

 

 

⊆

 

 

 

D

 

1

 

 

 

×

 

 

 

D

 

2

 

 

 

×

 

 ... 

 

×

 

 

 

D

 

n

 

. Tuples are
described in the form (

 

A

 

1

 

 = 

 

x

 

, 

 

A

 

5

 

 = 

 

b

 

, ...); only the values of interest are shown.
Principally, there are two methods of integrating spatial objects into relational data-

bases. The first method is to embed spatial objects directly as ADTs, i.e., a single
attribute value contains a complete spatial object: 

 

R

 

(

 

S

 

 : 

 

α

 

, ...) for 

 

α

 

 

 

∈

 

 GEO = {

 

Point

 

,

 

Region

 

, 

 

Polygon

 

}. This applies to the SO and SO model. The corresponding relational
data models are called SO-REL and SO-REL; they denote the set of relations with at
least one attribute of a (linear) spatial data type. For simplicity we assume that each such
relation has exactly one spatial attribute. The second method leads us to S-REL which
denotes the set of relations modeling spatial features only with atomic standard attribute
types. A polygon is represented as a set of tuples each storing the coordinates of two
points representing a segment of the boundary representation of a polygon [BS77,
Ro87].

A more detailed description of the SO/SO-models and their representation in data-
bases is given in the full paper [ESG97]. 



 

3 Temporal Objects and Temporal Databases

 

3.1 A Model of Temporal Objects

 

When defining a model for temporal objects one has to decide about a model of time.
We choose – mainly for consistency with the spatial domains – time to be continuous,
i.e., 

 

time

 

 = IR. Now anything that changes over time can be expressed as a function over
time, i.e., the temporal version of objects of a type 

 

α

 

 is given by a function of type 

 

time

 

→

 

 

 

α

 

, called a 

 

temporal

 

 

 

function

 

. The type of all (partial) temporal functions is simply:

 

φ

 

(

 

α

 

) = 

 

time

 

 

 

→

 

 

 

α

 

We have to deal with representations that are computationally tractable. This means that
for an arbitrary temporal function 

 

f

 

 

 

∈ φ

 

(

 

α

 

) we can determine the value of 

 

f

 

 at any time
of its domain. Thus, we restrict 

 

φ

 

(

 

α

 

) to computable functions. It is also important to be
able to compute values of the inverse function, i.e., ask for the times at which a temporal
object took a specific value. Further restrictions result from the need to integrate tem-
poral objects into the relational model and from compatibility with the chosen model
for spatial objects. Thus, we restrict the domain of 

 

φ

 

 to finite sets of time points and
intervals. For any type 

 

α

 

 that has a total order < (and equality =) we define the type of
non-empty (open and closed) intervals over 

 

α

 

 as follows: 

 

ι

 

(

 

α

 

) = 

 

∪

 

{{[

 

x

 

, 

 

y

 

], ]

 

x

 

, 

 

y

 

], [

 

x

 

, 

 

y

 

[, ]

 

x

 

, 

 

y

 

[} | 

 

x

 

, 

 

y

 

 

 

∈

 

 

 

α

 

} - {

 

∅

 

} where
[

 

x

 

, 

 

y

 

] = {

 

a

 

 

 

∈

 

 

 

α

 

 | 

 

x

 

 

 

≤

 

 

 

a

 

 

 

≤

 

 

 

y

 

}, ]

 

x

 

, 

 

y

 

] = {

 

a

 

 

 

∈

 

 

 

α

 

 | 

 

x

 

 < 

 

a

 

 

 

≤

 

 

 

y

 

}, [

 

x

 

, 

 

y

 

[ = {

 

a

 

 

 

∈

 

 

 

α

 

 | 

 

x

 

 

 

≤

 

 

 

a

 

 < 

 

y

 

}, etc.

This way we can encode continuous parts of 

 

φ

 

’s domain by intervals, i.e., the domain
of a temporal object is given by a finite set of pairwise disjoint intervals (any time point

 

t

 

 can well be represented by a degenerated interval [

 

t

 

, 

 

t

 

] = {

 

t

 

}.) We can now define the
type constructor for 

 

temporal objects

 

 as:

 

τ

 

(

 

α

 

) = 

 

ι

 

(

 

time

 

) 

 

→

 

 

 

φ

 

(

 

α

 

) ( = 

 

ι

 

(

 

time

 

) 

 

→

 

 

 

time

 

 → α

 

) 
where 

 

∀

 

 

 

ω

 

 

 

∈

 

 

 

τ

 

(

 

α

 

) : (1)

 

 ∀

 

 

 

I

 

, 

 

J

 

 

 

∈

 

 

 

dom

 

(

 

ω

 

) : 

 

I

 

 

 

∪

 

 

 

J

 

 

 

∉

 

 

 

ι

 

(

 

time

 

)

 

(2) ∀

 

 

 

I

 

 

 

∈

 

 

 

dom

 

(

 

ω

 

) : 

 

dom

 

(

 

ω

 

(

 

I

 

)) = 

 

I

 

This means a temporal object 

 

ω

 

 is defined on a set of pairwise disjoint and non-adjacent
intervals and associates with each interval of its domain a (partial) temporal function
whose domain is just that interval. The set of all temporal objects is denoted by TO, and
we also speak of the TO-model. There are at least two reasons for considering only 

 

lin-
ear

 

 temporal functions as a further restriction of temporal objects: (i) it is difficult to
compute with general functions, and (ii) a linear temporal function has a straightfor-
ward representation, which is particularly important for the integration into relations:
store the function values of the boundaries of intervals and use predefined interpreta-
tions for deriving function values for the interior of intervals.

