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Abstract
Spreadsheets are the most popular programming systems
in use today. Since spreadsheets are visual, first-order func-
tional languages, research into the foundations of spread-
sheets is therefore a highly relevant topic for the principles
and, in particular, the practice, of declarative programming.

Since the error rate in spreadsheets is very high and since
those errors have significant impact, methods and tools that
can help detect and remove errors from spreadsheets are
very much needed. Type systems have traditionally played
a strong role in detecting errors in programming languages,
and it is therefore reasonable to ask whether type systems
could not be helpful in improving the current situation of
spreadsheet programming.

In this paper we introduce a type system and a type infer-
ence algorithm for spreadsheets and demonstrate how this
algorithm and the underlying typing concept can identify
programming errors in spreadsheets. In addition, we also
demonstrate how the type inference algorithm can be em-
ployed to infer models, or specifications, for spreadsheets,
which can be used to prevent future errors in spreadsheets.

Categories and Subject Descriptors F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs—
Type Structure; H.4.1 [Information Systems Applications]:
Office Automation—Spreadsheets

General Terms Languages, Design

Keywords Type Inference, Templates, End-User Soft-
ware Engineering

1. Introduction
Functional programming is by far the most popular pro-
gramming paradigm, one could argue, considering that
spreadsheets, which are (first-order) functional programs
[32], are the most widely used programming systems in the
world. It is estimated that each year tens of millions of
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professionals and managers create hundreds of millions of
spreadsheets [31]. The popularity of spreadsheet does, how-
ever, not tell much about their reliability. In fact, many
studies have shown that existing spreadsheets contain many
errors [8, 25, 31]. Some estimates even even suggest that 90%
or more of real-world spreadsheets contain errors [35]. More-
over, many of these errors have significant impact, causing
business losses in the billions [21, 17].

This observation seems to be in stark contrast to some
of the claims of functional programming advocates, for ex-
ample, that functional programs are more reliable than, for
example, imperative programs, and contain fewer errors.
However, a closer look reveals that the increased reliabil-
ity of functional programs is achieved, at least to some de-
gree, through a cleaner language design, offering powerful
abstractions, such as higher-order functions, and through
sophisticated type systems that help to detect program er-
rors early.

Unfortunately, spreadsheets lack both, which might be
one of the reasons for the high error incidence. Therefore,
a strategy to significantly improve the reliability of spread-
sheets could be to add (a) higher-order programming con-
structs and/or (b) a type system to spreadsheets. The first
approach is questionable because no convincing proposals
for visual representations of higher-order functions, suit-
able for end users, have been made to date, and simply
adding a textual layer on top of spreadsheets impacts their
highly attractive visual interface with its immediate feed-
back [22, 26, 28, 24]. The second approach seems to be more
promising. In fact, there have been several proposals for type
systems for spreadsheets that are based on labels that users
place in spreadsheets.

In [16] we have introduced a type system for spreadsheets
that is based on the idea to associate cells with so-called
units, which are given by labels users have used in the
spreadsheet. Other research has been built on this idea
[6, 11], demonstrating that unit reasoning can give valuable
information about a spreadsheet and possible errors in it.
We have implemented these ideas together with algorithms
for automatic header inference (the process of identifying
relationships between cells and labels) in a system called
UCheck [1]. The rationale for the unit approach is to be
able to communicate errors to end users in a form that
they understand, that is, in terms of units/labels that they
themselves are using in their spreadsheets and not in terms
of abstract type system jargon [3].

In contrast, type systems in the traditional sense have not
been considered before for spreadsheets. The reason might
be that due to the lack of polymorphism1 and higher-order

1 Although, as we will see, references do have polymorphic types.



types, those type systems seem to be ridiculously simple and
not worth being investigated at all.

However, as we will demonstrate in this paper, non-trivial
typing concepts can be identified for formulas, cells, and
spreadsheets, and type systems and type inference can con-
tribute significantly to improving the reliability of spread-
sheets. We will consider, in particular, the following two ap-
plications.

• Identifying errors in spreadsheets. This is the classical
motivation for type systems. In the case of spreadsheets,
a surprising variety of errors can be detected using type
inference.

• Providing more accurate model inference. Model infer-
ence is concerned with identifying a general model of
which a particular spreadsheet is an instance. Knowl-
edge of a spreadsheet’s model can help to identify errors
in the current spreadsheet, but maybe even more impor-
tant, it can be exploited to prevent a large class of errors
in future versions of the spreadsheet [14, 5, 15].

The essential ideas of our approach to defining a type system
for spreadsheets can be summarized as follows. First, we
define the type of formulas as function types, in which the
argument types are given by the types that are expected for
the formula’s external references. The result type is given by
the result type of the outermost operation. Second, we define
a cell type as a pair consisting of the cell formula’s result
type and a mapping from its referenced cells to possible type
conflicts, which are given by pairs of expected and actually
found types. Third, extending cell types to spreadsheets
leads to spreadsheet types that give a detailed overview
of the type correctness in different parts of a spreadsheet.
Finally, we define template types as a kind of “encoding”
of spreadsheet types that can summarize large spreadsheet
types succinctly.

In addition to the type system, we also present a type
inference algorithm to compute template types. This algo-
rithm is a generalization of an algorithm that we have de-
veloped in a different context to infer spreadsheet models
[4]. The algorithm is parameterized by an equivalence re-
lationship on cells. This approach allows us to instantiate
different template inference algorithms by choosing different
cell equivalences, which enables the comparison of different
kinds of templates to represent spreadsheet models. In par-
ticular, using the concept of cell type equivalence leads to the
inference of most general template types for spreadsheets.
An obvious use of these template types is to report type er-
rors in the spreadsheet. In addition, template types can be
used in conjunction with a syntactic notion of spreadsheet
templates [4] to support the inference of spreadsheet models.
A more accurate description of spreadsheet models based on
type equivalence leads, in particular, to a better understand-
ing of spreadsheets to prevent errors (by enforcing models
through techniques and tools described in [14, 5, 15]).

