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Abstract
Previous research on static analysis for program families has fo-
cused on lifting analyses for single, plain programs to program fam-
ilies by employing idiosyncratic representations. The lifting effort
typically involves a significant amount of work for proving the cor-
rectness of the lifted algorithm and demonstrating its scalability. In
this paper, we propose a parameterized static analysis framework
for program families that can automatically lift a class of type-
based static analyses for plain programs to program families. The
framework consists of a parametric logical specification and a para-
metric variational constraint solver. We prove that a lifted algorithm
is correct provided that the underlying analysis algorithm is correct.
An evaluation of our framework has revealed an error in a previous
manually lifted analysis. Moreover, performance tests indicate that
the overhead incurred by the general framework is bounded by a
factor of 2.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs–Functional
constructs,Type structure; D.3.2 [Programming Languages]: Lan-
guage Classifications–Applicative (functional) languages

General Terms Languages, Theory

Keywords Variational types, constraint-based type system, static-
analysis lifting, program families, choice calculus

1. Introduction
Software increasingly includes some form of variation. This can
range from something as simple as having a few configuration op-
tions represented by #ifdef annotations to fully-fledged software
product lines (SPLs) [13]. Each such variational program effec-
tively encodes a (potentialy huge) number of programs and is thus
also often called a program family [31].

Ensuring static properties of program families is challenging be-
cause the brute-force approach of generating and analyzing each in-
dividual program is generally infeasible due to the sheer number of
programs a program family may encode.1 Thus, the design of scal-
able analysis algorithms for program families has been the subject

1 For example, MySQL contains some 900 macros. Assuming these are
pair-wise independent binary macros, the encoded number of program
variants is close to the number of atoms in the universe to the 4th power.
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of much research, such as the variationalization of parsing [23, 19],
type checking [10, 24, 22, 1, 17], dataflow analysis [4, 25], model
checking [12, 11, 14, 2] and theorem proving [16, 41].

Most of these approaces employ some form of “lifting” strategy
to extend a traditional analysis algorithm to deal with variational
code. For instance, the variability-aware module system [24] is the
result of lifting the module system introduced by Cardelli [6], the
variational type inference [10] is the result of lifting the algorithm
W [15], and the variability-aware dataflow analysis [4] is a lifted
version of the traditional intraprocedural dataflow analysis [28]. All
these approaches follow a similar pattern that typically involves the
following steps.

(1) Add variability to data structures used in the traditional anal-
ysis. For example, variational types are represented as sets of
plain types [1], value sets for dataflow analysis are extended to
functions from features to values [4], or in variational type in-
ference [10, 9], types, unifiers, and typing environment are all
made variational using an explicit choice representation [18].
A similar representation has been adopted in [24, 25].

(2) Adapt analysis rules to deal with variational data structures.
This applies in the obvious way to all data structure extensions
mentioned in (1). Some approaches require additional machin-
ery. For example, in [10], a type equivalence relation is required
to make comparisons with choice types less rigid, and for the
model checking approach described in [12, 11], the nodes and
edges of transition systems are annotated with features, leading
to feature transition systems.

(3) Prove that variation elimination commutes with the analysis,
that is, a selection made from a program family and its analysis
result should result in a plain program p and a result r such
that running the traditional analysis on p would produce r. For
example, the work on type checking [22] and type inference [9,
10] presented such proof. A similar proof was absent for the
dataflow analysis [4], but was later presented in [5].

(4) A performance evaluation that demonstrates the efficiency gain
of the lifted analysis over the brute-force approach.

This commonality indicates a general mechanism to systematically
lift traditional static analyses to make them work for program fam-
ilies, avoiding the tedious steps of adding variability, performing
proofs, and evaluating performance. So far, however, such a method
is not available. The only attempt at something similar was recently
made by Bodden et al. [3]. However, their approach only works for
dataflow analyses formulated in the IFDS framework [35].

In this paper, we propose a type-based framework for automati-
cally lifting plain-program static analyses to program families. Our
method is applicable if (a) the analysis to be lifted can be expressed
as a type system and (b) the program family is expressed using an-
notations (such as #ifdef CPP commands).

We have formalized our framework based on type analysis be-
cause it is both popular [30] and expressive [27]. Specifically, fol-



lowing the spirit of HM(X) [29], a parameterized Hindley-Milner
type system, we design VHM(X), an extension of HM(X) with
variational constructs and an annotation model, allowing a richer
set of information to be tracked during type checking. The suc-
cess and scope of the HM(X) has been demonstrated with a wide
range of program analyses, such as overloading [39], conditional
constraints [32], or flow inference [33]. It has also been extended
by abstract polymorphic data types [37] and guarded algebraic data
types [38].

1.1 A Simple Example: Control Flow Analysis
As one example, we consider a type-based 0CFA (context-
insensitive control flow analysis), discussed by Palsberg [30], that
answers the question “what is the potential set of functions an ex-
pression may be evaluated to?” Consider, for example, the follow-
ing expression introduced in [30].

f = ((λ 1h.λ 2x.h x) (λ 3y.y)) (λ 4z.z)

The type-based 0CFA developed in [21] computes λ z.z, written as
{4}, as the analysis result for f , meaning that f will evaluate to the
abstraction labeled by 4.

Now consider the following, related program family that is ob-
tained by creating a choice named D between λ 3y.y and λ 5w.λ 6y.y.

e = ((λ 1h.λ 2x.h x) D〈(λ 3y.y),(λ 5w.λ 6y.y)〉) (λ 4z.z)

Choice expressions such as D〈e1,e2〉 denote variation points in the
program. They require that one of the alternatives e1 and e2 be
selected to obtain a plain program from the program family. By
selecting the first alternative of D in e, we obtain f . If we instead
select the second alternative, we obtain the following expression g.

g = ((λ 1h.λ 2x.h x) (λ 5w.λ 6y.y)) (λ 4z.z)

For g, 0CFA produces the result {6}. This means that for the
program family e we obtain the variational result D〈{4},{6}〉,
which reflects the fact that the result of the analysis depends on
the selection made for D. For the first alternative, we get the result
{4}, and for the second alternative, we get {6}.