In order to formalize the notion of linearity we consider argument types 

 

α

 

 that have
a certain algebraic structure (we call these types 

 

linear smooth

 

): there must be a non-
trivial type 

 

Λ

 

(

 

α

 

) 

 

⊆

 

 

 

α → α 

 

of functions on 

 

α 

 

for which two conditions hold: first, a scalar
multiplication is defined, i.e., 

 

∀

 

 

 

f

 

 

 

∈

 

 

 

Λ

 

(

 

α

 

), 

 

r

 

 

 

∈

 

 IR: 

 

r

 

·

 

f

 

 : 

 

α → α

 

 is a well-defined function
(with 1·

 

f

 

 = 

 

f

 

). Second, the function 

 

∆

 

 : 

 

α × α → Λ

 

(

 

α

 

) yields for two values 

 

x

 

, 

 

y

 

 

 

∈

 

 

 

α

 

 a
function 

 

δ

 

 which captures the “difference” between 

 

x

 

 and 

 

y

 

; in particular, 

 

δ

 

(

 

x

 

) = 

 

y

 

 must



 

hold. Then, by virtue of the scalar multiplication, values in the interior of an interval can
be computed by 

 

δ

 

. For instance, for 

 

α

 

 = IR the usual linear transition from 

 

x

 

 to 

 

y

 

 is cap-
tured by 

 

∆

 

(

 

x

 

, 

 

y

 

) = 

 

λ

 

x

 

’.

 

x

 

’+(

 

y

 

-

 

x

 

) where scalar multiplication is defined as: 

 

r

 

·(

 

λ

 

x

 

’.

 

x

 

’+(

 

y

 

-

 

x

 

))
= 

 

λ

 

x

 

’.

 

x

 

’+

 

r

 

·(

 

y

 

-

 

x

 

). The reason why 

 

∆

 

 is defined to return a function and not simply a dif-
ference value is that the linear interpretation for 

 

α

 

 

 

∈

 

 GEO is given by affine mappings
(see Section 4), and for these the functional view is much easier to handle than the value
approach.

Now the

 

 linear temporal object 

 

(TO) model can be defined as a linear specialization
of the TO-model (very much like SO is a specialization of SO). By ][

 

t

 

1

 

, 

 

t

 

2

 

][ we denote
an arbitrary open, closed, or semi-open time interval, and we let ||

 

t

 

|| = (

 

t

 

-

 

t

 

1

 

)/(

 

t

 

2

 

-

 

t

 

1

 

). We
say that a temporal function 

 

f

 

 : 

 

time

 

 

 

→

 

 

 

α

 

 is 

 

k-piecewise

 

 

 

linear

 

 if:

 

∃

 

 

 

k

 

 

 

∈

 

IN: 

 

dom

 

(

 

f

 

) = 

 

∪

 

1

 

≤

 

i

 

≤

 

k

 

 

 

I

 

i

 

 with 

 

I

 

i

 

 = ][

 

t

 

1

 

, 

 

t

 

2

 

][

 

∧

 

 

 

∀

 

1

 

≤

 

i

 

<

 

j

 

≤

 

k

 

: 

 

I

 

i

 

 

 

∩

 

 

 

I

 

j

 

 = 

 

∅
∧ ∀ 

 

I

 

i

 

: |

 

I

 

i

 

| > 1 

 

∧  ∀

 

t

 

 

 

∈ 

 

I

 

i

 

: 

 

f

 

(

 

t

 

) = (||

 

t

 

||·

 

∆

 

(

 

x

 

, 

 

y

 

)) (

 

x

 

)
where 

 

x

 

 = lim

 

n

 

→∞

 

 

 

f

 

(

 

t

 

1

 

+1/

 

n

 

) and 

 

y

 

 = lim

 

n

 

→∞

 

 

 

f

 

(

 

t

 

2

 

-1/

 

n

 

)

A 

 

k

 

-piecewise linear function is always also (

 

k

 

+1)-piecewise linear. To get a canonical
(and efficient) representation we look for minimal decompositions of intervals. There-
fore, we say that 

 

f

 

 is 

 

minimally decomposed

 

 (or 

 

maximally piecewise

 

, or just 

 

k

 

-

 

piece-
wise

 

) if 

 

f

 

 is 

 

k

 

-piecewise linear, but not (

 

k

 

-1)

 

-

 

piecewise linear. Then the 

 

minimal decom-
position

 

 of 

 

f

 

 is defined as the partition 

 

π

 

(

 

f

 

) ={(

 

I

 

i

 

, 

 

f

 



 

I

 

i

 

) | 1

 

≤

 

i

 

≤

 

k

 

} where 

 

f

 



 

D

 

 = {(

 

x

 

, 

 

f

 

(

 

x

 

)) | 

 

x

 

∈

 

 

 

D

 

}. Now the type of linear temporal objects is defined by the type constructor 

 

τ

 

 as
follows.

 

τ

 

(

 

α

 

) = {

 

ω ∈

 

 

 

τ

 

(

 

α

 

) | (1)

 

 α

 

 is linear smooth

 

(2) ∀

 

 

 

I

 

 

 

∈

 

 

 

dom

 

(

 

ω

 

): |

 

I

 

| = 1 

 

∨ ω

 

(

 

I

 

) is 

 

k

 

-piecewise}

Note that we cannot simply restrict 

 

ω

 

 to be linear on each of its intervals, we rather have
to refine this condition to finite partitions of each interval 

 

I

 

 because 

 

ω

 

 might have dif-
ferent linear behaviors on 

 

I

 

. Therefore, we have used the notion of piecewise linearity.
It is obvious that linear temporal objects are a strict subset of (general) temporal objects:

 

Lemma 3.1. 

