
How to Communicate Unit Error Messages in Spreadsheets?

Robin Abraham and Martin Erwig
School of Electrical Engineering and Computer Science

Oregon State University
[abraharo|erwig]@cs.orst.edu

Abstract

In previous work we have designed and implemented
an automatic reasoning system for spreadsheets, called
UCheck, that infers unit information for cells in a spread-
sheet. Based on this unit information, UCheck can iden-
tify cells in the spreadsheet that contain erroneous formu-
las. However, the information about an erroneous cell is
reported to the user currently in a rather crude way by sim-
ply coloring the cell, which does not tell anything about the
nature of error and thus offers no help to the user as to how
to fix it.

In this paper we describe an extension of UCheck, called
UFix, which improves the error messages reported to the
spreadsheet user dramatically. The approach essentially
consists of three steps: First, we identify different categories
of spreadsheet errors from an end-user’s perspective. Sec-
ond, we map units that indicate erroneous formulas to these
error categories. Finally, we create customized error mes-
sages from the unit information and the identified error cat-
egory. In many cases, these error messages also provide
suggestions on how to fix the reported errors.

Keywords: Spreadsheet, Program Analysis, Error Mes-
sages, End-User Software Engineering

1 Introduction

Spreadsheet systems like Excel are without doubt the
most widely used programming systems. Since spread-
sheets are also very likely to contain errors—some studies
report that 90% or more of real-world spreadsheets contain
errors [6], methods that can improve the level of correct-
ness for spreadsheets can have an enormous positive impact.
These methods may aim at detecting errors [2, 3], correct-
ing them [7], or even preventing them [4]. In any case, it
is important that these methods can be integrated smoothly

∗This work is supported by the National Science Foundation under the
grant ITR-0325273 and by the EUSES Consortium [1].

into the process of spreadsheet programming, because oth-
erwise they would risk being not accepted by end users.

The UChecksystem can automatically detect errors in
spreadsheet formulas. UCheck works in three phases: First,
a spatial analysis determinesheader informationfor the
cells in a spreadsheet [2]. This header information as-
sociates labels in the spreadsheet with other cells in the
spreadsheet. Based on this header information, a rule sys-
tem assigns in a second step units to all cells in the spread-
sheet [5]. Units can be simple base units that are given by
headers, that is, labels of the spreadsheet, but they can also
be more complex unit expressions representingand, or, and
dependentunits. In a final step, UCheck tries to transform
the units derived by the rule system into a normal form.
This transformation follows a set of equivalences of unit ex-
pressions. The error-detection capability of UCheck results
from the fact that a cell whose unit expression cannot be
simplified to a normal form contains an erroneous formula.

Since UCheck is invoked by simply pressing a button, it
requires only minimal effort from the user to obtain a diag-
nosis about possible errors in a spreadsheet. Moreover, ini-
tial tests have indicated that the UCheck system performs
accurately in practice [2]. However, a problem of the cur-
rent UCheck system is that it reports error messages to the
user only by coloring cells. Even though primary errors are
distinguished from dependent errors1 by using different col-
ors to focus the user’s attention to the important problems
in the spreadsheet, no information about the nature of the
error is communicated to the user. Thus, even though we
can effectively spot erroneous cells, it is not easy for the
user to discern what exactly the problem is and how to fix
the formulas.

Fortunately, the unit information that has been derived
for an erroneous cell contains enough information to re-
veal more details about the problem of the cell’s formula.
This fact offers an opportunity to exploit the structure of the
derived units to create meaningful error messages that are
more helpful to the user than a plain error coloring and may

1All dependent errors will disappear from the spreadsheet when all pri-
mary errors are corrected.

1

guide her or him in fixing the spreadsheet.
Our approach to derive error messages consists of the

following three steps:

• First, identify error categories and corresponding error
messages that are meaningful to the end user. One ex-
ample is: “The range in the aggregation formula is too
small.”

• Second, map the unit structure of the unit indicating
the error, which is by definition not in normal form,
to one of the error categories. For example, if the
unit in a cell has been inferred as theand of two non-
compatible units and the cell only has a reference to
another cell, the system can infer that the error is be-
ing caused by the reference.