Since the brute-force approach of generating all variants and
running the analysis on each variant separately doesn’t scale, a
0CFA for program families has to work with the variation repre-
sentation (choices, as shown, or other) directly.

Now instead of having to go through the four steps sketched
above over and over again, for each new program analysis, we
would rather develop a method that, given a suitable representation
of a single-program analysis, would generate a provably correct
program-family version of that analysis automatically.

1.2 Contributions, Perspectives, and Previous Work
This work is related to the HM(X) system developed by Odersky
et al. [29] and our variational type inference algorithm [10], but
extends both significantly.

We extend HM(X) in two ways. First, we make expressions,
types, constraints, and also typing systems variational, which al-
lows us to deal with program families. Second, types and also
derivations are extended with annotations, which allow us to en-
code more type-based analyses in the framework.

There are also two major differences compared to our varia-
tional type inference [10]. First, this paper develops an analysis
lifting framework while the previous work was about a type in-
ference algorithm for variational programs. The machinery devel-
oped in this paper is more general, and the variational type infer-
ence algorithm can be expressed as an instance of the lifting frame-
work. Second, from a technical point of view, the need for a general
variational constraint solving algorithm has provided a more fun-
damental understanding of the problem domain. Specifically, the

variational constraint solving algorithm developed here, while be-
ing more general, is also significantly simpler than our previous
variational unification algorithm [10] when instantiated with the
Robinson algorithm [36].

This paper presents a systematic approach to automatically lift
program analyses to families of functional (and other) programs.
Our work is based on a variation representation that we briefly re-
view in Section 2. The paper then makes the following contribu-
tions.

• We introduce the idea of an automated analysis lifting frame-
work in the form of HM(X) in Section 3.

• We present a parameterized type system that declaratively spec-
ifies the computation of analyses in Section 4. We show that the
variational analysis is sound provided the underlying analysis
is sound.

• In Section 5 we develop a constraint-based inference system for
the type system, which is both sound and complete with respect
to the type system.

• In Section 6 we construct a variational constraint solver that is
parameterized by domain-specific constraint solvers. We prove
that the variational constraint solver is sound/most general pro-
vided the underlying solver is sound/most general.

• In Section 7 we evaluate a prototype implementation by com-
paring it with manually lifted static analyses. The evaluation has
revealed an error in one such manually lifted analysis, and has
indicated that the runtime overhead of our approach is bounded
by a factor of 2.

Beyond the theoretical lifting framework, this paper has another
important impact on programming language research. With the
ability to lift a class of analyses, our framework makes what we
call “property-guided product derivation” feasible. In current prac-
tice, selection of programs from program families is solely based
on features and functional properties. However, in many cases it
would be useful to have additional selection criteria available. For
example, selecting programs based on different side effects, differ-
ent sets of exceptions, different kinds of security policies, and so
on. Our framework enables users to express such additional non-
functional requirements as part of the program selection process.

2. Variation Representation
In this paper, we focus on the static analyses for so-called “annota-
tive” program families, that is, program families that are obtained
by directly annotating program parts that vary, for example, using
CPP directives. For concreteness, we use binary choices as pro-
vided by the choice calculus [18] to represent variation. The choice
calculus can be viewed as a restricted, yet more disciplined version
of the C preprocessor.

The main construct of the choice calculus is a named choice
to represent alternatives in programs (and other artifacts). For the
work in this paper we can assume that all choice names are glob-
ally scoped and that each choice has exactly two alternatives. For
example, the expression A〈succ,odd〉 1 represents the two plain ex-
pressions succ 1 and odd 1. The name A is called a dimension.

Choices can be eliminated through a selection operation, which
applies a selector s, given by a dimension D and an index i, to
an expression and replaces each of its choices named D by its ith
alternative. For lambda calculus with binary choices, selection is



Term variables x, y, z Annotation variables β

Type variables α Type constructors T
Choices A, B, D Program locations l
Constraints C

Expressions e ::= x | λ lx.e | e e | let x = e in e | D〈e,e〉

Monotypes τ ::= αϕ | τ →ϕ τ

Variational types φ ::= τ | D〈φ ,φ〉 | φ →ϕ φ | T ϕ φ

Constraints C ::⊃ true | φ ≡ φ | ϕ ≤ ϕ | D〈C,C〉 |
C∧C | ∃α.C

Type schemas σ ::= ∀αβ [C].φ
Annotations ϕ ::⊃ ∅ | {l} | β | ϕ ∪ϕ | D〈ϕ,ϕ〉
Selectors s ::= D.i

Type environments Γ ::= ∅ | Γ,x 7→ σ

Substitutions θ ::= ∅ | θ ,α 7→ φ

Figure 1. Syntax of expressions, types, constraints, etc.

defined as follows.

bxcs = x

bλx.ecs = λx.becs
be1 e2cs = be1cs be2cs

bD〈e1,e2〉cs =

be1cs if s = D.1
be2cs if s = D.2
D〈be1cs,be2cs〉 otherwise

The selection operation essentially traverses the AST and replaces
choices along the way; it thus extends naturally to other language
constructs.

For example, selecting A.1 from the expression e =
A〈succ,odd〉 1 results in the expression becA.1 = succ 1. Selection
synchronizes choices in the same dimension. For example, the ex-
pression A〈succ,odd〉 A〈1,True〉 represents two expressions, succ
1 and odd True, which can be obtained by one selection. In con-
trast, we need two selections, one in A and one in B, to eliminate
the choices in the expression A〈succ,odd〉 B〈1,True〉. Since the di-
mensions A and B are independent of one another, the choices rep-
resents four plain expressions.