 

TO 

 

⊂

 

 TO.

 

3.2 Representation of Temporal Objects in Databases

 

The integration of temporal objects into relational databases can be done principally in
two ways: temporal objects can be embedded directly as ADTs, i.e., a single attribute
contains a complete temporal object: 

 

R

 

(

 

O

 

 : 

 

τ

 

(

 

α

 

), …). This applies to the TO and TO
models. The corresponding data models are called TO-REL and TO-REL, and they
denote the set of relations with at least one attribute being of a (linear) temporal object
type. For simplicity we assume in the sequel that each such relation has exactly one tem-
poral attribute.

 

2

 

 In contrast, T-REL denotes relations with only atomic attribute types
(including 

 

time

 

). T-REL as defined below gives a unifying view on different traditional
tuple-timestamped

 

3

 

 models of temporal databases. Each temporal object is represented

 

2. The general case requires that the time domains of different temporal objects have to be “syn-
chronized” by finding a common interval refinement when mapping to T-REL. This is not dif-
ficult, but makes the definitions longer.



 

by a set of tuples each storing a value of type 

 

α

 

, a time stamp, and a flag

 

 B 

 

indicating
the future value behavior: 

 

R

 

(

 

A

 

 : 

 

α

 

, 

 

T

 

 : 

 

time

 

, 

 

B

 

 : {

 

d

 

, 

 

c

 

, 

 

l

 

}, …). 

 

B

 

 specifies the values in
between two time stamps, i.e, given two tuples (

 

A

 

 = 

 

x

 

, 

 

T

 

 = 

 

t

 

1

 

, 

 

B

 

 = 

 

b

 

, …) and
(

 

A

 

 = 

 

y

 

, 

 

T

 

 = 

 

t

 

2

 

, …) of a relation 

 

r

 

 

 

∈

 

 T-REL where 

 

∀

 

 (

 

T

 

 = 

 

t

 

3

 

, …) 

 

∈

 

 

 

r

 

: 

 

t

 

3

 

 < 

 

t

 

1

 

 

 

∨

 

 

 

t

 

3

 

 > 

 

t

 

2

 

, the
value of 

 

A

 

 at any time 

 

t

 

1

 

 < 

 

t

 

 < 

 

t

 

2

 

, denoted by 

 

A

 

(

 

t

 

), is:

(In the informal model of [YC93] 

 

spline interpolation

 

 is suggested as another interpre-
tation.) To be compatible with TO and TO we consider a further flag 

 

C

 

 : IB for distin-
guishing closed and open intervals: 

 

C

 

 = 

 

true

 

 

 

⇔

 

 

 

A

 

 is a valid value at 

 

T

 

 (otherwise, 

 

A

 

 is
used only for deriving values in the interior of the preceeding and/or the following inter-
val).

In order to compare T-REL with TO-REL and TO-REL we define the temporal object
represented by a relation from T-REL. Let 

 

r

 

 = {(

 

A

 

 = 

 

a

 

1

 

, 

 

T

 

 = 

 

t

 

1

 

, 

 

B

 

 = 

 

b

 

1

 

, 

 

C

 

 = 

 

c

 

1

 

, …),
…, (

 

A

 

 = 

 

a

 

n

 

, 

 

T

 

 = 

 

t

 

n

 

, 

 

B

 

 = 

 

b

 

n

 

, 

 

C

 

 = 

 

c

 

n

 

, …)} : 

 

R

 

(

 

A

 

 : 

 

α

 

, 

 

T

 

 : 

 

time

 

, 

 

B

 

 : {

 

d

 

, 

 

c

 

, 

 

l

 

}, 

 

C

 

 : IB, …) 

 

∈

 

 T-
REL be a (sub-) relation containing only tuples describing one temporal object (i.e., the
projection to all attributes 

 

∉

 

 {

 

A

 

, 

 

T

 

, 

 

B

 

, 

 

C

 

} yields a relation of a single tuple). First, we
derive the set of temporal functions for the intervals represented in 

 

r

 

:

 

Φ

 

(

 

r

 

) =

 

 {{(

 

t

 

, 

 

A

 

b

 

i

 

(

 

t

 

)

 

) | 

 

t

 

i

 

 < 

 

t

 

 < 

 

t

 

i

 

+1

 

} ∪ 

 

{(

 

t

 

j

 

, 

 

a

 

j

 

) | 

 

c

 

j

 

 = 

 

true

 

, 

 

j

 

 

 

∈

 

 {

 

i

 

, 

 

i

 

+1}} | 1 

 

≤

 

 

 

i

 

 < 

 

n

 

}

Next we have to map each interval to its corresponding temporal function. We get:
{(

 

dom

 

(

 

f

 

), 

 

f

 

) | 

 

f

 

 

 

∈

 

 

 

Φ

 

(

 

r

 

)}. Note that this is 

 

not

 

 yet the final temporal object, since there are,
in general, more intervals in the T-REL representation than in the corresponding tem-
poral object. Therefore, we have to normalize by merging temporal functions on adja-
cent intervals. This can be done by the function 

 

γ

 

:

 

 γ

 

({(

 

I

 

 

 

∪

 

 

 

J

 

, 

 

f

 

 

 

∪

 

 