The rest of this paper is structured as follows. In Sec-
tion 2 we will discuss related work. In Section 3 we will
illustrate several kinds of errors that are common in spread-
sheets, and we will briefly review a previous approach to pre-
vent errors through a template-driven program-generation
approach. This work provides the motivation for the second
contribution of the type inference algorithm, namely the in-
ference of more accurate templates. In Section 4 we will
introduce a simple model of spreadsheets as programs and
give syntax and semantics. The spreadsheet type system is
then introduced in a series of steps in Section 5, followed by

a description of the type inference algorithm in Section 6. In
fact, the type inference algorithm is presented as an instance
of a more general pattern inference algorithm that can be
used for different purposes. We will analyze the possible im-
pact of the type system and the type inference algorithm in
Section 7. In particular, we will revisit the examples given in
Section 3 and illustrate how the proposed system can help
with the described errors. Conclusions given in Section 8
complete this paper.

2. Related Work
Many researchers have looked at errors in programs devel-
oped by novice programmers [41, 40, 12]. Even though the
benefits of type systems are widely accepted, not many stud-
ies have been carried out to test or compare the usability
of type systems in general-purpose programming languages.
Empirical studies have demonstrated the defect-detection
capabilities of static type checking [20, 33]. Even though
spreadsheets are among the most widely used programming
systems [39], spreadsheets systems like Microsoft Excel do
not carry out type checking on spreadsheet formulas.

In previous work, we have developed a system called
UCheck [1] that uses the labels within the spreadsheet to
carry out so called unit checking [16] of the spreadsheet for-
mulas. In the first step of this two-step process of automatic
consistency checking, the system infers the labels automati-
cally and assigns units to the input cells on the basis of the
inferred labels. UCheck then checks the formulas to ensure
that formulas that violate the rules for valid combination
of units (as defined in [16]) are flagged as potential sites of
faults. The perceived advantage of this approach was that
it would be easier for users to understand the errors in the
spreadsheet if the labels they themselves had entered were
used while reporting the errors. Approaches that use explicit
header annotations entered by the user have been presented
in [6, 11]. Checking of spreadsheet formulas based on the
actual physical or monetary units has been presented in [7].
Evaluations carried out using these systems (as reported in
the papers) have shown that these techniques are effective
at detecting faults within spreadsheets.

Spreadsheet errors could be the result of any one of the
following.

1. Poor understanding of the problem domain.

2. Errors from poor implementation of a solution.

3. Combinations of varying degrees of the two preceding
factors.

To help users overcome these problems, we have developed
a system that uses spreadsheet templates created using
the Visual Template Specification Language (Vitsl) [5] to
generate spreadsheets free from reference, range, or type
errors [14, 15]. The advantage of this approach is that the
templates could be created and verified by domain experts
and used by less experienced users to generate spreadsheets
that always conform to the template. We have also looked
at more expressive specification languages for spreadsheets
[13] and have developed a system that allows users to extract
Vitsl templates from their legacy spreadsheets [4].

Researchers have also proposed guidelines for designing
better spreadsheets so development and maintenance tasks
can be carried out with lower risk of introducing errors [36,
42, 23, 34]. However, such techniques are difficult to enforce
and involve the cost of training the user. It has also been
shown that code inspection and auditing of spreadsheets



[29, 38, 27] fail to detect all the faults. As a matter of fact,
it has been shown that group code inspection detects up to
83% of the faults versus an error detection rate of 63% for
individual code inspection. Since the users do not get any
feedback about the correctness of their spreadsheets after
carrying out code inspection or auditing, they come away
overconfident that their spreadsheets are error free [30].

The “What You See Is What You Test” (WYSIWYT)
approach presented in [37] helps users test spreadsheets.
The system uses data-flow adequacy and coverage criteria
to give the user feedback on how well tested the spreadsheet
is. The “Help Me Test” (HMT) system [19] automatically
generates test cases for the spreadsheet the user is working
on. The Forms/3 system, of which WYSIWYT and HMT
are components, also allows users to define assertions on
the expected values within cells [9]. The system propagates
these assertions forward and computes the assertions for the
output cells. The system warns the user if system-generated
and user-specified assertions do not agree or if any assertion
is violated by values in cells.

To minimize the number of errors that could be intro-
duced during formula edits, we have developed a spreadsheet
debugger, called GoalDebug, that allows users to mark cells
with incorrect outputs and specify the expected output [2].
The GoalDebug system then generates a list of change sug-
gestions, any one of which when applied would result in the
expected output being computed in the marked cell. We use
a set of heuristics to rank the generated change suggestions
before presenting them to the user.

3. Example
An example spreadsheet, which is used to keep track of stu-
dent scores in a course, is shown in Figure 1. For illustration
purposes, this spreadsheet has been seeded with many er-
rors. However, it is difficult to determine the faults in the
spreadsheet just by looking at the values. This view, which
displays the values, is the default in Excel and other spread-
sheet systems, and it is difficult to identify cells with errors
just by looking at the spreadsheet. The task is complicated
even further in the case of large spreadsheets, especially if
the person inspecting the spreadsheet for errors is not very
clear about the specifications for the spreadsheet.

Figure 1. Grade spreadsheet containing errors.

3.1 Spreadsheet Errors

The grade spreadsheet from Figure 1 is shown with the
formula view enabled in Figure 2. In the formula view, for
this simple and small spreadsheet the errors are relatively
easy to spot. We discuss them briefly since they reflect errors
that are often present in real-world spreadsheets.

The percentage score for each student for an assignment
is to be computed by dividing the student’s score by the

total points on the assignment. The total points on the
assignments one, two, and three are the values in cells B2,
D2, and F2, respectively. The overall average scores for Ben
and Lisa are incorrect because the formulas in H2 and H3
omit the percentage scores for Assignment 3. Such omission
errors can easily occur since the user has to manually update
the formulas for the overall averages every time the scores
for a new assignment are added to the spreadsheet. The
formulas in E3, E5, E6, and G6 have incorrect references in
them.

