
Exploiting Diversity in Type Checkers for Better Error
Messages

Sheng Chen

CACS, UL Lafayette

Martin Erwig, Karl Smeltzer

School of EECS, Oregon State University

Abstract

Producing precise and helpful type error messages has been a challenge for the im-

plementations of functional programming languages for over 3 decades now. Many

different approaches and methods have been tried to solve this thorny problem, but

current type-error reporting tools still suffer from a lack of precision in many cases.

Based on the observation that different approaches work well in different situations, we

have studied the question of whether a combination of tools that exploits their diversity

can lead to improved accuracy. Specifically, we have studied Helium, a Haskell imple-

mentation particularly aimed at producing good type error messages, and Lazy Typing,

an approach developed previously by us to address the premature-error-commitment

problem in type checkers. By analyzing the respective strengths and weaknesses of the

two approaches we were able to identify a strategy to combine both tools that could

markedly improve the accuracy of reported errors. Specifically, we report an evaluation

of 1069 unique ill-typed programs out of a total of 11256 Haskell programs that reveals

that this combination strategy enjoys a correctness rate of 82%, which is an improvement

of 25%/20% compared to using Lazy Typing/Helium alone. In addition to describing

this particular case study, we will also report insights we gained into the combination of

error-reporting tools in general.

Email addresses: chen@louisiana.edu (Sheng Chen), {erwig,smeltzek}@oregonstate.edu
(Martin Erwig, Karl Smeltzer)

Preprint submitted to Elsevier January 31, 2016



Keywords: Type-error diagnosing, tool combining

1. Introduction

One of the major challenges faced by current implementations of type inference

algorithms is the production of error messages that help programmers fix mistakes in the

code. Cryptic, complex, and misleading compiler error messages have been understood

to be severe barriers to programmers, especially novices (Brown, 1983; Johnson and5

Walz, 1986; Milner, 1978; Wand, 1986). This problem goes back several decades (even

to the original Hindley-Milner type system), and is still considered to be unsolved

(Hartmann et al., 2010; Nienaltowski et al., 2008).

Expert programmers familiar with the way their compiler performs type inference

may develop some intuition for recognizing error message patterns. Novice program-10

mers, however, might find some type errors—especially those using type system jargon

such as infinite types, or containing many polymorphic type variables—to be more con-

fusing than helpful. Sometimes error messages are not only complex, but even incorrect

or misleading. In particular, type error messages sometimes include line numbers which

do not point to the actual error. In some cases, this location is far away from the actual15

error source, or even in the wrong file.

Quite a few solutions have been proposed to locate type errors more accurately. One

idea is to eliminate the left-to-right bias of type inference (McAdam, 2002; Lee and Yi,

1998). Another is, instead of committing to just one error location, to report several

program sites that most likely contribute to the type inconsistency (Yang, 2000; Wazny,20

2006). A related technique uses program slicing to determine all the positions that are

related to the type errors (Schilling, 2012). Finally, constraint solving has been proposed

as a means to minimize the number of possible error locations (Heeren, 2005).

However, despite considerable research effort devoted to this problem, and the

improvements made, each of the proposed solutions has its own shortcomings and25

performs poorly for certain programs. Consider, for example, the following function

introduced in Wazny (2006) that splits a list into two lists by placing elements at odd

positions in the first list and those at even positions into the second.

2



split xs = case xs of

[] -> ([], [])

[x] -> ([], x)

(x:y:zs) -> let (xs, ys) = split zs

in (x:xs, y:ys)

This definition contains a type error. In the body of the second case alternative, the

variable x should be replaced with [x] (Wazny, 2006). Existing type inference systems30

have a hard time locating it correctly.

When type checking this example, the Glasgow Haskell Compiler (GHC) 7.6,1

which is the most widely used Haskell compiler, produces the following message.

Occurs check: cannot construct the infinite type: a0 = [a0]

In the first argument of ‘(:)’, namely ‘y’

In the expression: y : ys

In the expression: (x : xs, y : ys)

This message about being unable to construct infinite types employs compiler jargon

and incorrectly points the programmer to the very last line in the function.35

The Chameleon Type Debugger (Wazny, 2006), a representative of the more ad-

vanced error slicing tools, displays the following information.

ERROR: Type error

Problem : Case alternatives incompatible

Types : [a] -> (b,a)

[a] -> (c,[a])

Conflict: split xs = case xs of

[] -> ([],[])

[x] -> ([],x)

(x:y:zs) -> let (xs, ys) = split zs in (x:xs, y:ys)

The advantage of slicing approaches is that they include all locations that may cause the

type error and exclude all locations that don’t contribute to the error. A drawback of

this approach is, however, that it often includes too many locations (Chen and Erwig,40

2014b). In this example, Chameleon notes type mismatches across multiple lines, which

still requires the programmer to distill the information into an actual fix for the problem.

1www.haskell.org/ghc/

3

www.haskell.org/ghc/


Helium (Heeren, 2005) was designed to produce well-rounded results that are more

helpful than those from other tools. For our example it suggests changing the cons

function (:) to the list append function (++). This change would indeed fix the45

type error, but it would also cause the types of the other two alternatives to change as

well. Helium’s change suggestion also doesn’t agree with the type error fix described

in (Wazny, 2006), where the original example was introduced.

We have recently developed a new approach, called Lazy Typing (LT) (Chen and

Erwig, 2014a), which improves type error messages for many of these situations. For50

this particular example, LT presents the following message.

(3,31): Type error in expression:

x

Of type: a

Should have type: [a]

It identifies the error as occurring in the expression x on the right-hand side of the

second case expression—exactly where we would hope. The error message produced

suggests that x is of polymorphic type a, but should be of type [a], or “list of a”.

With so many different approaches one might wonder whether any single approach55

will ever be able to handle every conceivable type error properly. Consequently, we

ask the question of whether it is possible instead to combine existing techniques in

complementary ways. Strategically combined, this could allow a given tool to be used

in situations where it excels, and another tool where it does not. To this end, we examine

the specific case of combining LT and Helium, and from that we extract principles and60

recommendations for the general case.

Previous Work and Structure of the Paper

This paper is an extended version of Chen et al. (2014a). It contains the following

changes and additions compared to the original paper.

1. We give a more through discussion of the examples in Section 1. Specifically,65

we present example error messages from several tools to explain the different

approaches to type error debugging.

4



2. We present a more detailed discussion of different kinds of type error messages

in Section 3.

3. We have refined our combining strategy by adding a fourth rule to the original70

set of three rules. This refinement gains about 3% of accuracy over the original

combining strategy. Although 3% may look like only a small improvement, it is

actually 30% of all the improvement that is possible, because our original strategy

achieved 79%, which is only 10% below the theoretically best strategy which has

an accuracy of 89%. Section 4.2 presents this strategy in detail.75

4. We present an improved version of general strategies for combining tools in

Section 5. Specifically, the refined analysis discussed in Section 4.2 revealed that,

in general, an iterative process is needed to produce a good combining strategy.

5. We have expanded the discussion of related work in Section 6.

6. This paper is not about visual languages per se. However, the results and insights80

of this paper can be translated to visual languages in several ways. For example,

many visual languages (Burnett, 1993; Djang et al., 2000; Clerici et al., 2014)

also use type inference, and the work in this paper provides a method to improve

type error debugging in these languages. Moreover, type error debugging can

be integrated into visual approaches to type inference. For example, the visual85

transformation steps described in (Erwig, 2006) can serve as explanations for how

to arrive at types and type errors. That method could be adapted to the different

approaches for producing type error messages studied in this paper, and thus, in

addition to producing correct type error messages in more cases, we could also

obtain explanations for how the conclusion about the errors were arrived at.90

In Section 2, we introduce and explain the principles behind lazy typing and expand

upon Helium as a representative for comparison. Section 3 evaluates Helium and LT

separately in order to specifically identify conditions under which each is strong. Section

4 discusses how Helium and LT can be combined and evaluates the success of doing

so. In Section 5 we extract general principles for combining other type error reporting95

5



methods and tools. Finally, we discuss related work in Section 6 and provide conclusions

in Section 7.