 

g

 

)} 

 

∪

 

 

 

ω

 

’) if 

 

∃ω

 

’: 

 

ω 

 

= {(

 

I

 

, 

 

f

 

), (

 

J

 

, 

 

g

 

)} 

 

∪ ω

 

’ with 

 

I

 

∪

 

J

 

 

 

∈

 

 

 

ι

 

(

 

time

 

)

 

γ

 

(

 

ω

 

) =

 


 ω

 

otherwise

Hence, the temporal object denoted by relation 

 

r

 

 is finally given by:

 

σ

 

T

 

(

 

r

 

) = 

 

γ

 

({(

 

dom

 

(

 

f

 

), 

 

f

 

) | 

 

f

 

 

 

∈

 

 

 

Φ

 

(

 

r

 

)})

For relations 

 

r

 

 that do not properly represent temporal objects 

 

σ

 

T

 

(

 

r

 

) is undefined, i.e.,

 

σ

 

T

 

(

 

r

 

) = 

 

⊥

 

.
Next we have to define the representation of a linear temporal object 

 

ω

 

 as a relation

 

r

 

 

 

∈

 

 T-REL. Therefore, we first partition each interval of 

 

ω

 

’s domain into maximal sub-
intervals so that the corresponding temporal function is linear on each of these sub-
intervals. We obtain this through the minimal decomposition 

 

π

 

. Note carefully, that we
cannot represent “linear functions followed by a jump”, but only jumps after stepwise

 

3. In contrast, attribute-timestamped models like that of [SS93] correspond more closely to the
ADT view.

 

Interpretation Definition  b Name

 

completely undefined

 

A

 

d

 

(

 

t

 

) = 

 

⊥

 

d discrete

 

valid up to the next definition

 

A

 

c

 

(

 

t

 

) = 

 

x c

 

(

 

stepwise

 

)

 

 constant

 

changes continuously

 

A

 

l

 

(

 

t

 

) = (||

 

t

 

||·

 

∆

 

(

 

x

 

, 

 

y

 

)) (

 

x

 

)

 

l linear



 

constant parts because we have spent for each interval only one attribute of type 

 

α

 

. This
means that we cannot represent a function that evolves linearly from 

 

x

 

 to 

 

y

 

 and continues
with 

 

z

 

 

 

≠

 

 

 

y

 

. Thus, the representation function 

 

ρ

 

 described in the sequel is only partially
defined.

Consider a 

 

k

 

-piecewise temporal function 

 

f

 

. Let 

 

dom

 

(

 

f

 

) = 

 

∪

 

1

 

≤

 

i

 

≤

 

k

 

 

 

I

 

i

 

 with 

 

I

 

i

 

= ][

 

t

 

i

 

,1

 

, 

 

t

 

i

 

,2

 

][ , 

 

x

 

i

 

 = lim

 

n

 

→∞

 

 

 

f

 

(

 

t

 

i

 

,1

 

+1/

 

n

 

), and 

 

y

 

i

 

 = lim

 

n

 

→∞

 

 

 

f

 

(

 

t

 

i

 

,2

 

-1/

 

n

 

). If 

 

x

 

i

 

 = 

 

y

 

i

 

, let 

 

b

 

i

 

 = 

 

c

 

. Oth-
erwise, if 

 

y

 

i

 

 = 

 

x

 

i

 

+1

 

, then 

 

b

 

i

 

 = 

 

l

 

. Otherwise, 

 

ρ

 

”(

 

f

 

) (see below) is undefined. Then

 

ρ

 

”(

 

f

 

) = {(

 

A

 

=

 

x

 

i

 

,

 

T

 

=

 

t

 

i

 

,1

 

,

 

B

 

=

 

b

 

i

 

,

 

C

 

=(

 

t

 

i

 

,1

 

 

 

∈

 

 

 

I

 

i

 

)) | 1

 

≤

 

i

 

≤

 

k

 

} 

 

∪

 

 {(

 

A

 

=

 

y

 

k

 

,

 

T

 

=

 

t

 

k

 

,2

 

,

 

B

 

=

 

d

 

,

 

C

 

=(

 

t

 

k

 

,2 

 

∈

 

 

 

I

 

k

 

))}

Now the relation representing any temporal function of a temporal object is given by:

 



 

{(

 

A

 

 = 

 

f

 

(

 

t

 

), 

 

T

 

 = 

 

t

 

,

 

B

 

 = 

 

d

 

, 

 

C

 

 = 

 

true

 

)

 

}

 

if 

 

dom

 

(

 

f

 

) = {

 

t

 

}

 

ρ

 

’(

 

f

 

)

 

 

 

=

 


 ρ

 

”(

 

f

 

) otherwise

Finally, the relation representing a complete linear temporal object is:

 

ρ

 

T

 

(

 

ω

 

) = 

 

∪

 

(

 

I

 

, 

 

f 

 

)

 

∈ω

 

 

 

ρ

 

’(

 

f

 

)

 

3.3 Expressiveness of Temporal Data Models

 

To compare the different models we use operations from the NF

 

2

 

 relational model
[SS86] to describe mapping bewteen them. Let 

 

ν

 

[

 

AS

 

 : 

 

A

 

; 

 

f

 

] be the 

 

nest

 

 operator that
takes in addition to the set of attributes 

 

AS 

 

to be nested a function 

 

f

 

 that is applied to
each resulting sub-relation 

 

r

 

’. Then 

 

f

 

(

 

r

 

’) is stored under the attribute 

 

A

 

 (instead of 

 

r

 

’).
Similarly, the 

 

unnest

 

 operator 

 

µ

 

[

 

A

 

 : 

 

AS

 

; 

 

f

 

](

 

r

 

) applies the function 

 

f

 

 to the value of
attribute 

 

A

 

 of each of

 

 r

 

’s tuples and produces a relation of schema 

 

AS

 

 that is embedded
into 

 

r

 

.
Next we can compare the different temporal data models. First, we show that TO-

REL is more expressive than T-REL, but with two simple extensions T-REL becomes
equivalent to TO-REL. This means that the ADT approach is essentially equivalent to
simple temporal relational models as far as linear temporal behavior is concerned. We
also show that, in general however, TO-REL 

 

is

 

 more powerful than both TO-REL and
T-REL. 