The formulas in column I assign a final grade to each
student for the course. Students with an overall average
score over 69% pass the course, that is, they get a “P”.
Otherwise they fail the course, that is, they get an “F”.
Some of the errors seeded in column I might seem contrived,
but it is actually very easy to introduce these kinds of errors
into a spreadsheet by unintended cell editing actions. The
formula IF(H3*100>69,“P”,“F”), in I3, is the only correct one
in the column. Ben gets a “P” on the course since his overall
average score is 95%, which is well above the 69% required
to get a “P”. The formula in I4 simply has a reference to H4
instead of a condition in the IF statement. While the output
“P” is correct in this particular case since Lisa’s overall
average score in H4 is 91%, the formula would also assign
Lisa a “P” grade for all non-zero values, including negative
numbers, in H4. The condition in the IF statement in I5
checks if the string “P” is greater than the number computed
in H5. Since strings are always greater than numbers in
Excel, the condition evaluates to true and Sue is assigned
the same grade as Lisa because of the reference to I4 in
the THEN branch of the formula. So Sue gets a “P” despite
scoring only 60% on the course. The condition in the IF
statement in I6 checks if the output number in H6 is greater
than the string “Average” in H2. As in the previous case,
since strings in Excel are always greater than numbers, the
condition evaluates to false, and Ken gets an “F” on the
course.

The formulas in J are meant to compare each student’s
overall average score against the overall average score of the
entire class (this score is computed by the formula in H7).
The expected output is “Above” if the student’s score is
above the class average and “Below” otherwise. Only the
formula in J3 meets this requirement, the formulas in J4, J5,
and J6, compare the student’s scores with the empty cells H8,
H9, and H10 respectively. All these mistakes could have been
introduced easily through the auto-updating of cell formulas
during copy-paste or formula-drag. All these comparisons
return true and the formulas result in “Above”. Obviously,
not all students can be have scores that are above the class
average.

Quite a few of the errors discussed above would be de-
tected by a rudimentary type checker. For example, a type
checker would report the cases in which the condition in the
IF statement is not evaluating to a boolean value. Moreover,
a type checker would also detect the cases in which dissimi-
lar types are being compared in a condition. For example, a
type checker would report an error in the condition compar-
ing a string and a number in the formula in I5, and a number
and a blank cell (which has the type Undef in our system) in
the formula in J4. These are just some simple cases in which
typing would be helpful. We look at this aspect in greater
detail in Section 7.



Figure 2. Grade spreadsheet in formula view.

3.2 ViTSL/Gencel Approach to Safe Spreadsheets

Two aspects of the work reported in this paper become clear
from the example of the grade spreadsheet. First, due to the
absence of systematic error-checking tools in Microsoft Ex-
cel, errors are insidious and difficult to detect and correct.
Second, especially in the case of large spreadsheets, it be-
comes more and more difficult to understand the underlying
model (or specification) of a spreadsheet. These problems
could potentially severely limit a user’s ability to audit or
even make modifications to a spreadsheet.

In the Vitsl/Gencel approach described in [14], the user
would work with a Vitsl template [5] designed by a domain
expert. In the case of a grade sheet, a teacher with a working
knowledge of spreadsheets could be considered a domain
expert. The Vitsl template for the grade sheet is shown
in Figure 3.

Figure 3. Vitsl template for the grade sheet.

The user can load the template into the Gencel system
[14], which generates the first instance of the spreadsheet
shown in Figure 4.

Figure 4. Gencel instance of the grade template.

The user can then use the customized insert/delete
row/column operations provided by Gencel to build the
spreadsheet. The advantage of this approach is that the
system performs all the formula updates automatically so
that any instance of the grade spreadsheet generated using
Gencel would conform to the specifications expressed as the
Vitsl template. Given an error-free Vitsl template, the
user only needs to ensure that the values in the input cells
are correct, and the system guarantees [15] protection from
reference, range, and type errors in all generated instances
of the grade spreadsheet.

To enable spreadsheet users to extract templates from
their existing spreadsheets, we have developed the Parcel
system described in [4], which uses cp-similarity. Two cells
are cp-similar if their formulas could have resulted from a
copy/paste action from one of the cells to the other. The
template that is automatically inferred from an error-free
version of the grade spreadsheet is shown in Figure 5.

Figure 5. Automatically inferred template for the grade
sheet.

The cells that are shaded light blue (A3, D3:F3) can re-
peat vertically, those shaded pink (B1:C2, B4:C4) can repeat
horizontally, and those are shaded purple (B3:C3) can repeat
both vertically and horizontally.

4. A Formal Model of Spreadsheet
Programs

A spreadsheet is given by a collection of formulas and
values embedded into a spatial structure. In most cases this
spatial structure is a rectangular grid, whose elements can
be addressed by pairs of integers. We can define the set of
addresses as A = IN × IN and use a to range over A. Not
only are formulas embedded into the spatial structure, they
can also refer to other formulas through cell addresses. In
general, we can distinguish between relative and absolute
addresses. While absolute addresses can be represented by



elements a ∈ A, relative references are given by offsets δ ∈ ∆
where ∆ = ZZ× ZZ. In most real-world spreadsheet systems
combinations of the two addressing modes are also possible.
For simplicity we consider in this paper only formulas that
contain relative references. Formulas are defined by the
following grammar.

f ∈ F ::= v | δ | ω(f, . . . , f) formulas

Values (v ∈ V ) include numbers, booleans, and strings,
whereas operations (ω) include binary operations, aggrega-
tions, etc.

The given definition of formulas makes the concept of cp-
similar cells simple: Two formulas are cp-similar if and only
if they are equal.

A spreadsheet can be regarded as a partial function that
maps cell addresses to formulas.

S : A→ F spreadsheets

An element (a, f) ∈ S is called a cell. We use the notation
CS(a) = (a, S(a)) to yield the cell (that is, address together
with the formula) stored at address a in the spreadsheet S.
Two cells are cp-equivalent if the stored formulas are, that
is, any two cells (a, f) and (a′, f) are cp-equivalent.

The evaluation of a cell (a, f) in the context of a spread-
sheet is denoted by [[(a, f)]]S and is defined as follows.