2. Lazy Typing and Helium

Next we will examine LT and Helium in greater detail. This will help us to illustrate

the complementary nature of these two techniques and justify why we have selected100

these two tools in particular to combine and discuss.

The motivating idea behind lazy typing is to better exploit the context of expressions

containing type errors. This context can, at least in principle, support finding more

accurate type error locations and also improve potential change suggestions provided to

the programmer (Chen and Erwig, 2014a).105

We are able to exploit context information by delaying the decision about the type of

an expression until we can better leverage the type information gathered from its context.

In cases where the expression turns out to exhibit a type error, the availability of this

contextual type information can help in deciding what is wrong with the expression and

therefore point more precisely to the source of the type error.110

The basic idea of this delaying strategy is to turn an equality constraint between

types, such as τ = τ′, into a choice between the two types, which we write as A〈τ,τ′〉

(Erwig and Walkingshaw, 2011). Instead of enforcing the constraint, which potentially

causes an immediate failure of type checking, we continue the type inference process

with the two possibilities τ and τ′. If τ 6= τ′, the inference will eventually fail too, but at115

a later point when additional context information is available. We call this strategy lazy

typing (LT). This strategy is based on the concept of variational types and a variational

unification algorithm presented in Chen et al. (2014b).

By contrast, Helium is based on a constraint solving approach. Helium can be

roughly broken down into three phases. In the first, constraints describing the program120

or expression are gathered. The second stage reorders the type constraints in a tree,

which largely determines where Helium finds and identifies the type error. Finally, the

collection of constraints is passed to a solver to type the code.

As might be expected, the difference between LT and Helium causes them to excel in

6



quite different situations. Consider, for example, the following type-incorrect function125

definition.

insertRowInTable :: [String] -> [[String]] -> [[String]]

insertRowInTable r t = r ++ t

This function takes two parameters, namely a data row represented by a list of strings

and a table, represented as a list of list of strings, into which the row is to be inserted.

The implementation then uses the (++) function, which appends two lists. This causes

a type error, however, because (++) has the type [a] -> [a] -> [a] rather than [a]130

-> [[a]] -> [[a]].

LT types the expression before it considers the type annotation. Because of this, the

error is determined to be a mismatch between the expression and the annotation, and

no change suggestion is generated since there is not enough evidence about where type

error occurs. Helium, on the other hand, assumes the correctness of the type annotation135

and suggests changing the implementation to use (:), which inserts a single value at

the front of the list, rather than (++). This will indeed fix the type error, although it may

not reflect what the programmer had in mind.

However, introducing additional code to this example can change the results dramat-

ically and thereby illustrate some of the practical differences between LT and Helium.140

Suppose we add the following definition somewhere else in the file, which tries to make

use of our insertRowInTable function.

v = insertRowInTable ["Bread"] [["Beer"]]

LT is able to make use of this additional context to see that this definition agrees with

the original type annotation, and so determines the error is most likely in the body of

the implementation, and it suggests to change (++) to something of type [String]145

-> [[String]] -> [[String]]. Helium does not account for the additional context

and suggests the same change as before. In this case, the additional context makes LT

more accurate, but not more so than Helium. However, consider the case where, instead

of the previous definition of v, we have the following.

v = insertRowInTable [["Bread"]] [["Beer"]]

7



Here, LT sees that the function implementation and the definition of v agree, while the150

type annotation does not. Because of this, it suggests changing the type annotation to

[[a]] -> [[a]] -> [[a]].

By contrast, Helium continues to trust the type annotation and produces two distinct

type errors. The first is unchanged from the previous examples while the second is

to use a character literal rather than a string, effectively changing the type of the first155

parameter from [[String]] to [String].

Because Helium trusts type annotations in all cases, it will typically produce the

most useful error messages in cases where that type annotation is correct. When that

type annotation is the cause for the type error, however, LT tends to produce more

accurate error messages.160

While Helium and LT both suggest expression changes in some circumstances, they

do so in different ways. Helium frequently makes use of what it calls sibling expressions.

One form of siblings is pairs of functions which are in some way similar or offer related

functionality. Example of this include (:) and (++) as already witnessed, as well

as max and maximum which find the maximum of two values and the maximum in a165

list of values, respectively. Literals can also be considered siblings, such as the string

and character versions of a single letter ("c" and ’c’) or the floating point and integer

versions of a number.

In summary, we choose to combine LT and Helium in this paper, because they are

likely to produce correct error messages in different situations. For example, LT works170

better when the type annotation is incorrect and Helium works better otherwise. As

another example, they can provide expression change suggestions for very different

cases. More reasons for choosing these two tools are provided in Section 3.2 when more

detailed examples and terminologies have been introduced.

In the following section we present a detailed analysis of the particular situations for175

which Helium and LT are particularly strong and examine their overall success rates.

8



3. Evaluation of Lazy Typing and Helium

We are interested in leveraging the diversity of techniques among type checking

tools, but combining them most effectively requires understanding the strengths and

weaknesses of each. For this reason, we begin by evaluating both Helium and LT180

independently. This will then help to inform more general conclusions about combining

type checking tools in later sections.

3.1. Evaluation Programs

For evaluation purposes, we obtained a database of programs collected at Utrecht

University from 2002 to 2005 (Hage, 2013). The full collection contains 11256 real185

programs, written by first-year undergraduate students learning Haskell using Helium.

More detailed information concerning this collection can be found in (Hage and van

Keeken, 2009). While each program is unique, some are sequences of programs which

the students fix or improve over time. These are particularly useful, as some of these

sequences involve fixing type errors. We can therefore use these fixed programs as190

references for correcting the earlier programs. To provide a practical, realistic, and

objective way to evaluate and compare type checking techniques, we define the notion

of a reference program as follows.

Definition 1 (Reference program). Given an ill-typed program Pi, if Pi appears in the

program editing sequence . . . ,Pi, . . . ,Pj, . . . , then Pj is the reference program for Pi if195

Pj is first well typed program after Pi in the sequence.

Note that this definition doesn’t ensure that the reference program actually fixes the

type error. It could very well happen that an expression causing the type error is simply

removed (together with all expressions that directly or indirectly depend on it). This

would be bad, because it would avoid the problem of fixing the error, and in that case200

the reference program would not provide a good oracle for the evaluation. Fortunately,

this did not occur in any of the ill-typed programs we investigated.

Thus, intuitively, Pj reflects how the student fixed the type error in Pi. In the

definition, Pi can appear anywhere but at the end of a sequence. We found reference

programs for all of the ill-typed programs we investigated.205

9



We filtered the set of programs down to those which contained type errors in earlier

iterations of the same program. To achieve this, we produced a script to run GHC on

every program. We kept those which contained type errors, but omitted those which also

contained other issues such as parsing errors as we cannot run type checkers on programs

that fail to parse. Additionally, Helium allows for some extended, non-standard notation210

such as the (*.) operation for multiplying floating point values. We also excluded

these programs, as LT does not support such non-standard syntax. After this process,

we were left with 1069 unique, ill-typed programs. Some programs contained more

than one type error, meaning we actually investigated 1133 separate type errors.

3.2. Error Message Categories215

With this filtered database, we were able to run both our LT prototype and the

Helium compiler on each program in order to compare the type error messages. A

manifesto for measuring the quality of type error messages was proposed in Yang et al.

(2000). Unfortunately this manifesto is not helpful for our scenario since it judges all of

the error messages generated by LT and Helium as good messages. Instead, we compare220

the output of both LT and Helium against the changes made in the reference programs

to determine their correctness. The following definition specifies more formally when

error messages are considered to be correct or incorrect.