The difference between TO-REL and T-REL lies essentially in the fact that one tuple
in TO-REL is represented by a set of tuples (= sub-relation) in T-REL. We can define
two simple transformations to map between TO-REL and T-REL. Any relation 

 

r

 

 :

 

R

 

(

 

A

 

 : 

 

α

 

, 

 

T

 

 : 

 

time

 

, 

 

B

 

 : {

 

d

 

,

 

c

 

,

 

l

 

}, 

 

C

 

 : IB, …) 

 

∈

 

 T-REL can be transformed into an equivalent
relation 

 

s

 

 

 

∈

 

 TO-REL simply by

 

s

 

 = 

 

ν

 

[{

 

A

 

, 

 

T

 

, 

 

B

 

, 

 

C

 

} : 

 

O

 

; 

 

σ

 

T

 

](

 

r

 

)

Likewise, any relation 

 

s

 

 

 

∈

 

 TO-REL can be transformed into a T-REL relation 

 

r

 

 by:

 

r

 

 = 

 

µ

 

[

 

O

 

 : {

 

A

 

, 

 

T

 

, 

 

B

 

, 

 

C

 

}; 

 

ρ

 

T

 

](

 

s

 

)

Let 

 

ν

 

T

 

(T-REL) = {

 

ν

 

[{

 

A

 

, 

 

T

 

, 

 

B

 

, 

 

C

 

} : 

 

O

 

; 

 

σ

 

T

 

](

 

r

 

)

 

 

 

| 

 

r

 

 

 

∈

 

 T-REL} - {

 

⊥

 

}, and let 

 

µ

 

T

 

(T-REL) =
{

 

µ

 

[

 

O

 

 : {

 

A

 

, 

 

T

 

, 

 

B

 

, 

 

C

 

}; 

 

ρ

 

T

 

](

 

r

 

)

 

 

 

| 

 

r

 

 

 

∈

 

 TO-REL}. Now we first have:

 

Theorem 3.1. 

 

ν

 

T

 

(T-REL) 

 

⊂

 

 TO-REL.



 

Proof.

 

 Since 

 

σ

 

T

 

 is a total function, it is clear that each T-REL can be transformed into
a corresponding TO-REL. The fact that the inclusion is proper is grounded in the par-
tiality of 

 

ρ

 

T

 

: since each linear function followed by a jump cannot be represented by a
T-REL, there are more TO-RELs than T-RELs.

  

■■

 

There is an even more important difference between T-REL and TO-REL that gets lost
by lifting T-REL to the ADT-level of TO-REL: non-temporal attributes in a TO-REL
exist independently from the domain of the temporal attribute. In contrast, an additional
(implicit) rule would be needed to distinguish temporal attributes from non-temporal
ones in T-REL. This reflects the fact that attribute-timestamped temporal models are, in
general, more expressive than tuple-timestamped models.

If we extend T-REL by storing an additional 

 

α

 

-attribute (and a second 

 

C-

 

flag speci-
fying the definedness at the end of intervals), we can actually represent all linear tem-
poral objects in flat relations. Let us call such a model T

 

+

 

-REL. (Of course, we have to
redefine and extend the 

 

ρ

 

T

 

 and 

 

σ

 

T

 

 transformations, too.) Then:

 

Theorem 3.2. 

 

ν

 

T

 

(T

 

+

 

-REL) = TO-REL and 

 

µ

 

T

 

(TO-REL) = T

 

+

 

-REL.

Still the ADT-approach is more general when we do not restrict ourselves to linear
behaviors. As a direct corollary of Lemma 3.1 we obtain:

 

Theorem 3.3. 

 

TO-REL 

 

⊂

 

 TO-REL.

 

4 Spatio-Temporal Data Types and Data Models

 

Now that we know how to model spatial and temporal objects and how to integrate them
into databases we can consider their combination. 

 

4.1 Landscape of Spatio-Temporal Data Models

 

A straightforward approach is indicated by the fact that 

 

τ

 

 is a type constructor: it is obvi-
ous to apply 

 

τ

 

 to types from GEO to immediately obtain 

 

spatio-temporal objects

 

 (STO).
The types of this model comprise moving objects, i.e., MOV = {

 

τ

 

(

 

Point

 

), 

 

τ

 

(

 

Region

 

)

 

,
τ

 

(

 

Polygon

 

)}). Again we can restrict ourselves to linear objects, both for the temporal
and the spatial component, and obtain the following models and types:

Note that before we can apply 

 

τ

 

 to either geometric type 

 

α

 

 

 

∈

 

 GEO we have to ensure
that these are all linear smooth. Therefore, we have to identify reasonable types 

 

Λ

 

(

 

α

 

).
The choice here is not unique, but for points arbitrary vector movements, and for
regions and polygons 