Note that the choice representation is generic and can be used
with any object language. It can thus represent variation in pro-
grams, types, and other software artifacts and data structures.

In the case of globally scoped choices, the semantics of a vari-
ational expression e can be expressed as a mapping from sets of
selectors to plain expressions. A formal definition can be found in
[10]. For illustration, here is a simple example.

[[A〈succ,B〈odd,even〉〉 1]] =
{{A.1} 7→ succ 1,{A.2,B.1} 7→ odd 1,{A.2,B.2} 7→ even 1}

3. VHM(X) Syntax
We present the core syntax for VHM(X) in Section 3.1 and explain
how to extend the syntax to encode static analyses in Section 3.2.

3.1 Core Syntax
We consider a parameterized type system over basic lambda calcu-
lus plus let-polymorphism and choice constructs. Figure 1 presents
the syntax of various concepts used throughout this paper. The def-
inition of expressions is conventional, except for the choice con-
struct (see Section 2). We also attach a label l to lambda abstrac-

tions to track information about abstractions during type checking.
In addition, we may make use of constants, such as succ and even,
which have to appear in the initial type environment.

Another important extension of the HM(X) framework [29] is
the addition of annotations (ϕ) to types. An annotation is a set
representing information of interest for a specific analysis. Thus,
the definition of ϕ is partly unspecified, and we adopt the notation
::⊃ from [29] to indicate this fact. However, labels are always
available as annotations, as is clear from the definition of ϕ . The
distributive nature of choices [18] allows us to view D〈ϕ1,ϕ2〉∪ϕ

as D〈ϕ1∪ϕ,ϕ2∪ϕ〉. (The case for ϕ ∪D〈ϕ1,ϕ2〉 is symmetric.)
This equivalence can be employed to normalize annotations such
that choice constructs will not be nested within sets.

The definition of monotypes is fairly simple. However, types
can carry annotations (ϕ). Later we will see that monotypes are
the only types that are allowed to appear in the type part of a type
schema. More complicated type definitions will become part of the
constraints that will be discussed shortly. This design decision is
motivated by Sulzmann et al. [40], who observed that in the pres-
ence of non-regular equational theories type inference may fail to
compute principal types even with the help of a most general unifi-
cation algorithm. They proposed as a solution to push complicated
type definitions into constraints. This is what we adopt in this paper.

The definition of variational types φ differs from conventional
type definitions in two aspects. First, we include choice types
D〈φ ,φ〉 to represent variation in types. Second, since different in-
stances of VHM(X) involve different type representations, we al-
low each instance of VHM(X) to supply extra type definitions,
through the use of annotated type constructors of the form T ϕ φ .
Type constructors can take an arbitrary number of arguments, in-
cluding 0, in which case they represent primitive types, such as
bool and int. Like monotypes, variational types are also annotated.

The definition for constraints C is also open. However, we
assume that the following constraints are always defined.

(i) true denotes a constraint that is always satisfied.

(ii) The constraint φ1 ≡ φ2 represents a type equivalence require-
ment between two types φ1 and φ2.

(iii) The constraint ϕ1≤ϕ2 imposes a partial order on annotations.

(iv) The constraint D〈C1,C2〉 allows a variation in constraints.

(v) The constraints C1 ∧C2 and ∃α.C have the same meaning as
in first-order logic.

Each instance of VHM(X) may extend the definition of constraints.
A type schema, written as ∀αβ [C].τ , consists of a constraint

and a monotype. Note that it is polymorphic both over types and
annotations. The constraint part C places a requirement on types
and annotations that may be substituted for α and β in τ: Only
types and annotations that satisfy C can be used. Type schemas are
considered equivalent modulo bound variable renaming.

We use θ to range over substitutions. We write FV(C) for the
set of free variables in C (where the ∃ quantifier is the only binding
symbol in constraints). We also use FV(σ) to denote the set of free
variables in σ and extend its definition to type environments Γ in
the usual way. The application of substitution to constraints, type
schemas, and type environment, written as θ(C), θ(σ), and θ(Γ),
respectively, is also defined in the usual way.

Note that the definition of φ and C allows us to shift complex
conditions from types to constraints. For example, the expression
A〈succ,odd〉 has the type A〈int→ int,int→ bool〉, which we
can also express by saying that A〈succ,odd〉 has the type α under
the constraint α ≡ A〈int→ int,int→ bool〉.



3.2 Syntax Extensions
To instantiate VHM(X) for a specific analysis, the following infor-
mation must be supplied.

• A type definition to extend φ , given as a type signature T .
• An annotation definition A that extends ϕ .
• A constraint definition C to extend C.

These components prepare the framework for the addition of the
analysis proper, which has to be provided as an extension of the
type system and will be discussed in Section 4.3.

The extensibility of VHM(X) through the components T , A ,
and C offers much flexibility and allows a wide variety of analyses
to be instantiated. In many instances, however, only a part of these
components is needed, and VHM(X) can retain most of its default
behavior.

As an example, consider the 0CFA. Section 1.1. The only anno-
tations will be the labels for abstractions, which are already part of
VHM(X). We thus have A = ∅. Similarly, all the types and con-
straints for 0CFA are already present, that is, T = C =∅.

For another example, consider exception analysis which tries to
determine statically what kind of exceptions may be raised during
the evaluation of an expression (see, for example, [28]). To instan-
tiate VHM(X), we extend the type definition by a set of nullary ex-
ception type constructors, that is, we define T = {EX1, . . . ,EXn}.
In addition, we extend the definition of annotation with types, that
is, ϕ ::= · · · | {φ}, so that exception types can be type annotations.
Finally, the constraint definition C is extended by a predicate Ex φ

to denote that φ is an exception type.