Definition 2 (Error message correctness). An error message em is said to be correct

for the ill-typed program Pi if following the suggestions given by em will transform Pi to225

its reference program Pj. Otherwise, the message is incorrect.

Based on this definition, we classified all of the Helium/LT messages as either correct

or incorrect. This process was performed manually and took approximately 200 hours

of work. To explain how we determined whether an error message was deemed correct

or not, let us return to the example from Section 1, which is, in fact, a snippet from230

one of the actual student programs (Hage, 2013). The example is reproduced below;

the numbered lines show different error messages of different kinds and for different

locations. These messages were produced by LT, Helium, and GHC; the purpose is to

show some of the kinds of errors that can be found.

10



insertRowInTable :: [String] -> [[String]] -> [[String]]

insertRowInTable r t = r ++ t

(1) Change (++) to (:).

(2) Change (++) of type [a] -> [a] -> [a] to

something of type [String] -> [[String]] -> [[String]].

(3) Change type annotation to

[[String]] -> [[String]] -> [[String]].

(4) The type of insertRowInTable is incompatible

with its signature.

(5) In the first argument of (++),

couldn’t match type Char with [Char].

(6) Type error in variable

expression: (++)

type: [a] -> [a] -> [a]

expected type: b -> [b] -> [b]

because: unification would give infinite type

For each type error message, we record the following information:235

(a) Whether the suggestion is correct. Because some changes may technically fix the

type error but completely change the behavior of the program, we determine if a

message is correct based on Definitions 1 and 2.

(b) Whether or not it is an expression change suggestion. Expression change sugges-

tions are those which are specific, code-based changes rather than more general240

messages (which frequently only refer to types). For example, messages (1) and

(3) from above are deemed expression change suggestions, because they recom-

mend specific code changes, while the others are less specific and refer only to

types.

(c) When appropriate, why a message does not help to remove the type error. For245

example, if the reference program shows the type error in the above example is

the type annotation, then the messages (1), (2), and (5) are considered to be

incorrect, because they report errors at the wrong locations. Additionally, message

(4) would also be considered incorrect in this case. While technically correct, it

is vague and fails to suggest a way to fix the error. Alternatively, if the reference250

program shows the error is the use of the (++) function, then messages (3) and

11



(5) are considered incorrect because they point to wrong locations. Message (4)

is still too vague, suggesting no specific changes, and is therefore still considered

incorrect.

(d) Whether the type annotation is correct or not.255

This information allows us to separate all messages into one of three error categories,

which will help with the analysis. The categories are based on level of concreteness,

which is an indication of how directly they can be employed to fix an error. The least

concrete category of error messages are those we call fault location messages. Typical

type error messages have two components, namely the location in the source code260

(such as a line and column number) at which the error was determined to occur and

the message itself, which explains why code at that location caused a type error. This

category is only concerned with the former. In particular, this category includes all the

error messages whose locations differ from the fixes in the corresponding reference

programs for the ill-typed programs. Regardless what kind of type error has occurred, or265

what the suggestion is, if the reference program determines that the message produced

an incorrect location, it belongs to this error category. Therefore, if an error message

meets the criteria for both this and another category, then this category takes priority.

The reason for this decision is that any correct error message must get the location right.

If an error mesage cannot even point to the proper location, then any further information270

it provides is meaningless and only confusing and misleading.

At the second level, slightly more concrete than fault location messages, we have

type change suggestions. Type change suggestions are those which produce recommen-

dations for changing the types of definitions in the code. A good example is message (2)

from above. It follows the form “change X of type τ1 to something of type τ2”, which is275

common for type change suggestions. Type change messages can be either correct or

incorrect as well. In many cases, Helium produces another form of type changes in terms

of unification failures. One such case is the message (6) in the insertRowInTable

example. The message (6) is produced by Helium if we change the type annotation of

insertRowInTable to a -> [a] -> [a].280

12



Finally, the most concrete category of error message is that which we call an

expression change suggestion, also described above. It suggests a specific change in the

source code of the program, such as applying a different function or changing a type

signature in a particular way. An expression change suggestion is more concrete than a

type change suggestion because a type change suggestion still requires the programmer285

to determine a specific expression to use, while an expression change suggestion doesn’t.

Consider the type change suggestion (2) and the expression change suggestion (1)

in the insertRowInTable example. Given the message (1), the programmer simply

changes (++) to (:). For the message (2), the programmer has to decide what

function to replace (++) with. While (:) is a candidate, some other possibilities exist,290

for example, the intersperse function from the Haskell library. Like type change

suggestions, expression change suggestions can be either correct or incorrect.

Now that we have seen a detailed example of different categories of error messages,

we can give concrete reasons for choosing to combine LT and Helium.

1. Internal diversity. Each tool can generate different types of error messages. We295

have seen that Helium can report unification failures, type change suggestions, and

expression change suggestions. Likewise, LT can report problems related to type

annotations, type change suggestions, and expression change suggestions. The

existence of different categories allows us to take different actions for different

categories and creates fine-grained combining strategies. This is the reason300

why we did not choose, for example, the Chameleon Type Debugger (Wazny,

2006), which reports minimum error sources, Skalpel (Haack and Wells, 2003),

which slices type errors, nor GHC, which mainly reports unification failures as

combining candidates.

2. External diversity. Different tools produce different kinds of information or305

produce the same kind of information based on different methods. In our case,

LT can report problems in type annotations while Helium can report unification

failures. Although they both produce expression change suggestions, they do

so based on different methods. This is the reason why we did not choose, for

example, to combine Chameleon and Skalpel— they can both be considered310

13



Overall Expr. change (EC) Type change (TC) Fault loc. (FL)

Co Ne Ce Nt Ct Nl

Lazy typing 645 252 249 579 396 302

Helium 703 309 298 673 405 151

LT/H Oracle 1010 506 505 605 505 22

Co/N Ne/N Ce/Ne Nt /N Ct /Nt Nl /N

Lazy typing 56.9% 22.2% 98.8% 51.1% 68.4% 26.7%

Helium 62.0% 27.3% 96.3% 59.4% 60.2% 13.3%

LT/H Oracle 89.1% 44.7% 99.8% 53.4% 83.5% 1.95%

Figure 1: Evaluation results for different type-checking approaches applied to ill-typed

programs in number (upper part) and in percentage (lower part). Note that N denotes

the number of all type errors inspected and thus is 1133. The left-most column, labeled

“Overall”, shows the number of cases in which type errors are fixed (Co) and the

percentage of programs this represents (Co/N). The Ne, Nt , and Nl columns show the

total number of programs determined to be of kind expression change, type change, or

fault location, respectively. The Ce and Ct columns report the number of expression

change and type change suggestions, respectively, that actually fix the error. The

remaining columns show derived ratio information. The LT/H Oracle rows denote

results obtained by always using the better output from either LT or Helium, serving as

a theoretical maximum.

slicing tools—different versions of Helium, nor LT and counter-factual typing

since they share many commonalities.

3.3. Results of Individual Tools

The three error categories described in Section 3.2 together partition all of the

error messages. This will be useful in analyzing which kinds of errors Helium and LT315

handle well and which they do not. Figure 1 presents the results of running LT and

Helium separately on each of the 1133 type errors in our database, broken down by

14



the aforementioned classification scheme. The LT/H Oracle rows present a theoretical

maximum that could be achieved by always using the better output from either LT or

Helium. That is, if LT produces a fault location message for a given type error, but320

Helium has a correct type change suggestion for that same error, then we say that the

LT/H Oracle has the correct type change suggestion and ignore the LT failure.

From these data we can observe a number of things. LT produced correct error

messages in 57% of all cases and Helium did so in 62% of all cases. Also, although

neither tool produces a high ratio of expression change suggestions, those that are325

produced tend to be accurate. Type change suggestions account for the biggest partition

of all error messages. Helium produces type change suggestions for more cases than LT,

but suffers from slightly lower precision. Finally, LT produces more error messages than

Helium that fall into the fault location category. Speculatively, this could be because LT,

unlike Helium, does not always trust type annotations. Since the example programs in330

which the type annotations are correct outnumber those in which the annotations are

incorrect, Helium gains an advantage by trusting them.