• Third, compose a concrete error message from the
available unit information. For example, if the cause
of the unit error has been identified as an incorrect ref-
erence, the system can generate an error message to
convey this information to the user. Moreover, the sys-
tem, in many cases, has enough information to gener-
ate suggestions that would enable the user to correct
the error.

We will describe this approach in more detail in the rest of
this paper. In Section 2 we briefly review header and unit
inference. A classification of unit errors is presented in Sec-
tion 3. In Section 4 we show how unit errors are reflected
by units that cannot be reduced to normal form and how this
information can be used to create error messages. For lack
of space, we describe the process of creating error messages
by examples. A complete, formal description will be given
in a future paper. We present conclusions and plans for fu-
ture work in Section 5.

2 Identifying Spreadsheet Errors through
Unit Inference

In this section, we give a brief and informal overview
of header and unit inference. More details can be found in
[2, 5].

Consider the spreadsheet shown in Figure 1. We can ob-
serve that cellC4 does not just contain a number. In the
context of this spreadsheet, it represents the number of or-
anges harvested in June because of the corresponding row
and column headers. The header inference component of
the UCheck system determines these relationships between
the labels and the cells automatically. The header infor-
mation is then used to infer the units for the cells. The
units of data cells (cells without formulas) are determined
directly from the header information. For example, the
unit of C4 is inferred asFruit[Orange]&Month[June]. Here

Orange is the column-level header ofC4, andFruit is in-
ferred as the header forOrange. This gives rise to thede-
pendentunit Fruit[Orange] for C4. Similarly, the row-level
header information leads to the dependent unitMonth[June].
Together, these two units are combined to theand unit
Fruit[Orange]&Month[June].

The units of cells with formulas are inferred on the
basis of the functions in the formulas. For example,
E3 has a formula that sums over the values in cellsB3,
C3, and D3. Since the units ofB3, C3, and D3 are
Fruit[Apple]&Month[May], Fruit[Orange]&Month[May], and
Fruit[Plum]&Month[May] respectively, the unit ofE3 is in-
ferred as

Fruit[Apple]&Month[May]|Fruit[Orange]&Month[May]
|Fruit[Plum]&Month[May]

This unit expression can be simplified by factoring the
Month[May] unit to

Fruit[Apple|Orange|Plum]&Month[May],

which then generalizes toFruit&Month[May].

Figure 1. A unit-correct spreadsheet.

Once the units for all the cells have been inferred, the
system checks to see if all the units can be reduced to nor-
mal form, as demonstrated for cellE3. In instances in which
the units cannot be reduced to normal form, the system re-
ports a unit error.

In the example shown in Figure 2, the range of the for-
mula in cellB6 is offset by one row. In particular, the for-
mula includes a reference to cellB2, which has the header
Fruit.

Since cell B2 has the unit Fruit, B3 has the
unit Month[May]&Fruit[Apple], and B4 has the unit
Month[June]&Fruit[Apple], the unit for cellB6 is inferred as:

Fruit|Month[May]&Fruit[Apple]|Month[June]&Fruit[Apple]

Even though the unit can be partially restructured by fac-
toringFruit[Apple] into Fruit|Month[May|June]&Fruit[Apple],
the unitMonth[May|June] cannot be generalized toMonth

2

Figure 2. Range-offset error.

becauseJuly is missing from the unit. Moreover, the unit
cannot be further simplified sinceFruit andFruit[Apple] do
not match. Since the unit cannot be transformed into a nor-
mal form, a unit error is identified. However, in the UCheck
system the user would just see the error as a colored cell.
The details about the offset range are not communicated to
the user.

3 Categories of End-User Spreadsheet Er-
rors

All the cells in a spreadsheet are assigned units based on
their headers. Only cells with formulas can have unit errors.
Based on the kinds of formula errors we have in cells, we
can classify unit errors as follows. Note that this classifica-
tion is by no means intended to be general or complete. It
has been chosen to help group the different cases of unit er-
rors in order to make it easier to report them to the end user.
It is therefore an error classification specifically designed as
a frontend for the UCheck system.