 

affine mappings

 

 provide well-understood and general models of
geometric transformations that are also amenable to scalar multiplication and to the dif-

 

Model linear component Types

 

STO –

 

τ

 

(

 

Point

 

), 

 

τ

 

(

 

Region

 

)

STO

 

spatial

 

τ

 

(

 

Point

 

), 

 

τ

 

(

 

Polygon

 

)

STO

 

temporal

 

τ

 

(

 

Point

 

), 

 

τ

 

(

 

Region

 

)

STO

 

spatial & temporal

 

τ

 

(

 

Point

 

), 

 

τ

 

(

 

Polygon

 

)



 

ference operator 

 

∆

 

. Actually, scalar multiplication is already defined for both vectors
and affine mappings. The 

 

∆

 

 operation is defined for points as 

 

∆

 

(

 

p

 

, 

 

q

 

) = 

 

λ

 

p

 

’.

 

p

 

’+(

 

q

 

-

 

p

 

)
where “+” and “-” are usual vector addition and subtraction. Thus, 

 

∆

 

 simply records the
vector that translates 

 

p

 

 to 

 

q

 

. The scalar multiplication is defined as 

 

r

 

·(

 

λ

 

p

 

’.

 

p

 

’+(

 

q

 

-

 

p

 

)) =

 

λ

 

p

 

’.

 

p

 

’+

 

r

 

·(

 

q

 

-

 

p

 

), and thus the intermediate positions of a point moving from 

 

p

 

 (directly)
to 

 

q

 

 all lie on the straight line connecting 

 

p

 

 and 

 

q

 

. For polygons (and regions) the dif-
ference is defined component-wise.

 

4

 

 For two polygons we have: 

 

∆

 

(

 

P

 

, 

 

Q

 

) = 

 

λ

 

p

 

.

 

H

 

·

 

p

 

+

 

v

 

where the matrix

 

H

 

 =  and the vector 

 

v

 

 =  

contain altogether six variables that are fully determined by three pairs of corresponding
points from 

 

P

 

 and 

 

Q

 

 as follows. For each two corresponding points 

 

p

 

 = (

 

x

 

, 

 

y

 

) and 

 

q

 

 =
(

 

x

 

’, 

 

y

 

’) we know:

 

x

 

’ = 

 

a

 

·

 

x

 

+

 

b

 

·

 

y

 

+

 

v

 

x

 

 and 

 

y

 

’ = 

 

c

 

·

 

x

 

+

 

d

 

·

 

y

 

+

 

v

 

y

 

For three different pairs of points we thus obtain six equations which are sufficient to
compute the parameters 

 

a

 

, 

 

b

 

, 

 

c

 

, 

 

d

 

, 

 

v

 

x

 

, and 

 

v

 

y

 

. Scalar multiplication is defined as

 

r

 

·(

 

λ

 

p

 

.

 

H

 

·

 

p

 

+

 

v

 

) = 

 

λ

 

p

 

.

 

(r

 

·

 

H

 

)·

 

p

 

+

 

r

 

·

 

v

 

. Now we can also see why we do not take affine mappings
for points, but just vector translation: since it is not possible to infer an affine transfor-
mation from just two points, it would be impossible to define 

 

∆

 

.
In the above table we have only listed ADTs. However, when we consider the inte-

gration into relations we can also as a further alternative distinguish the encoding of
objects by a set of tuples. This applies to the spatial as well as to the temporal object
part. We get the following eight modeling combinations where for each model we give
its name and the attribute types

 

5

 

 of spatio-temporal objects (see table below).

Apart from the already mentioned “full” ADT versions (i.e., spatial and temporal
objects are both integrated as ADTs), the model SOT (SOT) denotes a model where (lin-
ear) spatial objects are integrated into a tuple-timestamped temporal database: for each
snapshot the currently valid version of the spatial object is stored. This is indicated by
the exponent (

 

k

 

) expressing that there are 

 

k

 

 tuples representing all the 

 

k

 

 snapshots. Sim-
ilarly, TOS denotes the model where spatial objects (i.e., polygons) are encoded by 

 

m

 

tuples – for each segment one tuple –, and the temporal behavior is given by linear tem-
poral objects. This means each evolving polygon is represented by 

 

m

 

 temporal objects
storing the behavior of each segment. This seems to be a rather unrealistic model

 

4. We notice that the number of components cannot change for linear areas. So we cannot model
the splitting or merging of regions.

5. We give only the type for areal objects; for points all entries in the first (second) column are

 

τ

 

(

 

Point

 

) (

 

τ

 

(

 

Point

 

)), and the third column always contains 

 

Point

 

(

 

k

 

)

 

.

 

TO TO T (

 

k

 

 snapshots)

SO

 

τ

 

(

 

Region

 

) STO

 

τ

 

(

 

Region

 

) STO

 

Region

 

(

 

k

 

)

 

SOT

SO

 

τ

 

(

 

Polygon

 

) STO

 

τ

 

(

 

Polygon

 

) STO

 

Polygon

 

(

 

k

 

)

 

SOT

S (

 

m

 

 segments) [ 

 

τ

 

(

 

Line

 

)

 

m

 

 ] TOS

 

Line

 

(

 

k·m

 

)

 

ST

a b
c d( ) v

v
x
y( )



 

(mostly because temporal object models do not exist so far), however, SOT and SOT are
conceivable, since spatial object models do already exist. So these two models describe
the option of simply combining existing database technology for spatial and temporal
databases. We have omitted a possible model TOS of unconstrained temporal objects
storing segment representations of polygons, since it seems to be rather difficult to “syn-
chronize” arbitrary temporal line objects so that they always complement into a proper
polygon. Finally, the most simple model that does not use ADTs at all is the ST model
which represents a changing polygon by 

 

k

 

·

 

m

 

 tuples where 

 

m

 

 tuples representing one
polygon snapshot get a common time stamp.