4. VHM(X) Type System
In this section we present the logical specification of the VHM(X)
framework. We begin with the entailment relation in Section 4.1,
which is followed by a discussion of typing rules for reasoning
about programs in Section 4.2. We then show how to instantiate
the logical part of VHM(X) to encode new static analyses in Sec-
tion 4.3. Finally, we investigate the property of VHM(X) by com-
paring it to HM(X) in Section 4.4.

4.1 Constraint Entailment
The exact interpretation of constraints depends, in general, on
the analysis that is being implemented. However, we require con-
straints to always satisfy the entailment relation defined in Figure 2.
Intuitively, C1 C2 means that the constraint C1 is more restrictive
than C2. The top part of Figure 2 presents the relation with regard to
the definition of constraints, and the bottom part defines entailment
with regard to type equivalence constraints in particular.

Rule C1 expresses the monotonicity of constraints, where we
use the notation C1 ⊇C2 to denote that C1 is more constrained than
C2 by interpreting the connective ∧ as set union ∪ and each primi-
tive constraint C as {C}. The rule can also be understood by view-
ing the constraints in a set as a conjunction, which means the set
with more constraints is more restrictive. Rule C2 states transitivity,
and rule C3 requires entailment to be preserved over substitution.
Rules C4 and C5 deal with existential quantification. Since quan-
tifying a constraint with ∃ hides part of the constraint, it becomes
less restrictive [29]. Rules C6 to C8 handle choices between con-
straints. The validity of these rules can be seen by considering the
rules that result when making an arbitrary selection for the choice
D. The purpose of rule C9 is to allow the decomposition of choices
into two constraints. Again, we can verify the validity of this rule
by eliminating the variation in this rule, which results in two rules,
with each can be verified by the rule C1. This rule offers many op-
portunities for optimization.

C1
C1 ⊇C2

C1 C2
C2

C1 C2 C2 C3

C1 C3
C3

C1 C2

θ(C1)  θ(C2)

C4
C  ∃α.C

C5
C1 C2

∃α.C1  ∃α.C2
C6

C C1 C C2

C  D〈C1,C2〉

C7
C1 C C2 C

D〈C1,C2〉 C
C8

C1 C2 C3 C4

D〈C1,C3〉  D〈C2,C4〉

C9 D〈C1, true〉∧D〈true,C2〉  D〈C1,C2〉

E1 φ1 ≡ φ2  φ2 ≡ φ1 E2 φ1 ≡ φ2∧φ2 ≡ φ3  φ1 ≡ φ3

E3  φ ≡ φ E4 φ1 ≡ φ2  φ [φ1]≡ φ [φ2]

E5  D〈φ ,φ〉 ≡ φ E6  D〈φ1,φ2〉 ≡ D〈bφ1cD.1,bφ2cD.2〉

E7 C  D〈T ϕ1 φ1,T ϕ2 φ2〉 ≡ T D〈ϕ1,ϕ2〉 D〈φ1,φ2〉

A1
ϕ1 ⊆ ϕ2

C  ϕ1 ≤ ϕ2

Figure 2. Entailment relation of constraints

For the entailment of type equivalence constraints, rules E1 to
E3 express that type equivalence is reflexive, symmetric, and tran-
sitive. Rule E4 states that the type equivalence relation is a congru-
ence, where φ [] denotes a type term with a hole (context) into which
we can plug a type. Rules E5 and E6 express two fundamental in-
variances of choice types. Rule E7 allows the annotations attached
to a type constructor T that occurs in both alternatives of a choice D
to be extracted and combined with T . This rule is valid because se-
lection commutes with term construction, that is, bT φcs = T bφcs,
a fact that follows immediately from the definition of selection (see
Section 2). The importance of this rule lies in the fact that it allows
us to represent variational types succinctly. For instance, we can
push the choice into the term and factor

D〈(α {1}−−→ α)
{2}−−→ α

{1}−−→ α,(α
{1}−−→ α)

{3}−−→ α
{1}−−→ α〉

into (α
{1}−−→ α)

D〈{2},{3}〉−−−−−−→ α
{1}−−→ α .

Finally, we add the rule A1 for the partial order relation ≤ for
annotations. Together with the rules C6 through C8, we define a
partial ordering on variational annotations. Specific instances may
extend the definition of ≤.

4.2 Typing Rules
The idea of type-based static analysis is to attach annotations to
types and typing derivations and aggregate the information along
the typing process [28]. Different analyses introduce their own spe-
cific annotations and relations between annotations that have to be
integrated into the generic typing framework. To facilitate this flex-
ibility, we parameterize the syntax-directed typing rules by a family
of constraints, defining one particular constraint relationship Re for
each kind of expression e. The arity of Re varies for different con-
structors of e; as a general rule of thumb, Re needs enough parame-
ters to relate the annotations obtained from the premises of a typing
rule to the annotation provided in its conclusion. The premises of
each syntax-directed typing rule can thus be partitioned into two
parts: (i) a specification of the relation between types and (ii) a
specification of the relation between labels and annotations (ex-



VAR

Γ(x) = ∀αβ [C].τϕ1 C′ C
C′  Rx ϕ1 ϕ2

C′;Γ ` x : τ
ϕ1/ϕ2

ABS
C;Γ,(x,τ) ` e : τ

′/ϕ1
C  Rλ l ϕ1 ϕ2 ϕ3

C;Γ ` λ
lx.e : τ

ϕ2−→ τ
′/ϕ3

APP
C;Γ ` e1 : τ1/ϕ1 C;Γ ` e2 : τ2/ϕ2

C  τ1 ≡ τ2
ϕ3−→ τ C  RApp ϕ1 ϕ2 ϕ3 ϕ4

C;Γ ` e1 e2 : τ/ϕ4

LET
C;Γ ` e : σ/ϕ1

C;Γ,(x,σ) ` e′ : τ/ϕ2 C  RLet ϕ1 ϕ2 ϕ3

C;Γ ` let x = e in e′ : τ/ϕ3

CHOICE
C1;Γ ` e1 : τ1/ϕ1

C2;Γ ` e2 : τ2/ϕ2 D〈C1,C2〉  D〈τ1,τ2〉 ≡ τ

D〈C1,C2〉;Γ ` D〈e1,e2〉 : τ/D〈ϕ1,ϕ2〉

SUB
C;Γ ` e : τ/ϕ C  τ � τ

′

C;Γ ` e : τ
′/ϕ

WEAKEN
C′;Γ ` e : τ/ϕ C C′

C;Γ ` e : τ/ϕ

GEN

C1∧C2;Γ ` e : τ/ϕ αβ # FV(C1)∪FV(Γ)