1. A range-too-small error occurs when the user acci-
dentally excludes one or more cells from a formula.

2. A range-too-large error occurs when the formula in
a cell refers to the row or column header of that cell.

3. A range-offset error occurs when the range in a cell’s
formula is offset by one or more cells and accidentally
includes the row or column header of that cell.

4. An unexpected-extra-reference erroroccurs when
the range of the formula in a cell includes cells with
incompatible units.

5. A reference error occurs when a cell has a reference
to another cell with an incompatible unit.

6. An omission error occurs when a cell within a for-
mula range is left blank. An omission error is similar

to the range-too-small error in that the cell that has a
reference to the blank cell still has a valid unit.

In addition to the kind of unit error, we also have to gener-
ate information (using terminology the user can understand)
about where and how they are manifested in the spreadsheet
and how to fix them if possible. In some cases, an error in
some cell of the spreadsheet might result in an invalid unit
being inferred for some other cell within the spreadsheet.
Examples of this scenario are shown in Figures 5 and 7. In
such situations, it is important for the system to help the
users focus their debugging efforts on the cell that is the
cause of the unit error.

4 Creating Error Messages From Unit Struc-
ture

In this section we look at cases of units that cannot be
reduced to normal form and how they can be mapped to the
categories we have described in Section 3. This strategy
of mapping non-normal-form units into end-user error mes-
sages is currently being implemented as a new front-end to
UCheck. It turns out that in many cases the generated error
messages can be supplemented by suggestions of how to fix
the error. We therefore call this extension of the UCheck
systemUFix.

The example in Figure 3 shows how the error situation
shown in Figure 2 will be communicated to the end user in
UFix.

Figure 3. Offset error in UFix.

As discussed earlier, the unit for cellB6 is inferred as
Fruit|Month[May|June]&Fruit[Apple]. Units ofB3 andB4 can
be combined to give a valid unit, but the inclusion ofB2 in
the formula as well as the omission ofB5 results in the unit
error. The system has already inferredB2 as a header for
B3 andB4. This information allows UFix to infer that the

3

reference toB2 is incorrect. Only removing the reference to
B2 from the formula would result in a range-too-small error
since the formula inB6 would then only have references to
B3 andB4. This fact allows the system to identify the error
as a likely instance of range-offset error and generate the
error message shown in the figure.

Figure 3 shows the main components of the new error
reporting mechanism.

1. The title bar of the error-message window indicates
the cell the error has been detected in and the class of
the error (this information might prove more useful to
users as they become more familiar with the system).

2. The first sentence of the error message explains the
problem detected by UCheck/UFix.

3. The second sentence states a proposed solution to the
problem.

4. The buttons show the possible user actions. Users can
ask the system to make the recommended change by
clicking on the “Apply” button. The users can also
choose to ignore the generated suggestion by clicking
the “Ignore” button.

In the example shown in Figure 4, cellB5 has a reference to
cellC3. B5 has the unitFruit[Apple]&Month[July] because of
its position, and the unitFruit[Orange]&Month[May] because
of the reference toC3. The resulting unit is

Fruit[Apple]&Month[July]&Fruit[Orange]&Month[May],

which is not a valid unit since a number cannot represent
apples from Julyand oranges from May. The component
of the unit that arises from the position of the cell cannot
be avoided. Inspection of the erroneous unit indicates that
the reference is the part that is causing the error (instance of
incorrect reference error).

Figure 4. Reference error.

It can be formally shown from the unit rule system that
any reference from a range that occurs in aSUM formula
would lead to a unit error. Therefore, the error message sug-
gests to replace the reference by a value, which can edited
within the error window.

In the example shown in Figure 5, the formula in cell
B6 referencesB3 andB4 but notB5. The unit for this for-
mula is inferred asFruit[Apple]&Month[May|June], which is
a valid unit. The units for the cellsC6 andD6 are inferred as
Fruit[Orange]&Month andFruit[Plum]&Month, respectively
(after generalization). This, in UCheck, results in an error
being reported inE6 because its unit cannot be reduced to
normal form since theMonth[July] component is missing
from the unit ofB6 (thereby preventing its unit from being
generalized toFruit[Apple]&Month).