[[(a, v)]]S = v
[[(a, δ)]]S = [[CS(a + δ)]]S
[[(a, ω(f1, . . . , fn))]]S = [[ω]]([[(a, f1)]]S , . . . , [[(a, f1)]]S)

In the above definition [[ω]] refers to the function denoted by
the predefined operation ω. The semantics of cells containing
formulas with circular references is undefined. Finally, the
semantics of a spreadsheet S is simply given by the semantics
of its cells, that is, [[S]]S = {(a, [[(a, f)]]S) | (a, f) ∈ S}.

5. A Type System for Spreadsheets
In this section we introduce typing concepts for the different
elements of a spreadsheet. In particular, we will consider
a particular form of typing judgments for formulas and
cells that allows a fine-grained typing of spreadsheets by
recording individual type violations on the cell level.

The type system is layered into multiple levels. The
following table provides an overview and serves as a roadmap
through this section.

Objects Types
1 values & operations (v, ω) base types (α, β)
2 formulas (f) formula types (φ)
3 cells (c) cell types (γ)
4 spreadsheets (S) spreadsheet types (σ)
5 spreadsheets template types (τ)

The table indicates that we will introduce two kinds of types
for spreadsheets: spreadsheet types and template types.

5.1 Typing of Values and Operations

The first level of the spreadsheet type system assigns base
types to values and function types to operations. Therefore,
we use the following definition of basic types (β), which
include types for constants (α).

α ∈ T ::= Num | String | Bool | Undef constant types
β ::= α | α× . . .× α→ α base types

By using α in the type for operations, we effectively restrict
the model to first-order operations. Although this restriction
is not essential, it reflects the reality of spreadsheets.

We assume that the judgments v : α and ω : β are given
for all predefined values and operations.

5.2 Typing of Formulas

We could define typing rules for formulas that simply yield
the return type of a formula’s outermost operation. In this
case, references in formulas have to be type checked by
determining the types of the formulas or values that are
contained in the referenced cells.

Alternatively, we can also initially consider the type of a
formula separately from its embedding into a spreadsheet,
which allows us to consider type error situations in more de-
tail. In this case, the references of a formula are paired with
the corresponding argument types of the operations which
contain them. This information about expected types of ref-
erenced cells is called a type expectation and is represented
by a mapping from addresses to constant types.

Γ : ∆→ α type expectation

The type of a formula is given by its result type and a type
expectation Γ.

φ ::= Γ⇒α formula types

The double arrow in the syntax for formula types indicates
that the result type is dependent on the type expectation.
We need the following operation to combine type expecta-
tions.

Γ⊕ Γ′ =


Γ ∪ Γ′ if Γ(δ) = α ∧ Γ′(δ) = α′ =⇒ α = α′

⊥ otherwise

Now we can define in Figure 6 the judgment f |α � Γ that
produces a type expectation for the references contained in
formula f that is expected to have result type α.

Val�
v : α

v|α � ∅

Ref�

δ|α � {(δ, α)}

Fml�
ω : α1 × . . .× αn → α

fi|αi � Γi Γ1 ⊕ . . .⊕ Γn 6= ⊥
ω(f1, . . . , fn)|α � Γ1 ⊕ . . .⊕ Γn

Figure 6. Deriving type expectations.

Note that the rules in Figure 6 ensure that formulas are
well typed in their use of values and operations.

Next we can define the type of formulas through the
judgment f : φ. Note that Γ records the types required for
the references contained in f and α is f ’s result type. The
rules are shown in Figure 7. The overloading of the “:”
symbol in the typing notation is not problematic since the
difference can always be told from the type of participating
type arguments (that is, α and β for predefined types and
φ for formula types).

The typing rule Ref: indicates that references are actu-
ally polymorphic.

We define that a formula f is type correct if a derivation
exists for the judgment f : φ. Two formulas f and f ′ are
type equivalent if they are well typed and have the same
type, that is:

∃φ : f ↔φ f ′ ⇐⇒ f : φ ∧ f ′ : φ

Since cp-similarity means equality of formulas, it follows di-
rectly that two cp-equivalent formulas are also type equiva-



Val:

v : α

v : ∅⇒α

Ref:

δ : {(δ, α)}⇒α

Fml:

ω : α1 × . . .× αn → α ω(f1, . . . , fn)|α � Γ

ω(f1, . . . , fn) : Γ⇒α

Figure 7. Typing rules for formulas.

lent. In other words, cp-equivalence of formulas is a strictly
stronger criterion than type equivalence of formulas.

Lemma 1. f = f ′ =⇒ ∃φ : f ↔φ f ′

Note that cp-similarity is a sufficient, but not a necessary
condition for type equivalence of formulas. For example, 3
and 4 are type equivalent, but not cp-equivalent.

This result seems to indicate that type equivalence can-
not really contribute anything new (beyond what is already
known from cp-similarity) to the semantic analysis of for-
mula relationships. However, the situation will be quite dif-
ferent when we consider in the next section the types of
formulas that are embedded in spreadsheets.

5.3 Typing of Cells

When we consider a cell c = (a, f) that contains a type-
correct formula of type Γ⇒α, then c is type correct in the
context of S only if the references in f refer to cells that
have the types as required by Γ, that is,

Γ(δ) = α =⇒ S(a + δ) : α

Correspondingly, if this condition is violated, the cell is not
type correct and contains one or more type errors at the
offending referenced cells. Now we could define the type of a
spreadsheet to be a mapping from addresses to base types,
and we could simply define a rule system that succeeds only
if all cells are type correct. However, this approach seems
to be too rigid, because in cases where most cells except a
few are type correct, it would be interesting to know where
those type violations occur. Thus the goal should be to define
spreadsheet types and a corresponding rule system in a way
that they can provide feedback to that effect.

Therefore we define a spreadsheet type more generally to
be a mapping from addresses to types and type mismatches,
where a type mismatch is simply given by a pair of different
constant types (α, α′) that expresses that a cell contains a
value or formula whose result is of type α but is used in some
other formula that expects a value of a different type α′. A
type mismatch is always associated with two addresses a and
a′ that contain formulas which “produce” α and “consume”
α while expecting α′, respectively. Recognizing that a pair
(a, α) represents a “type cell” (as opposed to a value or
formula cell), we call a pair of type cells ((a, α), (a′, α′)) a
cell type conflict, or just type conflict for short.