C1∧∃αβ .C2;Γ ` e : ∀αβ [C2].τ/ϕ

SIMPLE

C;Γ ` e : σ/ϕ αβ # FV(σ)∪FV(Γ)

∃αβ .C;Γ ` e : σ/ϕ

Figure 3. Typing rules for VHM(X)

pressed by Re). The family of constraints Re has to be instantiated
by each specific analysis instance. Whenever the second part is not
needed, it can be simply turned off by using the constraint true as
instantiation.

The typing judgment of VHM(X) has the form C;Γ ` e : σ/ϕ ,
which computes the type schema σ for the expression e under the
typing assumptions in Γ and the constraint C that expresses the
assumptions about free type variables in Γ and σ . In addition, an
annotation ϕ is maintained by the typing relation. This annotation
links the annotation constraints to the typing process and ensures
that the information computed within the annotations is available
as results in the type derivation. Figure 3 presents the rules for as-
signing types and annotations to expressions. The syntax-directed
rules are shown in the upper half, and the remaining rules are col-
lected at the bottom.

The rule VAR allows us to instantiate a type schema ∀αβ [C].τ
with any constraint C′ as long as it entails C and the parameterized
constraint Rx ϕ1 ϕ2 is satisfied (which expresses the relationship
between the stored and returned annotation for a variable).

The rule ABS extends the traditional rule by a premise that de-
mands the relationship Rλ hold between the annotations of the ab-
straction’s body (ϕ1), the function type (ϕ2), and the whole deriva-
tion (ϕ3). Note that usually ϕ2 collects interesting information
about the evaluation of the abstraction while ϕ3 collects the infor-
mation about defining the abstraction [28]. For example, in case
of exception analysis (Section 4.3), the constraint is instantiated as
Rλ l ϕ1 ϕ2 ϕ3 =ϕ1≤ϕ2∧ϕ2≤ϕ1∧ϕ3≤∅∧∅≤ϕ3, and denotes

that the potential exceptions that may be raised in an abstraction are
those that may be raised by evaluating the body e. Moreover, there
is no exception raised for defining an abstraction.

The rule APP is more subtle. For an application e1 e2 to be
well typed, we use a more relaxed relation than requiring the ar-
gument type of e1 to match the type of e2. We require instead that
the type of e1 be equivalent to a function type whose argument
type is the type of e2. This relaxation effectively deals with the fact
that choices in type expressions increase the compatibility between
types. For example, the expression odd D〈1,2〉 should be consid-
ered type correct even though the argument type of odd (which is
int) is not equal to the type of D〈1,2〉 (which is D〈int,int〉).

The rule LET for introducing let-polymorphism simply aggre-
gates the annotations obtained from the typing of the subexpres-
sions [40].

The typing for a choice expression is obtained by combining
the result for its alternatives. Specifically, we pack corresponding
constraints and result types into the choice that we are typing, as
expressed by the rule CHOICE.

Similar to the HM(X) framework, we use a subsumption rela-
tion to allow a type to be interpreted as some other type, as cap-
tured in rule SUB. The semantics of this relation is left unspecified,
which thus allows different instances of VHM(X) to specify their
interpretations as needed for their particular purposes. For example,
in typing Haskell, it should be instantiated to the syntactical equal-
ity relation. On the other hand, subsumption can be interpreted as
a subtyping relation when subtyping is involved. In any case, we
require the relation to satisfy the standard partial ordering axioms,
the contra-variance rule for function types, plus the following rules
for choice types.

C  φ1 � φ C  φ2 � φ

C  D〈φ1,φ2〉 � φ

C  φ � φ1 C  φ � φ2

C  φ � D〈φ1,φ2〉

C  φ1 � φ2 C  φ3 � φ4

C  D〈φ1,φ3〉 � D〈φ2,φ4〉
The rule GEN borrowed from [40], introduces a type schema for
a typing judgment. The essential idea is that the constraint is split
into two parts, one part (C2) constrains the free variables in the
result type τ and the type environment Γ, while the other (C1)
doesn’t. As a result, only C2 appears as the constraint for the result
type schema. (We write S1 # S2 to express that two sets S1 and
S2 are disjoint.) Many rules exist for generalization, but this rule
has many advantages over previous ones [29]. The novel part is
that ∃α.C2 remains in the left-hand side of the judgment, whose
goal is to ensure that the constraint C2 must be satisfiable. In other
words, to generalize a type, the generalized type must at least have
one instance. Further details motivating the use of ∃α.C2 were
presented in [29].

The rule SIMPLE allows us to hide type variables and simplifies
the constraint part of a typing judgment. For example, in the judg-
ment Eq α1;Γ ` e : α2→ bool/∅, the constraint is not needed, and
we can thus transform it into ∃α1.Eq α1;Γ ` e : α2→ bool/∅. We
don’t simply drop the constraint Eq α1, because we want to main-
tain the fact that the constraint Eq α1 must be satisfiable. The rule
WEAKEN allows us to strengthen the constraint in a typing judgment
while deriving the same result.

We don’t have an instantiation rule to eliminate type schemas
because the polymorphism is introduced through the let expres-
sions and as a result, we only need to instantiate variable references,
which is already realized in VAR.