Figure 5. Range-too-small error in UCheck.

UFix inspects the erroneous unit inE6 to identify this
case as an instance of range-too-small error and adapts the
error message to point to the cellB6 as shown in Figure
6. This example shows that whereas the “coloring of unit
error” strategy of UCheck is sometimes wrong about the
location of an error, the unit analysis and associated error
reporting in UFix gives much more precise information.

Figure 6. Range-too-small error in UFix.

4

Figure 7. Comparison of error messages for omission error in UCheck and UFix.

In our final example shown in Figure 7,B6 has references
to cellsB3, B4, andB5. Since empty cells are not assigned
any units, the reference toB5 does not contribute to the unit
of B6. The omission error thus results in an incorrect unit in
E6 in the old system along the lines of the range-too-small
error discussed above. Even though the erroneous unit in
E6 has the same structure in both cases, inspection of the
formula inB6 allows UFix to categorize this situation as an
instance of omission error and tailor the error message to
point the user to the empty cellB5.

In the case of omission error messages (along the lines of
the example shown in Figure 7), the message window again
allows the user to specify any value for the blank cell. The
users can also choose to ignore the generated suggestions
by clicking the “Ignore” button.

5 Conclusions and Future Work

We have outlined an approach to interpret structural in-
formation about spreadsheets into error messages for end
users. Although the error detection is based on a set of
formal typing rules and a non-trivial unit structure, users
do not have to understand the unit-based reasoning, which
happens completely behind the scenes. Moreover, since the
unit structure can be mapped to error scenarios that are de-
scribed in terms of formulas, ranges, etc., user do not even
have to understand the notion of units.

The UFix error frontend is currently under development.
To facilitate the mapping from units into error messages, we
had to refactor the unit-reasoning backend. So far the unit
inference was concerned exclusively with identifying cor-
rect unit expressions—all other unit expressions were just
classified as unit errors.2 In contrast, we need precise infor-
mation about the unit structure of erroneous units to enable
the identification of error situations and the creating of er-

2In UCheck we actually distinguish primary sources of errors from sec-
ondary ones that depend on primary errors.

ror messages and change suggestions. We also expect this
restructuring to reveal more error situations.

Future work will include a formal description of the
error-mapping and change-suggestion process. This for-
malization together with the work on the implementation
might reveal more error cases that UFix can successfully
identify and report.

We also plan to perform a user study to gather feedback
from end users about the usefulness and usability of the sys-
tem. In the past we have obtained quite useful feedback
from teachers who participated in a continuing education
event at Oregon State University, which has been organized
as part of the efforts of the EUSES consortium [1]. We will
continue to use this valuable source of end-user feedback.

References

[1] EUSES: End Users Shaping Effective Software.
http://EUSESconsortium.org.

[2] R. Abraham and M. Erwig. Header and Unit Inference for
Spreadsheets Through Spatial Analyses.IEEE Int. Symp. on
Visual Languages and Human-Centric Computing, pp. 165–
172, 2004.

[3] M. M. Burnett, A. Sheretov, B. Ren, and G. Rothermel. Test-
ing Homogeneous Spreadsheet Grids with the “What You See
Is What You Test” Methodology.IEEE Transactions on Soft-
ware Engineering, 29(6):576–594, 2002.

[4] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmans-
berger. Automatic Generation and Maintenance of Correct
Spreadsheets.27th IEEE Int. Conf. on Software Engineering,
2005. To appear.

[5] M. Erwig and M. M. Burnett. Adding Apples and Oranges.
4th Int. Symp. on Practical Aspects of Declarative Languages,
LNCS 2257, pp. 173–191, 2002.

[6] K. Rajalingham, D. R. Chadwick, and B. Knight. Classifica-
tion of Spreadsheet Errors.Symp. of the European Spread-
sheet Risks Interest Group (EuSpRIG), 2001.

[7] J. Ruthruff, E. Creswick, M. M. Burnett, C. Cook, S. Prab-
hakararao, M. Fisher II, and M. Main. End-User Software Vi-
sualizations for Fault Localization.ACM Symp. on Software
Visualization, pp. 123–132, 2003.

5