Both tools are substantially more effective in locating type errors and suggesting

changes than common Haskell compilers. For the sake of comparison, a recent study

showed that GHC produces correct error messages in approximately 20% of cases (Chen335

and Erwig, 2014b). Helium provides correct feedback in more cases than LT, though not

by a wide margin. More importantly, both Helium and LT still offer substantial room

for improvement, as neither produces correct error messages in all situations.

What is not obvious from the data, however, is that LT and Helium do not completely

overlap in the programs for which they are successful. The different approaches are340

strong in different situations. This means that, with a hypothetical oracle, a programmer

that simply runs both LT and Helium and automatically selects the better of the two

suggestions would receive correct suggestions in 89% of the cases. This LT/H Oracle

information is shown in the Lt/H Oracle rows in Figure 1.

Of particular interest are the LT/H Oracle expression change suggestions. Helium345

and LT combine for a total of 561 such suggestions, of which only 56 occur for the

same program. This means that, while Helium and LT can only make expression change

suggestions in 27% and 22% of the examples, respectively, the LT/H Oracle can improve

15



249

396

3

183

302

Lazy	
  Typing	
  

298

40511

268

151

Helium	
  

505

505

1
100

22

Oracle	
  

Correct EC
Correct TC
Incorrect EC
Incorrect TC
Fault Location

Figure 2: Performance of Lazy Typing, Helium, and the LT/H Oracle.

this to 45%. Since the accuracy of expression change suggestions is so high, this is a

promising statistic. This increase in expression change suggestions comes with a cost,350

however, in that the maximum number of possible type change suggestions is actually

reduced from those that Helium itself is capable of producing. This occurs because

many of the type change suggestions that Helium and LT are able to produce separately

become expression change suggestions when using the LT/H Oracle. Finally, we can

observe that the number of fault location messages can be reduced remarkably using355

the LT/H Oracle. This should not be a surprise given the increases elsewhere. Figure 2

presents a summary of the performances of LT, Helium, and the theoretical Oracle.

Unfortunately, however, we cannot rely on the LT/H Oracle. Simply applying

both techniques and producing two error messages is not always helpful since the

programmer will not know which tool to trust when they disagree. Instead, we need a360

way to determine which of the two approaches is most likely to be correct in a given

situation. Our goal here is to develop a strategy for combining the tools so that for

each ill-typed program only one error message is displayed, which is more likely to be

correct when any of LT or Helium is correct. The cost for programmers when using the

combining approach is that they may have to get used to three or four kinds of error365

messages produced by the tool they don’t already use. For example, if programmers

previously used Helium, then they need to get used to three types of error messages

produced by LT when the combining approach is used.

16



4. Integrating Lazy Typing and Helium

We have seen that LT and Helium could potentially be combined to produce useful370

error messages in up to 89.1% of our test cases. Of course, this figure represents the

theoretical best case, which could be achieved by someone who knows in advance what

the correct answer is. The interesting question is how we could possibly integrate the

two tools to automatically produce error messages that improve on both tools.

As mentioned previously, the high success rate of the theoretical combination is375

largely due to Helium and LT being correct in different situations. That this is true is

witnessed by the fact that, of the 703 type errors correctly identified by Helium and the

645 identified by LT, only 338 are correctly found by both.

Following the results in Figure 1 and the corresponding analysis in Section 3, we

have derived two strategies to combine LT and Helium. The first strategy is the one380

presented in the conference version of this paper (Chen et al., 2014a), and the second

strategy is a refinement of the first strategy. Both strategies share the following first two

rules. The remaining rules for both strategies are presented in Subsections 4.1 and 4.2,

respectively.

Rule 1. If either LT or Helium provides an expression change suggestion, accept it. If385

both suggest expression changes, pick the suggestion from LT.

Rule 2. Otherwise, if LT suggests that the type annotation is wrong, use the suggestion

made by LT.

The motivation for the first rule can be understood by examining Figure 3. This table

shows two rows for expression (EC) and non-expression (¬EC) changes by Helium,390

and two such columns for LT. Each row/column is further split into correct (3) and

incorrect (7) cases. This leads to 12 possible combinations. The four empty cells are

coincidental and show situations with no expression change suggestions, which are not

relevant. The remaining cells show the number of programs in which that combination

of suggestions occurred. For example, the cell with the value 7 tells us that there are 7395

cases in which Helium made an incorrect expression change suggestion while LT made

a correct non-expression change suggestion.

17



Lazy Typing

EC ¬EC

3 7 3 7

Helium

EC
3 51 0 67 180

7 3 5 7 9

¬EC
3 76 2 - -

7 119 15 - -

Figure 3: A breakdown of the cases in which LT or Helium (or both) made an expression

change suggestion (EC). Note: ¬EC= TC∨FL.

Please note that there may seem to be a discrepancy between the values in Figures 3

and 1. This occurs because in Section 3 the fault location category took precedence over

the others, i.e. some expression change suggestions were categorized in fault location.400

In the current section we discuss all expression change suggestions, even those that

were previously categorized as fault location.

The table provides several specific reasons for always trusting expression change

suggestions.

(1) There is only minimal overlap in these cases. Out of the 534 cases in which either405

Helium or LT makes an expression change suggestion, only 59 of them are shared.

(2) Expression changes are typically accurate, and a tool that trusts them will often

deliver correct error messages. We can see that trusting Helium’s expression change

suggestions rather than LT’s non-expression change suggestions only leads to 7

cases in which we could have done better. Similarly, trusting LT’s expression410

change suggestions over Helium’s non-expression change suggestions only leads to

2 situations in which we could do better.

(3) In only very few cases do both tools have different expression change suggestions.

There are only 3 such cases, all of which occur where LT is correct and Helium is

incorrect. This directly supports preferring LT in cases where both produce different415

18



expression change suggestion.

(4) There is little overlap between correct expression changes and correct non-

expression changes when compared to correct expression changes and incorrect

non-expression changes. We can see that Helium expression change suggestions

provide correct error messages in 180 cases where LT would provide an incorrect420

message. In the other direction, LT provides correct expression change suggestions

in 119 cases where Helium provides an incorrect non-expression suggestion.

Finally, we can see that out of the 534 expression change cases, there are only 38 cases

which would be improved by the oracle solution, namely those in which either both

expression change suggestions are incorrect (5) or only one is made and it is incorrect425

(that is, 7+9+2+15 = 33).

To justify the second rule of our strategy, we need to examine information about

the correctness of the type annotations in our programs. Unfortunately, we cannot

simply rely on type annotations being correct. This rules out the use of Helium for these

cases, which automatically trusts them. Fortunately, LT is reasonably accurate at finding430

incorrect type annotations. The program database contained 264 incorrect annotations

and LT identified 243 of them. Out of the 1133 total type errors, LT produced 21 false

negatives and 40 false positives, producing an acceptable margin of error in deciding

the correctness of type annotations.

We can extract yet more information to justify our second rule from the table in435

Figure 4. Of the messages produced for the 264 incorrect type annotations, 140 do not

contain an expression change suggestion from either tool. The other 124 are therefore

handled by application of the first rule and so are not relevant here. Figure 4 presents

a breakdown of these examples by whether or not LT and Helium have correct type

change suggestions. We can observe that there are 38 cases in which both approaches440

are correct, 81 cases in which LT is correct and Helium is incorrect, and only 2 in which

LT is incorrect and Helium is correct. This is a strong point in favor of preferring LT in

cases where programs are reported to have incorrect type annotations.