We can look at a type conflict from two different perspec-
tives. First, we could regard α as violating the expectation
or assumption α′ in the formula stored at a′. On the other
hand, the reference to a could be wrong or a different func-
tion should be used in the formula stored at a′ to make
correct use of the α value in a. Consequently, a type conflict
can point to two different possible sources of errors, that is,
the error could either be in a, which means the formula in a′

correctly expects a value at a of type α′, or the error could

be in a′, which means the type α for a is correct and the
formula in a′ contains a wrong function or a wrong reference
to a.

Since type conflicts form a many-to-many binary rela-
tionship on type cells, we have principally two possibili-
ties of how to represent and report them in a spreadsheet.
First, we could group with respect to a, that is, report
all cells (a1, α1), . . . , (an, αn) that expect a different type
than α for a. This approach amounts to what we could
call identifying downstream type violations. Alternatively, we
could also group with respect to a′, that is, report all cells
(a1, α1), . . . , (an, αn) that yield a different type than is ex-
pected by Γ (assuming that S(s) : Γ⇒α′). This approach
identifies upstream type violations.

Both of these approaches have their merits and could
actually be formalized and implemented to give valuable
feedback to a spreadsheet user. In the following we focus
on upstream type violations since this view supports the
identification of template types and the comparison of type-
based templates with a notion of templates that is based
purely on the syntactic structure of formulas.

An upstream type violation for a cell a′ can be repre-
sented by a mapping from addresses to type mismatches
(that is, pairs of expected and actually found types).

V ∈ V = A→ T × T upstream type violations

Only pairs of different types should be part of a type vio-
lation. The following function eliminates pairs of the form
(α,α) from a mapping V . This function will be used in Fig-
ure 8.

|V | = {(a, (α, α′)) ∈ V | α 6= α′}
Now a cell type is given by constant type and a type viola-
tion. We use the γ to range over cell types.

γ ∈ C ::= (α, V ) cell types

The typing rules for cells given in Figure 8 define the
judgment S . a : γ that expresses that an individual cell
CS(a) has the cell type γ. The cell typing rule determines the
type of a formula f at address a and the cell types (α′

i, Vi)
of all cells that are referenced by f . For each referenced
cell, a possible type violation is considered by forming the
pair (αi, α

′
i) where αi is the type expected for reference ai.

Application of the function | · | ensures that only true type
violations will remain in the constructed cell type for a.

Undef.

a /∈ dom(S)

S . a : (Undef, ∅)

Cell.

S(a) : {. . . , (δi, αi), . . .}⇒α S . a + δi : (α′
i, Vi)

S . a : (α, |{. . . , (a + δi, (αi, α
′
i)), . . .}|)

Figure 8. Typing rule for cells.

Now a cell (a, f) is said to be type correct (in S) if its
formula is type correct, and if its type violation is empty,
that is, if S . a : (α, ∅).

Note that this definition captures a “local” notion of type
correctness for one cell because rule Cell. ignores possible
type violations in the referenced cells (we only check each
result type α′

i). We could also define the notion of transitive
type correctness, which requires that in addition to the cell
(a, f) all referenced cells also have to be type correct. This



concept could be used to identify connected type correct
regions in a spreadsheet. However, these considerations do
not contribute to the results of this paper and are therefore
not considered any further.

5.4 Typing of Spreadsheets

Spreadsheet types are given by mappings from addresses to
cell types.

σ : A→ C spreadsheet types

The typing rule for spreadsheets is given in Figure 9. It
defines the judgment . S : σ expressing that the spreadsheet
S has the spreadsheet type σ. The rule determines the
cell types for all cells in S and assigns a corresponding
spreadsheet type to S.

Sheet.

dom(S) = {a1, . . . , an} S . ai : γi

. S : {(a1, γ1), . . . , (an, γn)}

Figure 9. Typing rule for spreadsheets.

Now we can see that two cells containing the same for-
mula might differ with regard to their type correctness since
their embedding at two different places in a spreadsheet
might cause different cells with different types to be ref-
erenced.

We can define that two cells are upstream type equivalent
in a spreadsheet S if they have the same cell types in S.

(a1, f1)↔γ (a2, f2) ⇐⇒ S . a1 : γ ∧ S . a2 : γ

Since we do not consider downstream type equivalence any
further, we also simply speak of type equivalence when
we actually mean upstream type equivalence. We can now
reconsider the result of Lemma 1. Even though two cp-
similar formulas are type equivalent, the same does generally
not hold for two cp-similar cells. Consider, for example, the
following spreadsheet.

S = {(A1, 3), (B1, True), (A2, not (0,-1)), (B2, not (0,-1))}
Although the formulas in A2 and B2 are cp-similar, the cells
(A2, not (0,-1)) and (B2, not (0,-1)) are not type equivalent
because:

• S . A2 : (Bool, {(A1, (Bool, Num))} and
• S . B2 : (Bool, ∅)

5.5 Typing of Templates

If we consider a spreadsheet type, we can observe in many
cases that large cell areas will have the same type. This
will be particularly the case for large, regularly structured
spreadsheets (that contain few type errors). The type of
these spreadsheets can be described more concisely by con-
densing areas of repeating types into a constant-size type
information. This approach is similar to representing the
type of the list [2,3,1,7,4] by a type [Int] instead of Int Int Int
Int Int.

Instead of a mapping from addresses to cell types, a
spreadsheet type can also be viewed as a sequence of column
types where each column is a sequence of cell types. In this
representation, a sequence of one and the same type, say
Num . . . Num can be compressed to {Num} similarly to the
list example shown above. Since repetitions in spreadsheets
do not only occur on the cell level, but in general on groups
of cells, we extend the repeating concept to a group of types.

Therefore, we can view the type of a spreadsheet as a
sequence of single column types and repeating groups of
column types where a column type is a sequence of single
cell types and repeating groups of cell types. This idea is
captured in the following abstract grammar.