4.2.1 Constraint Optimization
We observe that in GEN constraints are moved from the assump-
tion into type schemas whereas in VAR constraints are moved in the



opposite order, which means that when a variable is referenced re-
peatedly, the constraint from the type schema will be copied many
times. Since it is important to keep the constraints to a manageable
size, rules like the seemingly complicated GEN are needed to split
constraints in premises into two parts and move as little as possi-
ble to the resulting type schema. Achieving high performance is a
main goal of the VHM(X) framework. The entailment relation de-
fined in Figure 2 and the rule WEAKEN offer many opportunities to
optimize the representation of constraints. As an example consider
the following judgement.

D〈C,Eq α〉;Γ ` elem x : [α]→ bool/∅

We assume that α /∈ FV(C) and that C is a large, complicated con-
straint. Generalizing this judgment directly with GEN will not leave
much room for optimization since the whole constraint D〈C,Eq α〉
will be copied to the result type schema. However, since C doesn’t
constrain α , it shouldn’t be moved to the type schema. We can
achieve a better result by first applying the WEAKEN rule and then
using rule C9 from Figure 2. As a result, we first obtain the follow-
ing judgment.

D〈C, true〉∧D〈true,Eq α〉;Γ ` elem x : [α]→ bool/∅

When we now apply the rule GEN, we obtain the following judge-
ment instead, which preserves the meaning: When the first alter-
native of the constraint is selected, the type variable α is not con-
strained and can be instantiated with any type.

D〈C, true〉∧∃α.D〈true,Eq α〉;Γ `
elem x : ∀α[D〈true,Eq α〉].α → bool/∅

4.3 Typing Extensions
To encode a specific analysis, the entailment  relation among
constraints may be extended, which includes an extension of≡ and
≤ as well. Moreover, two components of the typing rules have to be
instantiated: the subsumption relation � and the constraint relation
R between annotations that is used in the syntax-directed typing
rules. R consists of four constraint relationships Rx, Rλ , RLet, and
RApp. Finally, types for extended expression constants have to be
provided through the initial environment Γ0.

For 0CFA, no extension for , ≡ and ≤ is needed. Also, the
subsumption relation is interpreted as the type equivalence relation
≡. For R, we get Rx ϕ1 ϕ2 = RApp ϕ1 ϕ2 ϕ3 ϕ4 = RLet ϕ1 ϕ2 ϕ3 =
true, which says that for these cases the constraint always holds.
For the ABS rule we have Rλ l ϕ1 ϕ2 ϕ3 = {l} ≤ ϕ2, which records
each abstraction in its resulting function type.

As an example, consider again the expression e shown in Sec-
tion 1.1. We first rewrite it as e = (e1 D〈e2,e3〉) e4. Based on the
typing rules in Figure 3, we can conduct a 0CFA for e. We use the
following constraint C.

C = α2 ≡ α
{4}−−→ α ∧ α3 ≡ α1

{6}−−→ α1 ∧ α4 ≡ D〈α2,α3〉

With C the following judgments are derivable.

C;Γ ` e1 : (α2
D〈{3},{5}〉−−−−−−→ α4)

{1}−−→ α2
{2}−−→ α4/∅

C;Γ ` D〈e2,e3〉 : α2
D〈{3},{5}〉−−−−−−→ α4/∅

C;Γ ` e4 : α2/∅

Now we can apply rule APP twice and obtain the judgment
C;Γ ` e : α4/∅. Based on the annotations for α4, the result of
0CFA for e is D〈{4},{6}〉, which is the same result we obtained
in Section 1.1.

As another example consider instantiating VHM(X) for type
inference of lambda calculus with let polymorphism. There is no
extension needed here for ≡, ≤ and . We let � be type equality,

which means that no extension is needed for �. Moreover, since
type inference doesn’t involve the handling of annotations, we can
define each constraint in R to be true.

For the exception analysis, we have to extend the type system
as follows. First, for each exception type EXi, the relation  Ex EXi
is added to convey the fact that EXi is an exception type. No
extensions are needed for ≤ and ≡. Next, each constraint that
appears in the typing rules (Figure 3) has to be instantiated as
follows [28] (we use ϕ1 =ϕ ϕ2 to denote ϕ1 ≤ ϕ2∧ϕ2 ≤ ϕ1).

Rx ϕ1 ϕ2 = ϕ2 =ϕ ∅
Rλ l ϕ1 ϕ2 ϕ3 = ϕ2 =ϕ ϕ1∧ϕ3 =ϕ ∅

RApp ϕ1 ϕ2 ϕ3 ϕ4 = ϕ4 =ϕ ϕ1∪ϕ2∪ϕ3

RLet ϕ1 ϕ2 ϕ3 = ϕ3 =ϕ ϕ1∪ϕ2

No extension for� is required. The initial type environment should
be as follows.

Γ0 = {(exi,EXi),

(raise,∀α1α2[Ex α1].α1
{α1}−−−→ α2),

(handle,∀α1α2β1β2β3[Ex α1∧β3 = β2\{α1}].

α1→ α
β1
2

β1−→ α
β2
2

β3−→ α2)}

4.4 Properties
The most important property of VHM(X) is its correctness, that
is, by running a lifted analysis on a program family we obtain
a synchronized family of analysis results such that the original
analysis would yield for any particular program, obtained through
a selection with a decision δ , the same result that is obtained from
the result family also by selection with δ .

The first step in establishing this result is to show that selection
preserves the typing relation provided that the entailment relation
is preserved over selection when the instantiated R constraints
are involved. For example, if C  Rλ l ϕ1 ϕ2 ϕ3, then bCcs 
bRλ l ϕ1 ϕ2 ϕ3cs must hold. Moreover, we require that for each
type constructor T , the relation  bT ϕ φcs ≡ T bϕcs bφcs holds.