To summarize the justification for the second rule, it correctly handles 119 out of

140 possible cases. There are only 2 programs in our database which the oracle would445

19



Lazy typing

3 7

Helium
3 38 2

7 81 19

Figure 4: A comparison of correctness for LT and Helium type error messages for

programs that LT determines to have wrong type annotations.

Lazy typing

3 7

Helium
3 106 181

7 97 75

Figure 5: A breakdown of type error messages from LT and Helium for programs

with correct type annotations and no expression change suggestions using the original

strategy.

improve upon, where Helium is correct and LT is not. In the remaining 19 cases, neither

Helium nor LT produces a correct message, and so no strategy will succeed.

4.1. Completing the first strategy

In our original strategy (Chen et al., 2014a), the following rule 3 is used for all the

cases that are not handled by rules 1 and 2.450

Rule 3. Use the suggestion made by Helium.

This rule in our strategy proves the most difficult as we have no obvious syntactic way

of distinguishing these cases.

Figure 5 presents a breakdown of how LT and Helium perform on the remaining 459

cases. We observe that in 106 cases both tools produce correct error messages and in 75455

cases the choice is irrelevant as both are incorrect. Of the remaining cases, 97 favor LT

while 181 favor Helium. This suggests that our combined approach should default to

20



Overall Correct Fault location Other error

Rule 1 534 496 31 7

Rule 2 140 119 14 7

Rule 3 459 287 58 114

Sum 1133 902 103 128

Figure 6: Effectiveness of the rules in the LT/H strategy.

favoring Helium in all remaining cases, simply because it is more likely to be correct

for these situations. As a consequence of this, our strategy fails to produce useful error

message in 172 cases.460

By using rules 1, 2, and 3, we have produced a strategy for integrating LT and

Helium that always selects only one error message, eliminating the problems faced by a

naive combination. From the user’s perspective, this combination works just as Helium

or LT would as a standalone tool except that it produces useful error messages in more

cases than either.465

Figure 6 summarizes the effectiveness of the LT/H strategy and the individual rules.

For each, we present the number of cases that satisfy the condition of that rule, the

number of programs for which the tool that the rule selects is able to produce a correct

message, the number of cases in which the corresponding tool produces fault location

messages, and all remaining possible mistakes. Overall, LT/H produces correct error470

change suggestions in 902 cases, representing 79.4% of our program database. It

produces 103 total type error messages that are fault location. In the remaining 128

cases, LT/H produces some other kind of incorrect error message, for example, a type

change suggestion with a wrong target type.

Finally, Figure 7 summarizes the overall performance of the original strategy with475

rules 1, 2, and 3. In it, we categorize each type error message according to the clas-

sification scheme described and used in Section 3. This strategy is able to achieve a

correctness rate of 79.4%, improving substantially on Helium and LT as separate tools,

which achieved 62.0% and 56.9%, respectively. From this we can conclude that this

combining strategy is quite effective.480

21



496

406

7

121

103

Correct EC
Correct TC
Incorrect EC
Incorrect TC
Fault Location

Figure 7: Performance of the LT/H approach using rules 1, 2, and 3

4.2. Refined rules for an improved strategy

We observe that rule 3 presented in the previous subsection handles 459 programs,

which is about 41% of all the 1133 ill-typed programs. Moreover, Helium outperforms

LT by only a small margin, which means that the combining strategy is not that effective

in this case. Of the programs that fall into this category, this rule misclassifies 97485

programs, which is about 21% of them. As rules 1 and 2 only have 11 misclassifications,

rule 3 accounts for almost all misclassifications.

We address this issue by employing the additional information about unification

failures in error messages reported by Helium. Using this information, we can refine

rule 3 as follows by using two rules.490

Rule 3a. For all the cases that are not handled by rules 1 and 2, if Helium complains

about unification failures, use the suggestion made by LT.

Rule 3b. Otherwise, use the suggestion made by Helium.

The rule 3a says that for the cases that are not handled by the first two rules, we use

LT’s messages if Helium reports a unification failure. This rule takes the advantage of495

Helium’s goal to produce high-quality error messages. Since messages about unification

failure usually involve compiler jargon and are hard to understand, Helium tries to avoid

such messages and falls back to using them only when no better suggestions can be

made. Thus, the messages that involve unification failure reports are usually incorrect.

22



Lazy typing

3 7

Helium
3 7 5

7 35 20

Figure 8: A breakdown of type error messages from LT and Helium for programs for

which Helium complains about unification failure.

Lazy typing

3 7

Helium
3 99 176

7 62 55

Figure 9: A breakdown of type error messages from LT and Helium for programs with

correct type annotations, no expression change suggestions, and no unification failures

reported by Helium.

In these cases, LT performs much better. Figure 8 presents the details about using this500

rule. We observe that, in total, 67 cases are handled by this rule. Among these cases,

Helium outperforms LT in 5 cases while LT outperforms Helium in 35 cases. Thus, we

choose to use LT’s messages in these cases. Our strategy fails to produce correct error

messages in 25 cases by applying this rule.

All the remaining cases are handled by rule 3b. Figure 9 presents a breakdown of505

how LT and Helium perform on the remaining 392 cases. We observe that in 99 cases

both tools produce correct error messages and in 55 cases the choice is irrelevant as both

are incorrect. Of the remaining cases, 62 favor LT while 176 favor Helium. Thus we use

Helium’s messages simply because they are more likely to be correct in this situation.

As a result, our strategy fails to produce correct error message in 117 cases.510

Like the original strategy, the refined strategy using rules 1, 2, 3a, and 3b also selects

one message from either Helium or LT. Figure 10 summarizes the effectiveness of the

refined strategy and the individual rules. To increase readability, we repeat the results

23



Overall Correct Fault location Other error

Rule 1 534 496 31 7

Rule 2 140 119 14 7

Rule 3a 67 42 11 14

Rule 3b 392 275 38 79

Sum 1133 932 94 107

Figure 10: Effectiveness of the rules in the refined strategy.

for rules 1 and 2. Similar to Figure 6, Figure 10 shows for each rule the number of cases

handled by that rule, the number of cases that rule picks correct messages, the number515

of cases that rule picks messages have fault locations, and the number of all other cases.

Overall, the refined strategy produces correct error change suggestions in 932 cases,

representing 82.3% of our program database. It produces 94 total type error messages

that have fault locations and 107 messages that are incorrect for removing type errors

for other reasons.520

By comparing Figures 8 and 9 with Figure 5, we can see that the refined strategy

helps to improve the combining performance. In particular, while rule 3 misclassifies

97 of all the 459 cases handled by that rule, the rules 3a and 3b misclassify 67 cases

in those 459 cases. While rule 3 can produce correct error messages in 287 cases, the

number for rules 3a and 3b is 317. Overall, this adds 30 more cases to the original 902525

cases yielding 932 cases for which this combining strategy can help remove the type

error. Thus, the refined combining strategy achieves 82.3% of accuracy, compared to

the 79.4% of the original strategy. Considering that the oracle achieves the maximum

possible 89.1% of accuracy, using rules 3a and 3b over rule 3 mobilizes 30% of the

remaining potential for further improving the accuracy of the combining approach.530

Finally, Figure 11 summarizes the overall performance of the refined strategy. We

categorize each type error message as we did in Figure 2. The refined strategy is able to

achieve a correctness rate of 82.3%. Compared to the accuracy rate of Helium and LT as

separate tools, which are 62.0% and 56.9%, respectively, the refined strategy performs

quite well.535

24



496

436

7 100

94

Correct EC
Correct TC
Incorrect EC
Incorrect TC
Fault Location

Figure 11: Performance of the refined strategy using rules 1, 2, 3a, and 3b

LT provides EC

Y

N

LT

Helium provides EC

Y
Helium

N LT suggests
wrong annotation

Y
LT

N Helium reports
unification failure

Y
LT

N
Helium

Figure 12: Decision tree representation of the refined combining strategy

Relationship to machine learning. We can represent combining strategies using decision

trees. For example, Figure 12 shows the decision tree for the refined strategy. Given

an ill-typed program, the internal nodes ask questions about the properties of the

messages produced by LT and Helium, and the leaf nodes decide which tool to use to

produce the error message. For example, if neither Helium nor LT produces expression540

change suggestions and LT suggests that the type annotation is wrong, then the message

produced by LT should be used. This structure suggests a close relation between the

work in this paper and supervised machine learning techniques, such as decision-tree-

based learning.