κ ::= γ | {γ . . . γ} | κκ column types
τ ::= dκe | {dκe . . . dκe} | ττ template types

The goal of template types is to provide a succinct, con-
densed representation of spreadsheet types by identifying
repeated groups of types in columns and rows. We intro-
duce some notations to be able to describe the typing rules
concisely. First, a sequence of cell types is written as γ̄. We
use the same notation for sequences of column types (κ̄) and
sequences of template types (τ̄). The maximum column in
a spreadsheet is obtained by

−→
S = max{i | (i, j) ∈ dom(S)}.

In the definition of the typing rules we use the following ab-
breviation that allows us to extract the list of cell types for
one particular column k.

σdke = σ(k, 1) . . . σ(k, n) where n =
−→
S

We will later re-use the same notation to refer to all cells in
a particular column of a spreadsheet (that is, Sdke).

The rules shown in Figure 10 allow to express spread-
sheet types as possibly compressed nested sequences of col-
umn and cell types, captured by the judgment `S : τ . The
first rule Sheet` extracts the column types from the type
inferred for a spreadsheet and reformulates it as a template
type simply given by the sequence of the columns. The rule
Ver` initiates the compression of sequences of cell types:
When two identical sequences of cell types γ̄ that directly
follow each other can be found in any column, they can be
represented as a repeating group {γ̄}. The rule Ver*` al-
lows the continued reduction of cell sequences into already
created repeating groups. The rules Hor` and Hor*` per-
form the same kind of compression as Ver` and Ver*`,
only that they allow the grouping of sequences of columns.

Sheet`
. S : σ σd1e = κ1 . . . σdne = κn

−→
S = n

`S : dκ1e . . . dκne

Ver`
`S : τ1 . . . dγ̄1γ̄γ̄γ̄2e . . . τn

`S : τ1 . . . dγ̄1{γ̄}γ̄2e . . . τn

Ver*`
`S : τ1 . . . dγ̄1{γ̄}γ̄γ̄2e . . . τn

`S : τ1 . . . dγ̄1{γ̄}γ̄2e . . . τn

Hor`
`S : τ̄1τ̄ τ̄ τ̄2

`S : τ̄1{τ̄}τ̄2

Hor*`
`S : τ̄1{τ̄}τ̄ τ̄2

`S : τ̄1{τ̄}τ̄2

Figure 10. Typing rules for templates.

The purpose of template types is to summarize the essen-
tial type structure of a spreadsheet by identifying and com-
pressing repeating groups of cell and column types. There-
fore, we can expect that many different spreadsheet types
can be compressed into one and the same template type.
We can formalize this idea by defining, based on the tem-
plate typing rules, when a spreadsheet type σ is an instance
of a template type τ .

σ ≺ τ ⇐⇒ ∃S such that . S : σ ∧ `S : τ

Based on this concept of template type instance, we can
define a partial ordering on templates to express when a



template τ is more general than a template τ ′.

τ v τ ′ ⇐⇒ (σ ≺ τ ′ =⇒ σ ≺ τ)

6. Type Inference Through Pattern
Inference

As discussed in Section 3.2, automatic inference of templates
from spreadsheets makes it easier for users to work with
systems like Gencel. Templates could also help the users un-
derstand their spreadsheets better since templates present
a condensed view of potentially large spreadsheets. Spread-
sheet templates can be defined and inferred using any equiv-
alence relationship on cells. In the system described in [4],
we have used the cp-similarity condition to find similar re-
gions to overlay while inferring templates. Since the process
of finding similar regions is basically parametric with re-
spect to the similarity criterion, type equivalence could also
be used for inferring templates.

In this section, we present an algorithm to infer a tem-
plate given some equivalence relationship ≡η on formulas.
This algorithm is a generalization of the algorithm used in
[4]. We will revisit the example in Figure 1 to show how dif-
ferent templates would be inferred based on the equivalence
criterion used.

The structure of templates can be represented by pat-
terns that can be generated from the following grammar.

px ::= (f, x) | px · px | pn
x

That is, a pattern px can be a formula f paired with some
additional information of type x, the composition of two
patterns, or n repetitions of the same pattern.

The equivalence relationship ≡η is assumed to be derived
from a function η : F → x that obtains information to be
compared from formulas.

(a1, f1) ≡η (a2, f2) ⇐⇒ η(f1) = η(f2)

The equivalence relationship can be extended to columns,
that is, we can say that two columns Sdie and Sdje are ≡η-
equivalent if the corresponding cells within the columns are
≡η-equivalent.

Sdie ≡η Sdje ⇐⇒ ∀k : CS(i, k) ≡η CS(j, k)

We can extend ≡η one step further to regions within spread-
sheets. A horizontal region can be formed from the repeated
horizontal composition of adjacent columns of cells. We say
that two regions are ≡η-equivalent if they both have the
same number of columns and the corresponding columns
are ≡η-equivalent. The importance of identifying equivalent
regions lies in the fact that horizontally aligned equivalent
regions can be compressed to a single instance in the tem-
plate by repeatedly overlaying the equivalent regions onto
the innermost copy.

The main steps involved in inferring a pattern from a
given spreadsheet are shown in the definition of the func-
tion PatGen(S). First, the function Infer(S,≡η) extends
all cells in the spreadsheet S by the result of the function
η, on which the equivalence relationship ≡η is based. Hav-
ing the information on which the equivalence-class compu-
tations are based explicitly available eventually facilitates
the generation of template types from patterns.

Next, the function PatGen is called on the extended
spreadsheet S̃. This approach also means that the equiv-
alence comparisons can all be performed by the function
“=η”, which simply compares the second component of the

Algorithm 1: Pattern Inference
Input: Spreadsheet S and the equivalence relation ≡η.
Output: Template for the spreadsheet S.
Infer(S,≡η)

(1) S̃ ← {(a, (f, x)) | (a, f) ∈ S, x = η(f)}
(2) S̃′ ←PatGen(S̃)

(3) return (S̃′)

second component of a pair.

(a1, (f1, x1)) =η (a2, (f2, x2)) ⇐⇒ x1 = x2

Since =η is essentially a polymorphic function, it doesn’t
have to be passed as a parameter to algorithms.