 

4.2 Expressiveness of Spatio-Temporal Models

 

All the different models presented above form
a hierarchy which we will describe next. We
obtain a representation hierarchy as shown on
the right. An arrow from model 

 

A

 

 to model 

 

B

 

means “

 

A

 

 is less expressive than 

 

B

 

”, i.e., 

 

A

 

 

 

⊂

 

B

 

. The edge labels serve as indices to the cor-
responding theorems. First, we combine and
generalize results about spatial objects (see
full paper) and of Theorem 3.1. Apart from
aggregating spatial and temporal objects in an
ST-REL separately (by means of 

 

ν

 

S

 

 and 

 

ν

 

T

 

), we can also consider the quasi-simulta-
neous aggregation 

 

ν

 

ST

 

(ST-REL) = 

 

ν

 

T

 

(

 

ν

 

S

 

(ST-REL)). 

 

µ

 

T

 

+

 

 is the extension of 

 

µ

 

T

 

 into a
total function mapping to the extended representation ST

 

+

 

-REL, and 

 

ν

 

T

 

+

 

 is the corre-
sponding extension of 

 

ν

 

T

 

. We also use 

 

ν

 

ST

 

+

 

(ST

 

+

 

-REL) = 

 

ν

 

T

 

+

 

(

 

ν

 

S

 

(ST

 

+

 

-REL)). First, we
can observe (see full paper):

 

Fact 4.1. 

 

ν

 

S

 

(S-REL) = SO-REL and 

 

µ

 

S

 

(SO-REL) = S-REL.

Now we have:

 

Theorem 4.2. 

 

(a) 

 

ν

 

S

 

(ST-REL) = SOT-REL
(b) 

 

ν

 

ST

 

+

 

(

 

µ

 

T

 

+

 

(TOS-REL)) = STO-REL
(c) 

 

ν

 

T

 

(ST-REL) 

 

⊂

 

 TOS-REL
(d) 

 

ν

 

ST

 

(ST-REL) 

 

⊂

 

 STO-REL

 

Proof.

 

 Part (a) follows directly from fact 4.1. Part (b) deserves some explanations: First,
we cannot simply apply 

 

ν

 

S

 

 to TOS-REL because the spatial attributes are hidden in tem-
poral objects, so we have to unpack them beforehand. However, we must be very careful
here: since 

 

µ

 

T

 

 is not totally defined on TOS-REL (ST-REL is a true subset of TOS-REL)
we have to map to the extended representation ST

 

+

 

-REL by means of the extended
unnesting function 

 

µ

 

T

 

+

 

. We then know: 

 

µ

 

T

 

+

 

(TOS-REL) = ST

 

+

 

-REL. Now we can aggre-
gate the spatial objects and get (from part (a)): 

 

ν

 

S

 

(ST

 

+

 

-REL) = SOT

 

+

 

-REL. Finally, we
can aggregate the temporal objects and obtain (as a corollary of Theorem 3.2):

 

ν

 

T

 

+

 

(SOT

 

+

 

-REL) = STO-REL. Part (c) follows directly from Theorem 3.1, and (d) fol-
lows from (b) and (c).

We also have corresponding results for ST

 

+

 

-REL:

 

STO

STO STO

STO  

 

=

 

  TOS

SOT 

 

 =

 

  ST

SOT

 

4.2a

4.2b

 

4.4a

4.4b

4.4c

4.5a

4.5b

4.6b

4.2c,4.6a



 

Theorem 4.3. 

 

(a) 

 

ν

 

T

 

+

 

(ST

 

+

 

-REL) = TOS-REL
(b) 

 

ν

 

ST

 

+

 

(ST

 

+

 

-REL) = STO-REL

Theorems 4.2 and 4.3 express relationships of the flat relational model w.r.t. (linear)
ADT models. Next we show relationships that result from the polygons being special
cases of general regions.

 

Theorem 4.4. 

 

(a) SOT-REL 

 

⊂

 

 SOT-REL
(b) STO-REL 

 

⊂

 

 STO-REL
(c) STO-REL 

 

⊂

 

 STO-REL

This theorem essentially follows from the fact that SO 

 

⊂

 

 SO. Similarly, as a corollary
of Lemma 3.1 we obtain the following result expressing that relations with linear tem-
poral objects are less expressive than relations with general temporal objects:

 

Theorem 4.5. 

 

(a) STO-REL 

 

⊂

 

 STO-REL
(b) STO-REL 

 

⊂

 

 STO-REL

And finally, as a corollary of Theorems 3.1 and 3.2, we obtain (note that part (a) is actu-
ally equivalent to Theorem 4.2 (c)):

 

Theorem 4.6. 