In fact, we can use an existing algorithm, such as CART (Breiman et al., 1984), to545

learn the refined strategy if we are given all the error messages that have already been

labeled with the necessary information. In particular, for each message, the data has to

25



tell whether LT or Helium provides an expression or type change suggestion, whether

LT suggests that the type annotation is wrong, whether Helium complains a unification

failure, and more importantly, whether the message is correct or not. Unfortunately, we550

are not aware of the existence of any such data sets. Thus we cannot apply any existing

supervised machine learning algorithms without first performing the labeling, which is

part of what this paper provides.

One could also try to apply an unsupervised learning algorithm to separate all

the error messages into correct and incorrect messages. This is indeed a non-trivial555

research problem. For example, it is unclear what information should be extracted

from highly arbitrary compiler error messages (known as feature extraction (Narayanan

et al., 2012; Caliskan-Islam et al., 2015)) and what information from extracted features

should be used (known as feature selection (Narayanan et al., 2012; Caliskan-Islam

et al., 2015)) for clustering error messages into correct and incorrect. A particular560

challenge to this approach is that deciding whether an error message is correct requires

context information. It is conceivable that one particular error message may be viewed

as both correct or incorrect depending on the particular situation. Overall, we can

conclude that applying unsupervised learning to separate error messages is infeasible at

this time. Nevertheless, the work done in this paper, in particular the labeling of error565

messages, provides many machine learning research opportunities to help improve type

error debugging. It may be interesting, for example, to see if applying some advanced

machine learning techniques could discover a combining strategy with a higher accuracy

rate than ours.

Threats to validity. There are three main threats to the validity of this work. First,570

all sample programs share a single data source. This could lead to a homogeneous

programming style with a proclivity for avoiding or making certain types of errors. Until

additional data sets are available, this is difficult to work around. Second, the coding of

error messages was performed by one researcher, which could potentially lead to errors.

Third, we determine the reference programs by finding the first well-typed programs575

in sequence after an ill-typed program appears. However, it is possible that in some

situations later well-typed programs in the sequences should be used as the reference

26



programs instead. Additionally, one potential reason Helium performed marginally

better than LT overall on ill-typed programs might be because the students writing the

programs used Helium as their compiler. However, this should not affect the overall580

combining result either way.

5. General Strategies for Combining Tools

By reflecting on the process that we used to identify the combining strategies in

Section 4, we can extract guidelines that apply to the general case of combining type

error reporting (or other static analysis) tools.585

In the following, we use A and B to refer to two arbitrary tools to be combined, and

we use ABs to denote the combination with respect to strategy s. In cases where the

strategy is irrelevant to the discussion, we may simply drop s.

For a given combination of tools ABs, there are two primary factors that affect its

performance. First, both A and B have inherent limitations which will naturally restrict590

the performance of ABs, regardless of the strategy used. This occurs in cases when

neither A nor B is able to produce a correct error message. Even an oracle cannot

improve this situation, as was the case in our running example. See Figures 1 and 2,

which show the inherent limitations of both Helium and LT, as well as the LT/H Oracle.

The second factor affecting the performance of ABs is simply the number of cases595

in which our strategy is able to select the strongest tool for the situation. Unlike the

LT/H Oracle, it is possible that the strategy’s selected approach is the weaker of the two,

resulting in cases we refer to as being misclassified.

In our running example, LT/H, there are 9 misclassified cases out of those handled by

rule 1, which always trusts expression change suggestions. Rule 2 produces 2 misclassi-600

fied suggestions, rule 3 produces 97, rules 3a and 3b produce 5 and 62, respectively. In

total, the original strategy with rules 1, 2, and 3 produces 108 misclassified suggestions

and the refined strategy with rules 1, 2, 3a, and 3b produces 78 misclassified sugges-

tions. Together with the 123 cases for which Helium and LT both produce incorrect

suggestions, this sums to 231 cases in the original strategy and 201 cases in the refined605

strategy in which the combination produces an incorrect message. These results can

27



also be calculated from Figures 6 and 10.

From these data, we can conclude that, while the specific limitations of A and B are

important, the strategy s is the most important aspect. In order to derive an effective

general strategy, the first task must be to label the problem cases and classify them into610

categories, treating each separately. This enables the analysis of the problem in parts,

maximizing the performance of s for each of the problem cases. Without understanding

these problem cases, it is difficult to do better than by random chance.

In the case of LT/H, we were able to classify all cases into four different error

categories: cases for which at least one tool produced an expression change suggestion,615

cases for which LT reported an incorrect type annotation, cases for which Helium report

a unification failure, and all other cases. If, like this, problem cases can be divided

into categories, then we can apply two principles that we call category analysis and

category-wise method analysis (hereafter just method analysis) to help decide how to

handle them. Moreover, the process of searching a good combining strategy needs to620

go through multiple iterations. Each iteration begins with category analysis and ends

with method analysis. If method analysis performs poorly for certain categories, then

category analysis should be redone with more refined analyses, and another iteration is

performed.

Category analysis considers the manner in which the individual problem cases625

are classified into categories most effectively. Individually, A and B might classify a

single case into different categories, and so care needs to be taken when ABs choosing

between them. For example, for some of the programs we evaluated, Helium reported an

expression change suggestion while LT reported an incorrect type annotation and made

a type change suggestion. In this case, according to the category analysis principle, we630

should choose the category that has the highest probability of producing a correct result.

Returning again to Figure 1, we can see that expression changes have a substantially

higher accuracy rate than any other category, and so we chose to give preference to the

expression change whenever one is produced.

In this example we have the good fortune to see that both tools are accurate when635

producing an expression change suggestion. This might not always be the case, however.

In a different situation, we would derive a different strategy to take advantage of

28



the strengths of the tools. In general, however, the category analysis principle offers

guidance for making this determination.

Method analysis is the principle which guides the selection of a tool or technique for640

a given category. We assume that category analysis has already been applied, and thus

that each problem case has been assigned to a category. As an example, we decided that,

in the case where LT reports an incorrect type annotation (and no expression change

suggestion is made by Helium) to always trust LT, as the data suggests this is more

likely to be correct. Intuitively, the principle is to maximize the correctness rate for each645

of the categories.

This principle works particularly well when there are many small categories, as well

as when two tools have high accuracy and correctness for disparate sets of categories.

This is also demonstrated by the LT/H example. Our strategy does well for the second

category, which contains the programs that correspond to LT reports about incorrect650

type annotations, because LT handles this case much better than Helium with relatively

few false positives.

Similarly, method analysis is less effective when two tools have similar performance

for a single category, or when categories are large. For example, the original combining

strategy including rules 1, 2, and 3 experienced this problem. Specifically, the category655

three for the original strategy contains 459 cases and Helium performs only slightly

better than LT. As a result, we can see that rule 3 accounts for 89.8% (97/108) of all

misclassification in the original strategy. Based on the discussions in the beginning of

this section, misclassifications account for the performance discrepancy between the

result of the combined strategy and the theoretically best result. Thus, rule 3 is the main660

cause for the 9.7% (89.1%-79.4%) difference between LT/H Oracle and the original

strategy.

One potential solution to address this issues was already hinted at in the refined

combining strategy presented in Section 4.2: refining the analysis and breaking down the

large categories into several smaller categories. In this case study, we performed another665

iteration of category analysis and method analysis. More specifically, for this category,

we further considered the category of cases reported by Helium as unification failures.