Algorithm 2: Pattern Generation
Input: Spreadsheet S.
Output: Pattern px (which is S′ with the number of repe-
titions marked).
PatGen(S)
(1) G← S/=η

(2) S′ ← S
(3) while G 6= ∅
(4) foreach g ∈ G
(5) Sp ← MaxOverlay(g)
(6) if Sp = () then continue
(7) else
(8) (Sdie, Sdje)← Sp

(9) S′die ← Overlay(i, j)
(10) if S = S′ then return S
(11) else
(12) G← S′/=η

(13) S ← S′

(14) return S′

To infer the template for a given spreadsheet, we first
partition columns into ≡η equivalence classes, that is, we
compute S/=η. For each group g of columns in an equiva-
lence class, we determine the columns that we can overlay
that would in turn result in the biggest regions being over-
laid by the call to MaxOverlay(g). If an overlay is not
possible for the group under consideration, we pick the next
group, and the overlays are carried out whenever possible.
Note that every time one region is overlaid on another, we
increment a counter at the column level to keep track of the
number of times a column instance has been compressed.
This information is stored in S′. Therefore, the call to Pat-
Gen(S) returns S′ along with the number of repetitions of
the columns in S′, that is px.

MaxOverlay(g) takes an equivalence group g of columns
and returns the indices of the two columns in g that are
furthest apart and can be overlaid. For an overlay to be
successful, it must meet the following condition

∀k ∈ {0, ..., d} : Sdi− ke ≡η Sdj − ke
where d = j − i − 1. That is, Sdje can be overlaid on Sdie
if and only if the columns between Sdie and Sdje can be
overlaid on the corresponding columns before Sdie. If no
overlay is possible for g, MaxOverlay(g) returns the null
tuple.

Overlay(i, j) takes the two columns that have to be
overlaid and returns the resulting sheet S′′. Before overlay-
ing one column over another, we first need to update the
formulas in the cells in the region Sdj + 1..j′e by the call
to UpdateFormula(Sdj + 1..j′e, i + 1, j) to remove refer-
ences to cells within region Sdi + 1..je. This transformation



Algorithm 3: Maximal overlay in an equivalence group.
Input: Equivalence class g.
Output: The column numbers l and m that result in the
maximal overlay.
MaxOverlay(g)
(1) dm ← 0
(2) l← 0
(3) m← 0
(4) foreach Sdie ∈ g
(5) foreach Sdje ∈ g ∧ j 6= i
(6) if j > i then d← j − i
(7) else d← i− j
(8) if ∀k ∈ {0, ..., d} : Sdi− ke =η Sdj − ke
(9) if d > dm

(10) dm ← d
(11) l← min(i, j)
(12) m← max(i, j)
(13) if l = 0 ∨m = 0 then return ()
(14) else return (l, m)

of the formulas is subject to the constraint that references to
cells within repeated groups from outside the repeated group
have to be in aggregation formulas because we do not know
beforehand how many times the region might be repeated.
Since this update can only be done on aggregation formulas,
overlaying fails (and will not be performed) if some formula
in the region Sdj + 1..j′e cannot be updated.

Algorithm 4: Overlaying two columns from the same
equivalence class.
Input: Spreadsheet S and column numbers i and j where
i < j.
Output: Resulting spreadsheet S′ after overlay.
Overlay(S, i, j)
(1) j′ ←

−→
S

(2) d← j − i
(3) S′ ← UpdateFormula(Sdj + 1..j′e, i + 1, j)
(4) S′′ ← Shift(S′, j + 1, j′, d)
(5) return S′′

Finally, we need to shift the cells in region Sdn + 1..me
to reflect the overlay, that is, each cell in the updated
spreadsheet S′ is mapped to a cell in the original spreadsheet
S by Shift(S, m, n, d).

Algorithm 5: Adjusting columns after overlay

Input: Spreadsheet S, the start (m) and end (n) positions
of the columns to be adjusted, and the width (d) of the
region being overlaid.
Output: Resulting spreadsheet S′ after column adjustment.
Shift(S, m, n, d)
(1) for i = 1 to m− d− 1
(2) S′die = Sdie
(3) for i = m− d to n− d
(4) S′die = Sdi + de
(5) return S′

We repeat this process until there are no more ≡η-
equivalent columns that can be overlaid and we are left with
the compressed sheet S′. We then carry out a similar process
and compress the spreadsheet S′ vertically by considering
the ≡η-equivalent rows that can be overlaid. We are left
with the pattern px which is the compressed form of the
original spreadsheet S.

When we call Infer with the equivalence relationship
↔γ , which is based on the cell types determined by the

type inference judgment S . a : γ, the generated pattern pγ

carries cell types and represents a template type that can
be extracted by a two-level traversal.

Since the grouping of repeating columns and rows is
based on taking maximal repeating blocks, it follows from
the definition of template type instance given in Section 5.5
that pattern inference produces template types that are at
least as general as those that can be inferred by the typing
rules.

Theorem 1 (Correctness of Type Inference).

`S : τ ′ ∧ Infer(S,↔γ ) = τ =⇒ τ v τ ′

In the following section we will compare the type infer-
ence algorithm with the template inference based on cp-
similarity.

7. Comparison of Template Inferences
As mentioned earlier in the paper, cp-similarity has been
exploited in consistency checking [27] and testing of spread-
sheets [10]. However, type similarity has never been used
before. Since formulas with varying levels of similarities oc-
cur frequently in spreadsheets as a result of the repetitive
actions (for example, copy-paste, click-and-drag, etc.) em-
ployed by spreadsheet programmers, violations of these sim-
ilarities can be indicative of faults. The frequency of occur-
rence of cp-similar regions has been shown by the analyses
carried out on the EUSES spreadsheet corpus as reported
in [18]. The corpus has 4498 spreadsheets collected from var-
ious sources. Out of the 1977 spreadsheets in the corpus that
have formulas in them, 1797 have cp-similar regions. Among
the sheets that have cp-similar regions, there are on aver-
age 5.2 regions per sheet, with an average of 13.1 regions in
spreadsheets that had at least 1 region, a maximum of 414
regions in a spreadsheet, and 23845 regions in total in all
the spreadsheets.