 

(a) 

 

ν

 

T

 

(SOT-REL) 

 

⊂

 

 STO-REL
(b) 

 

ν

 

T

 

(SOT-REL) 

 

⊂

 

 STO-REL
(c) 

 

ν

 

T

 

+

 

(SOT

 

+

 

-REL) = STO-REL
(d) 

 

ν

 

T

 

+

 

(SOT

 

+

 

-REL) = STO-REL

It is very instructive to imagine spatio-temporal objects as 3D-objects. Then the differ-
ent models presented relate directly to different features and restrictions of 3D-objects.
For instance, STO describes rather arbitrary volumes (or curves in the case of points),
whereas STO is restricted to region objects with polygonal faces parallel to the 

 

x

 

-

 

y

 

plane. STO (STO) restricts STO (STO) further to straight translations and scalings plus
rotations w.r.t. the 

 

t

 

-axis (for points: translations only). Two severe restrictions of STO
(that result from affine mappings) are: (i) the number of components cannot change, and
(ii) the number of vertices of polygons cannot change. When considering linear repre-
sentations (to facilitate efficient computations) and 3D-objects, we can also imagine
moving regions being represented by 

 

polyhedra

 

. It is then interesting to note that poly-
hedra are not comparable in expressiveness to STO: polyhedra cannot represent rota-
tions, but they can well model changes in the numbers of components and polygon ver-
tices.

 

5 Conclusions

 

We have presented a new model for temporal objects and temporal databases that, in
particular, offers quite different modeling options for spatio-temporal databases. The
investigation of the relative expressiveness of the different models gives a clear picture
of the relationships between these models. In particular, it can be seen that, compared
with the traditional (flat) view of temporal databases, the ADT approach is more versa-
tile and offers much more control over temporal behavior, even for linearly constrained



 

objects. Future work should consider other specific spatio-temporal object models (such
as polyhedra) in more detail.

 

References

 

[BS77] R.R. Berman & M. Stonebraker. GEO-QUEL: A System for the Manipulation and
Display of Geographic Data. 

 

Computer Graphics

 

, vol. 11, pp. 186-191, 1977.
[EGSV98] M. Erwig, R.H. Güting, M. Schneider & M. Vazirgiannis. Spatio-Temporal Data

Types: An Approach to Modeling and Querying Moving Objects in Databases. 

 

ACM
Symp. on Geographic Information Systems

 

, 1998. To appear.
[ES97] M. Erwig & M. Schneider. Vague Regions.

 

 5th Int. Symp. on Advances in Spatial
Databases

 

, LNCS 1262, pp. 298-320, 1997.
[ESG97] M. Erwig, M. Schneider & R.H. Güting. Temporal Objects for Spatio-Temporal Data

Models and a Comparison of Their Representations, Technical Report 225, 1997
(Revised Version 1998).

[Ga64] S. Gaal. 

 

Point Set Topology

 

. Academic Press, 1964.
[GS95] R.H. Güting & M. Schneider. Realm-Based Spatial Data Types: The ROSE Algebra.

 

VLDB Journal

 

, vol. 4, pp. 100-143, 1995.
[Gü88] R.H. Güting. Geo-Relational Algebra: A Model and Query Language for Geometric

Database Systems. 

 

Int. Conf. on Extending Database Technology

 

, pp. 506-527, 1988.
[Gü94] R.H. Güting. An Introduction to Spatial Database Systems. 

 

VLDB Journal

 

, vol. 3,
pp. 357-399, 1994.

[Ro87] J.W. van Roessel. Design of a Spatial Data Structure Using the Relational Normal
Forms. 

 

Int. Journal of Geographical Information Systems

 

, vol. 1, pp. 33-50, 1987.
[Sc97] M. Schneider. 

 

Spatial Data Types for Database Systems - Finite Resolution Geome-
try for Geographic Information Systems

 

. LNCS 1288, Springer-Verlag, 1997.
[SH91] P. Svensson & Z. Huang. Geo-SAL: A Query Language for Spatial Data Analysis.

 

2nd Int. Symp. on Advances in Spatial Databases

 

 (

 

SSD ’91

 

), pp. 119-140, 1991.
[SRG83] M. Stonebraker, B. Rubenstein & A. Guttmann. Application of Abstract Data Types

and Abstract Indices to CAD Data Bases. 

 

ACM/IEEE Conf. on Engineering Design
Applications

 

, pp. 107-113, 1983.
[SS86] H.-J. Schek & M.H. Scholl. The Relational Model with Relation-Valued Attributes.

 

Information Systems

 

, vol. 11, pp. 137-147, 1986.
[SS93] A. Segev & A. Shoshani: A Temporal Data Model Based on Time Sequences. Chap-

ter 11 of [TCG

 

+

 

93], pp. 248-270, 1993.
[St86] M. Stonebraker. Inclusion of New Types in Relational Data Base Systems. 

 

2nd IEEE
Int. Conf. on Data Engineering

 

, pp. 262-269, 1986.
[SV89] M. Scholl & A. Voisard. Thematic Map Modeling. 

 

1st Int. Symp. on the Design and
Implementation of Large Spatial Databases

 

, pp. 167-190, 1989.
[TCG

 

+

 

93] A.U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev & R. Snodgrass. 

 

Temporal
Databases: Theory, Design, and Implementation

 

. Benjamin/Cummings Publishing
Company, 1993.

[Ti80] R.B. Tilove. Set Membership Classification: A Unified Approach to Geometric Inter-
section Problems. 

 

IEEE Transactions on Computers

 

, vol. C-29, pp. 874-883, 1980.
[Wo94] M.F. Worboys. A Unified Model for Spatial and Temporal Information. 

 

The Com-
puter Journal

 

, vol. 37, pp. 27-34, 1994.
[YC93] T.S. Yeh & B. de Cambray. Time as a Geometric Dimension for Modeling the Evo-

lution of Entities: A 3D Approach. 

 

2nd Int. Conf. on Integrating GIS and Environ-
mental Modeling

 

, 1993.