LEMMA 1. If C;Γ ` e : σ/ϕ , then bCcs;bΓcs ` becs : bσcs/bϕcs.

PROOF The proof is by an induction over the typing derivation.
Note that for each typing rule in Figure 3, the typing relation is
preserved over selection.

We show one proof case for the CHOICE rule, which is es-
tablished by induction over the structure of s. We show the case
s = D.1. (The case for s = D.2 is analogous, and the case when s
is neither D.1 nor D.2 follows by induction from the definition of
selection defined in Section 2.)

Given C1;Γ ` e1 : τ1/ϕ1 and C2;Γ ` e2 : τ2/ϕ2, the induction
hypotheses are that

bC1cD.1;bΓcD.1 ` be1cD.1 : bτ1cD.1/bϕ1cD.1 (1)

and bC2cD.1;bΓcD.1 ` be2cD.1 : bτ2cD.1/bϕ2cD.1. We have to show

bD〈C1,C2〉cD.1;bΓcD.1 ` bD〈e1,e2〉cD.1 : bτcD.1/bD〈ϕ1,ϕ2〉cD.1,

which, by definition of selection, can be simplified to the following.

bC1cD.1;bΓcD.1 ` be1cD.1 : bτcD.1/bϕ1cD.1 (2)

The additional hypothesis D〈C1,C2〉 D〈τ1,τ2〉 ≡ τ , together with
Lemma 2, gives us that bD〈C1,C2〉cD.1  bD〈τ1,τ2〉≡ τcD.1, which
can be simplified to

bC1cD.1  bτ1cD.1 ≡ bτcD.1 (3)

The result (2) we want to prove follows from (1) and (3). �

LEMMA 2. If C1 C2, then bC1cs  bC2cs.



I-VAR

Γ(x) = ∀αβ [C].τϕ1 α1 new β1 new

∃αβ .(C∧Rx ϕ1 β1∧α1 ≡ τ
ϕ1);Γ `I x : α1/β1

I-ABS
C;Γ,(x,α1) `I e : α2/β1 α3 new β2,β3 new

∃α1α2β1.(C∧Rλ l β1 β2 β3∧α3 ≡ α1
β2−→ α2);Γ `I λ

lx.e : α3/β3

I-APP
C1;Γ `I e1 : α1/β1 C2;Γ `I e2 : α2/β2 α3 new β3,β4 new

∃α1α2β1β2.(C1∧C2∧RApp β1 β2 β3 β4∧α1 � α2
β3−→ α3);Γ `I e1 e2 : α3/β4

I-LET
C1;Γ `I e : α/β C2;Γ,(x,∀αβ [C1].α) `I e′ : α1/β1 β2 new

(∃αββ1.(C1∧RLet β β1 β2))∧C2;Γ `I let x = e in e′ : α1/β2

I-EQU

C1;Γ `I e : α/β C1 C2 C2 C1

C2;Γ `I e : α/β

I-CHC
C1;Γ `I e1 : α1/β1 C2;Γ `I e2 : α2/β2 α3 new β3 new

∃α1α2β1β2.(D〈C1,C2〉∧D〈α1,α2〉 ≡ α3∧β3 = D〈β1,β2〉);Γ `I D〈e1,e2〉 : α3/β3

Figure 4. Type inference for VHM(X)

PROOF By induction over the structure of C. �
Note that the reverse of Lemma 1 also holds. In expressing this

result we use the notation Γ1 ]D Γ2 to denote an environment Γ3,
for which bΓ3(x)cD.1 = Γ1(x) and bΓ3(x)cD.2 = Γ2(x) (for any
variable x).

LEMMA 3. If C1;Γ1 ` e1 : σ1/ϕ1 and C2;Γ2 ` e2 : σ2/ϕ2, then
D〈C1,C2〉;Γ1]D Γ2 ` D〈e1,e2〉 : σ3/D〈ϕ1,ϕ2〉 is derivable and
bσ3cD.1 = σ1 and bσ3cD.2 = σ2.

PROOF Proof by contradiction with the help of Lemma 1. �
Based on Lemma 1, we can now state the following projection

theorem. Any analysis for a plain program (that was selected from a
program family) can be obtained from the corresponding family of
results produced by the lifted analysis for the program family. We
use δ to range over complete decisions, which are sets of selectors
that eliminate all the choices in C, Γ, σ and ϕ .

THEOREM 1 (Projection). Given C;Γ ` e : σ/ϕ , then ∀(δ ,e′) ∈
[[e]], bCcδ ;bΓcδ ` e′ : σ ′/ϕ ′, where σ ′ = [[σ ′]](δ ) and ϕ ′ =
[[ϕ]](δ ).

PROOF The proof is based on an induction over the structures of C,
Γ, σ and ϕ , with the help of Lemma 1. �

Finally, we observe that, disregarding annotations, VHM(X)
and HM(X) compute the same result in the absence of choices.
Using `HM to denote the typing relation of HM(X) [40], we have
the following result.

LEMMA 4. Given C, Γ and e plain, if C;Γ ` e : σ/ϕ , then
C;Γ `HM e : σ ′, where σ ′ can be obtained by eliminating anno-
tations from σ .

PROOF The proof can be established through an induction over
the typing derivation based on the typing rules in Figure 3 and
the rules in [40]. Moreover, observe that in absence of variation
constructs, the ≡ relation degenerates to type equality and the
subsumption relation � introduced in Section 4.2 degenerates to
the same subsumption relation as in [40]. �

5. Parametric Type Inference
In the specification of type-based analysis, constraints C serve as an
input. However, in implementing the analysis, we need to dynam-
ically generate and solve constraints. In this section, we discuss
constraint generation; constraint solving will follow in Section 6.

In Figure 4 we present the inference rules for the judgment
C;Γ `I e : α/β , where Γ and e are the input and C, α , and β are

the output. The presentation is an adaptation and extension of the
type inference rules for HM(X) [40] to accommodate the handling
of annotations and choices and uses the parametric constraints R
introduced in Section 4.2.