The system described in [4] infers templates from spread-
sheets by overlaying cp-similar regions. When this system is
run on the grade spreadsheet shown in Figure 1, it is unable
to do any overlay because of the errors in the sheet.

1. Row-level overlays fail because the formulas in I3, I4,
I5, and I6 cannot be grouped using the cp-similarity
condition.

2. The columns with the scores for the assignments are
potential candidates for column-level overlay. However,
the formulas in columns C, E, and G fail to satisfy the
cp-similarity condition because of the errors in some of
the cells.

Expecting the grade spreadsheet formulas to be the same for
the different students, the user might invoke the system to
infer the template, hoping it generates a template along the
lines of the one shown in Figure 5. The failure of the system
to do any compression at all is indicative of the faults present
in the spreadsheet.

We assume the user corrects the errors in columns E,
G, H, I, and J and runs the template inference system
again. This particular scenario helps to illustrate how the
template inference algorithm based on cp-similarity works.
This will also enable the comparison with the type inference
algorithm.

When we use cp-similarity as the equivalence relationship
≡η, assuming we already have only relative references in
the spreadsheet formulas, η is simply the identity function.



Figure 11. Type-equivalence-based template for the grade sheet.

Therefore, the call to Infer(S,≡η) in the first step generates
the following extended spreadsheet.

S̃ ← {(a, (f, f)) | (a, f) ∈ S}
The extended spreadsheet is passed to PatGen(S) and the
result is returned by the outermost function Infer.

In the first step in PatGen, the columns are partitioned
into equivalence classes on the basis of cp-similarity. For the
sake of conciseness we represent columns by their column
numbers.

G← {{3, 5, 7}}
Note that we find only one group in G. To decide the best
overlay for this group of columns, MaxOverlay is called
on the group. Even though d = 4 when i = 3 and j = 7, the
overlay is not possible since the following condition is not
satisfied.

∀k ∈ {0, ..., 4} : Sd3− ke =η Sd7− ke
For (i = 3, j = 5) and (i = 5, j = 7) we both have d = 2.
The first case is slected, and MaxOverlay returns (3, 5).

The call to Overlay(S, 3, 5), in turn calls UpdateFor-
mula(Sd6..10e, 4, 5) which updates the formulas in columns
by removing references to cells in columns 4 and 5. For ex-
ample, the formula in H6 becomes AVERAGE(C6,G6) after
the update. After the formulas have been updated, the call
to Shift(S, 6, 10, 2) copies the columns 1 through 3, and
columns 6 through 10 to the resulting spreadsheet, which is
then returned by the function.

After the first overlay has been carried out, the columns
in the resulting spreadsheet can once again be partitioned
into equivalence classes on the basis of cp-similarity.

G← {{3, 5}}
In this case, column 5 refers to column 7 in the original
spreadsheet. Once again, the overlay can be carried out, af-
ter which the partitioning does not generate any more can-
didates for overlaying. This indicates that the spreadsheet
has been compressed horizontally as much as possible.

The system then proceeds to compress the rows in the
resulting spreadsheet, carrying out the following overlays
one after another: (3, 4), (3, 4), and again (3, 4), which means
the system first overlays row 4 on row 3. In the resulting
spreadsheet, the system once again overlays the new row 4
on row 3. After the same overlay is performed a third time,
the result will be the template shown in Figure 5.

Since cell type equivalence is a stronger condition than
cp-similarity of formulas, using type-equivalence for infer-
ring the templates helps detect errors that would not be

detected by the use of formula cp-similarity. For example,
assume the errors in the spreadsheet formulas, except those
in column J, have been corrected. Now if we use cp-similarity
as the equivalence condition for inferring the template, the
system infers the template shown in Figure 5. While the tem-
plate can be used in case the user wants to continue working
within the Vitsl/Gencel framework, the errors in the for-
mulas in column J would be still present in the spreadsheet.
In contrast, when template inference is carried out using
cell type equivalence, columns E and G will be overlaid on C.
However, overlaying of rows fails because the formulas in J3,
J4, J5, and J6 are cp-similar but not type equivalent since
they have the following types.

• S . J3 : (String,∅)
• S . J4 : (String, {(H8, (Num, Undef))})
• S . J5 : (String, {(H9, (Num, Undef))})
• S . J6 : (String, {(H10, (Num, Undef))})

More precisely, using the type inference algorithm, the tem-
plate shown in Figure 11 would be produced.

The failure of the expected row-level overlay and the
difference in type expectations of the cells can point the
user to the faults in the spreadsheet. After correcting those
errors, a repeated template inference attempt would yield
the expected template.

8. Conclusions and Future Research
In this paper we have presented a type system that charac-
terizes types of formulas and cells on a fine-grained level to
allow detailed reports about errors in spreadsheet cells. In
addition, the definition of template types allows the concise
description of spreadsheet types, which is particularly ben-
eficial in large spreadsheets by providing summaries of the
spreadsheets’ type structures.

We have also presented a type inference algorithm that
is based on a generic pattern inference algorithm to iden-
tify repeated, similar areas in spreadsheets based on differ-
ent equivalence relationships. The type inference algorithm
is obtained by instantiating pattern inference by a notion of
type equivalence that is based on the type system we have in-
troduced. We have demonstrated that the type-equivalence-
based inference leads to patterns that provide more accurate
models of spreadsheets than produced by purely syntactic
approaches.

In addition to the applications considered here, there are
more aspects of the type system that can be investigated.



We have indicated that the notion of downstream type equiv-
alence can provide an alternative viewpoint of type conflicts.
One particular aspect is “voting for type errors” by count-
ing the number of references of expected type α for a cell
that contains a value of type α′ 6= α. Numbers greater than
one can be taken as an indication that the error is more
likely in the value or formula contained in the referenced
cell than in the referencing formulas. Transitive type analy-
sis, as indicated in Section 5.3, is another area that might
reveal interesting opportunities for new forms of templates.
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