Since this kind of message is in general not correct for removing type errors, we identify

29



these programs and suggest to use LT’s messages for them. This effort splits the original

big category into two smaller categories: the category that represents Helium unification670

failures and all others. Moreover, since rule 3a for the unification failure category

produces a low misclassification rate, and since the misclassification rate for rule 3b is

also lowered compared to rule 3, which changed from 21% (97/459) to 16% (62/392),

the split is quite effective. This can be witnessed as the total misclassifications have

dropped from 108 in the original strategy to 78 in the refined strategy. Consequently,675

the overall accuracy rate has increased from 79.4% to 82.3%, a difference of about 3%.

Nevertheless, after the refined analysis, the last category is still big. It contains 392

cases. Worse, the misclassification rate is still high. It contains 62 misclassifications,

which accounts for 79.5% (62/62+9+2+5) of all misclassifications. This shows that the

last category is still the main cause for the precision loss of the refined strategy compared680

to the LT/H Oracle. Again, the solution to this issue is to further split this category,

just as we did for the refined strategy. The last big category might be further refined

by considering the complexities of type changes. For example, if one tool suggests to

change a subexpression from one type to a similar type while the other tool suggests to

change the entire expression from one type to a totally different type, then the suggestion685

from the former tool may be preferred.

In general, the way to deal with big categories and tools being combined having

similar performance for these categories is to refine the analysis. Unfortunately, this finer-

grained analysis requires additional information, which may not always be available for

the given tools.690

In summary, developing a strategy for combining tools comes down to two principles:

category analysis and category-wise method analysis. Category analysis assigns a

category for each problem case while method analysis decides which tool to use for

each category. Increasing the number of categories will complicate the former while

improving the precision of the latter.695

When choosing tools for combining, an important factor to consider is the number

of categories into which a tool’s messages can be classified. If both tools used for

combining produce only one category of error messages, then it is hard to derive a

combing strategy that outperforms the better of the two original tools. In contrast, if both

30



tools can generate many categories of error messages and if the tools excel in different700

situations, then it should be beneficial to combine them according to our guidelines. We

have witnessed such a case with LT and Helium.

6. Related Work

The challenge of accurately reporting type errors and producing helpful error mes-

sages has received considerable attention in the research community. Improvements705

for type inference algorithms have been proposed that are based on changing the order

of unification (Lee and Yi, 1998; McAdam, 2002; Lee and Yi, 2000; Yang, 2000),

suggesting program fixes (McAdam, 2002), and program slicing techniques to find all

program locations involved in type errors (Choppella, 2002; Haack and Wells, 2003;

Schilling, 2012; Tip and Dinesh, 2001; Kustanto and Kameyama, 2010). The discussion710

of technical and behavioral differences among disparate approaches is widely available

in Heeren (2005); Wazny (2006) and in our technical report of LT (Chen and Erwig,

2014a). We will therefore instead focus our discussion on the work most closely related

to our own, as well as that which was not covered by these summaries.

The most recent approaches to debugging type errors are Chen and Erwig (2014b),715

Zhang and Myers (2014), and Chen and Erwig (2014c). The idea of Chen and Erwig

(2014b) is to find all possible changes that would fix a given type error, and then to use

heuristics to order those changes according to likelihood of being correct. Although

that idea is potentially more powerful than LT, the approach does not offer the same

diversity as that between Helium and LT since it does not produce information about720

type annotations, making it a poor choice when exploring strategies for combining

diverse tools. The idea of Zhang and Myers (2014) is to generate a constraint graph

for type inference problems. Rather than reporting all constraint satisfaction errors,

however, Bayesian reasoning is applied to detect the most suspicious constraint, which

is then reported to the user. One downside of this approach is that errors are only725

reported in terms of constraint satisfaction problems, which is rather low level and

makes error messages quite difficult to understand. The approach described in Chen and

Erwig (2014c) extends the work in Chen and Erwig (2014b) by taking the programmer’s

31



intentions into account when producing change suggestions. These intentions are elicited

in the form of type annotations.730

Seminal (Lerner et al., 2007) takes the unique approach searching for a well-typed

program that is similar to the ill-typed one by creating mutations of the original pro-

gram and applying heuristics. This search-based approach is both an advantage and a

disadvantage. In some cases it is able to make correct change suggestions where other

tools fail, but is prone to exotic suggestions in others.735

Like LT, Johnson and Walz’s unification-based approach (Johnson and Walz, 1986)

also uses contextual information to help locate faults more accurately. While LT

resolves conflicts under the directive of ensuring the overall program is well-typed, their

approach uses “usage voting” to resolve conflicts, in which the most common successful

unification result is used.740

Erwig (2006) and Jung and Michaelson (2000) have employed visualization ap-

proaches to aid the understanding of the type inference process for users. Clerici et al.

(2014) presents a type inference system for the graphic language NiMo, which is a

visual language similar in some ways to Haskell.

Muşlu et al. (2012) investigated providing programmers with information about the745

consequences of suggested error fixes. In order to speculatively apply them, this work

relies on error suggestions having already been generated. Such an approach could be

used to supplement the suggestions LT provides users.

A number of previous works have shown success in combining multiple, complemen-

tary techniques or tools in order to utilize the strengths of both or to mitigate weaknesses.750

We present several such examples to demonstrate the breadth of areas in which such an

approach might be effective. Specht (1990) reviewed two complementary classification

techniques which share common decision boundaries but are most suitable in different

real world situations . Lawrence et al. (2006) used a probabilistic model based on actual

previous user behavior to combine feedback about spreadsheet faults. Much like with755

type checking, they found that combined approaches tended to outperform individual

approaches in the context of spreadsheets. Ceccato et al. (2006) presented a case study

of applying three different aspect mining techniques, allowing them to identify the

individual strengths of each. They also proposed a set of rules for combining them to

32



maximize effectiveness. Pelánek et al. (2008) compared techniques for reachability760

analysis with the explicit goal of finding complementary techniques.

Combined techniques have also been useful in dealing with digital media. Nagy et al.

(2000) developed both a top-down and bottom-up approach for analyzing documents,

suggested a likely inherently complementary nature between them, and mentioned that

a combination of the techniques was part of ongoing work. Song et al. (2005) proposed765

a video annotation algorithm which made use of multiple complementary predictors.

Finally, Tschannen et al. (2011) presented Eve, a development environment for

Eiffel2, which combined proof-based static verification techniques with random testing-

based dynamic techniques .

We have adopted a similar strategy and applied it to the domain of generating type770

error messages. In addition to identifying an effective combination (LT and Helium),

an additional contribution of our work is the extraction of general strategy-creation

techniques that can be applied to any combination of (type-)error reporting tools.

7. Conclusions

We have successfully improved the accuracy of two type-checking approaches by775

combining them into one tool. We did so by a careful analysis of the situations in which

the individual tools succeed or fail. Reflecting on this approach we have also identified

a general strategy for exploiting the diversity in tools.

In future work we plan to investigate the combination of other type debugging tools

and the refinement of the evaluation into more error categories. Additionally, we plan to780

investigate other general tool-combining strategies.

Acknowledgments

We thank Jurriaan Hage for sharing his collection of student Haskell programs with

us. We thank VL/HCC 2014 and JVLC reviewers for their constructive feedback. This

2www.eiffel.com

33

www.eiffel.com


work is supported by the National Science Foundation under the grants CCF-1219165785

and IIS-1314384.

Bibliography

Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. CRC

press, 1984.

Brown PJ. Error messages: The neglected area of the man/machine interface. Commun790

ACM 1983;26(4):246–9.

Burnett M. Types and type inference in a visual programming language. In: Visual

Languages, 1993., Proceedings 1993 IEEE Symposium on. 1993. p. 238–43.

Caliskan-Islam A, Harang R, Liu A, Narayanan A, Voss C, Yamaguchi F, Greenstadt

R. De-anonymizing programmers via code stylometry. In: 24th USENIX Security795

Symposium (USENIX Security 15). 2015. p. 255–70.

Ceccato M, Marin M, Mens K, Moonen L, Tonella P, Tourwé T. Applying and

combining three different aspect mining techniques. Software Quality Journal

2006;14(3):209–31. doi:path10.1007/s11219-006-9217-3.

Chen S, Erwig M. Better Type-Error Messages Through Lazy Typing. Technical Re-800

port; Oregon State University; 2014a. http://ir.library.oregonstate.edu/

xmlui/handle/1957/58138.

Chen S, Erwig M. Counter-Factual Typing for Debugging Type Errors. In: ACM

SIGPLAN-SIGACT Symp. on Principles of Programming Languages. 2014b. p.

583–94.805

Chen S, Erwig M. Guided Type Debugging. In: Int. Symp. on Functional and Logic

Programming. LNCS 8475; 2014c. p. 35–51.

Chen S, Erwig M, Smeltzer K. Let’s Hear Both Sides: On Combining Type-Error

Reporting Tools. In: IEEE Int. Symp. on Visual Languages and Human-Centric

Computing. 2014a. p. 145–52.810

34

http://dx.doi.org/10.1007/s11219-006-9217-3
http://ir.library.oregonstate.edu/xmlui/handle/1957/58138
http://ir.library.oregonstate.edu/xmlui/handle/1957/58138
http://ir.library.oregonstate.edu/xmlui/handle/1957/58138


Chen S, Erwig M, Walkingshaw E. Extending Type Inference to Variational Programs.

ACM Trans on Programming Languages and Systems 2014b;36(1):1:1–1:54.

Choppella V. Unification Source-Tracking with Application To Diagnosis of Type

Inference. Ph.D. thesis; Indiana University; 2002.

Clerici S, Zoltan C, Prestigiacomo G. Graphical and incremental type inference. a graph815

transformation approach. Higher-Order and Symbolic Computation 2014;:1–34.

Djang RW, Burnett MM, Chen RD. Static type inference for a first-order declarative

visual programming language with inheritance. Journal of Visual Languages &

Computing 2000;11(2):191 – 235.

Erwig M. Visual Type Inference. Journal of Visual Languages and Computing820

2006;17(2):161–86.

Erwig M, Walkingshaw E. The Choice Calculus: A Representation for Software

Variation. ACM Trans on Software Engineering and Methodology 2011;21(1):6:1–

6:27.

Haack C, Wells JB. Type error slicing in implicitly typed higher-order languages. In:825

European Symposium on Programming. 2003. p. 284–301.

Hage J. Helium benchmark programs, (2002-2005). Private communication; 2013.

Hage J, van Keeken P. Neon: A library for language usage analysis. In: Software

Language Engineering. volume 5452 of Lecture Notes in Computer Science; 2009. p.

35–53.830

Hartmann B, MacDougall D, Brandt J, Klemmer SR. What would other programmers

do: Suggesting solutions to error messages. In: ACM SIGCHI Conf. on Human

Factors in Computing Systems. 2010. p. 1019–28.

Heeren BJ. Top Quality Type Error Messages. Ph.D. thesis; Universiteit Utrecht, The

Netherlands; 2005.835

35



Johnson GF, Walz JA. A maximum-flow approach to anomaly isolation in unification-

based incremental type inference. In: ACM Symp. on Principles of Programming

Languages. 1986. p. 44–57.

Jung Y, Michaelson G. A visualisation of polymorphic type checking. Journal of

Functional Programming 2000;10:57–75.840

Kustanto C, Kameyama Y. Improving error messages in type system. Information and

Media Technologies 2010;5(4):1241–54.

Lawrence J, Abraham R, Burnett MM, Erwig M. Sharing Reasoning about Faults in

Spreadsheets: An Empirical Study. In: IEEE Int. Symp. on Visual Languages and

Human-Centric Computing. 2006. p. 35–42.845

Lee O, Yi K. Proofs about a folklore let-polymorphic type inference algorithm. ACM

Trans on Programming Languages and Systems 1998;20(4):707–23.

Lee O, Yi K. A Generalized Let-Polymorphic Type Inference Algorithm. Technical

Report; Technical Memorandum ROPAS-2000-5, Research on Program Analysis

System, Korea Advanced Institute of Science and Technology; 2000.850

Lerner B, Flower M, Grossman D, Chambers C. Searching for type-error messages.

In: ACM Int. Conf. on Programming Language Design and Implementation. 2007. p.

425–34.

McAdam BJ. Repairing type errors in functional programs. Ph.D. thesis; University of

Edinburgh. College of Science and Engineering. School of Informatics.; 2002.855

Milner R. A theory of type polymorphism in programming. Journal of Computer and

System Sciences 1978;17:348–75.

Muşlu K, Brun Y, Holmes R, Ernst MD, Notkin D. Speculative analysis of integrated

development environment recommendations. In: Proceedings of the ACM Int. Conf.

on Object Oriented Programming Systems Languages and Applications. 2012. p.860

669–82.

36



Nagy G, Kanai J, Krishnamoorthy M, Thomas M, Viswanathan M. Two complementary

techniques for digitized document analysis. In: ACM Conf. on Document Processing

Systems. ACM; 2000. p. 169–76.

Narayanan A, Paskov H, Gong NZ, Bethencourt J, Stefanov E, Shin ECR, Song D. On865

the feasibility of internet-scale author identification. In: Proceedings of the 2012

IEEE Symposium on Security and Privacy. SP ’12; 2012. p. 300–14.

Nienaltowski MH, Pedroni M, Meyer B. Compiler error messages: What can help

novices? In: ACM SIGCSE Symp. on Computer Science Education. 2008. p. 168–72.

Pelánek R, Rosecký V, Moravec P. Complementarity of error detection techniques.870

Electronic Notes in Theoretical Computer Science 2008;220(2):51–65.

Schilling T. Constraint-free type error slicing. In: Trends in Functional Programming.

Springer; 2012. p. 1–16.

Song Y, Hua XS, Dai LR, Wang M. Semi-automatic video annotation based on active

learning with multiple complementary predictors. In: ACM SIGMM Int. Workshop875

on Multimedia Information Retrieval. ACM; 2005. p. 97–104.

Specht DF. Probabilistic neural networks and the polynomial adaline as complementary

techniques for classification. IEEE Trans on Neural Networks 1990;1(1):111–21.

Tip F, Dinesh TB. A slicing-based approach for locating type errors. ACM Trans on

Software Engineering and Methodology 2001;10(1):5–55.880

Tschannen J, Furia C, Nordio M, Meyer B. Usable verification of object-oriented

programs by combining static and dynamic techniques. In: Software Engineering

and Formal Methods. 2011. p. 382–98.

Wand M. Finding the source of type errors. In: ACM Symp. on Principles of Program-

ming Languages. 1986. p. 38–43.885

Wazny JR. Type inference and type error diagnosis for Hindley/Milner with extensions.

Ph.D. thesis; The University of Melbourne; 2006.

37



Yang J. Explaining type errors by finding the source of a type conflict. In: Trends in

Functional Programming. Intellect Books; 2000. p. 58–66.

Yang J, Michaelson G, Trinder P, Wells JB. Improved type error reporting. In: Int.890

Workshop on Implementation of Functional Languages. 2000. p. 71–86.

Zhang D, Myers AC. Toward General Diagnosis of Static Errors. In: ACM Symp. on

Principles of Programming Languages. 2014. p. 569–81.

38


	Introduction
	Lazy Typing and Helium
	Evaluation of Lazy Typing and Helium
	Evaluation Programs
	Error Message Categories
	Results of Individual Tools

	Integrating Lazy Typing and Helium
	Completing the first strategy
	Refined rules for an improved strategy

	General Strategies for Combining Tools
	Related Work
	Conclusions