The inference rules are derived from the corresponding typing
rules (Figure 3) by moving the constraints in the premise to the
left-hand side of the judgment in the conclusion. The rules gather
constraints from subexpressions and add them to those of their
parents to ensure correctness, that is, no conditions will be ignored.
The minimality of constraints and thus the genrality of the inferred
result follow from the fact that each rule only integrates constraints
that are required for the particular construct under consideration.

For example, in I-VAR, the conclusion can be read as “when
the constraint C is satisfied, x can have any type”. Note that τϕ1

may contain reference to αβ , which is why the constraint α1 ≡ τβ1

appears inside the quantification ∃αβ . To consider another exam-
ple, in rule I-APP the constraints from subexpressions, C1 and C2,
the constraint for annotations RApp β1 β2 β3 β4, and the constraint
between the types of e1, e2, and the result type of the application
e1 e2, are simply collected in the constraint of the conclusion. The
rules follow a similar pattern as the typing rules in Figure 3.

Note that there is only one non-syntax directed rule, I-EQU,
which can be applied any time. The purpose of this rule is to keep
the size of the constraint as small as possible by employing the
relationships defined in Figure 2.

Given the inference rules in Figure 4, we can generate the fol-
lowing constraint C1 for the expression e1 = λ 1h.λ 2x.h x, which is
a part of the expression e introduced in Section 1.1. The expression
e1 then has the type α7 under the constraint C1.

C1 =∃α1α2α3α4α5α6(α1 ≡ α3∧α2 ≡ α4∧α3 ≡ α4
β1−→ α5∧

{2} ≤ β2∧α6 ≡ α2
β2−→ α5∧{1} ≤ β3∧α7 ≡ α1

β3−→ α6)

The constraints for other parts of the expression e can be generated
similarly and are omitted here.

We now investigate the relation between type inference rules in
Figure 4 and specification rules defined in 3. First, type inference
is sound, as stated in the following theorem.

THEOREM 2. If C;Γ `I e : α/β , then C;Γ ` e : α/β .

PROOF The proof is based on an induction over the structure of the
expression e. �

Also, type inference is complete and principal and least con-
strained in the sense that the constraint generated by the relation `I
is minimal while satisfying the typing judgment discussed in Sec-



V : C×θ →C×θ

(a) V (∃αβ .C,θ) = (C1,θ1\{α,β}) when {α,β} # vars(θ)
where (C1,θ1) = V (C,θ)

(b) V (D〈C1,C2〉,θ) = (D〈C3,C4〉,θ3tD θ4)
where (C3,θ3) = V (C1,θ)

(C4,θ4) = V (C2,θ)

(c) V (D〈C,C〉,θ) = V (C,θ)

(d) V (C1∧C2,θ) = (C3∧C4,θ4) when C1 or C2 not plain
where (C3,θ3) = V (C1,θ)

(C4,θ4) = V (θ3(C2),θ3)

(e) V (D〈φ1,φ2〉 ≡ D〈φ3,φ4〉,θ) = V (D〈φ1 ≡ φ3,φ2 ≡ φ4〉,θ)
(f) V ?(D〈φ1,φ2〉 ≡ φ3,θ) = V (D〈φ1 ≡ φ3,φ2 ≡ φ3〉,θ)
(g) V ?(α ≡ φ ,θ) = (true,{(α,φ)}◦θ) when α /∈ FV(φ)
(h) V (φ1 ≡ φ2,θ) = when D ∈ dims(φ1,φ2)

V (D〈bφ1cD.1 ≡ bφ2cD.1,bφ1cD.2 ≡ bφ2cD.2〉,θ)
(i) V (φ1 ≡ φ2,θ) = U (φ1 ≡ φ2,θ) when φ1 and φ2 plain
(j) V (P,θ) = U (P,θ) when P analysis specific

Figure 5. Variational constraint solving

tion 4.2. We express this result in the following theorem, where we
extend the definition of � to type schemas in the theorem, follow-
ing a standard definition in [29].

THEOREM 3. Given C;Γ ` e : σ/ϕ , then C′;Γ `I e : α/β such that
C  ∃αβ .C′, C  ∀αβ [C′].α � σ and C  β ≤ ϕ .

PROOF The proof is based on an induction of the derivation tree of
C;Γ ` e : σ/ϕ . �

6. Variational Constraint Solving
To compute an analysis result, we need to solve the constraints
generated in the type inference phase. Since different analyses
will introduce quite different constraints, there will be no single
constraint solving algorithm that solves all generated constraints.
Therefore, our algorithm will defer to an application-specific solver
U to handle constraints that are specific to a particular analysis. U
has to be provided by the implementor of the static analysis, but
there is potential for the reuse of one solver for different analyses.

6.1 A Constraint Solving Algorithm
We say a constraint is primitive if it doesn’t contain choices or
existential quantification. In this section, we will use P to range
over primitive constraints.

We assume that U can be applied to a given set of constraints
C1 and a given substitution θ1 and returns a residual constraint
C2 together with substitution θ2. We require that θ2(C2) = C2
and C2  θ2(C1). Note that constraint solving also involves the
manipulation of mappings from β to ϕ . These can be treated like
substitutions and are thus stored in θ as well.

Based on U , we build a variational constraint solving algorithm
V , shown in Figure 5, which solves the core constraints defined in
Figure 1. The signature of V is the same as that for U . In the
following we will briefly discuss the different cases. When none
of the cases and conditions apply, the constraint solver fails, which
indicates that the analysis for the particular program family cannot
produce a result. It would be nice if VHM(X) could produce partial
results in the presence of unsolvable constraints for some program
variants. We can envision a corresponding extension following the
approach presented in [9].

Case (a) deals with existential constraints ∃αβ .C, which can
be solved by solving C and then removing the mappings for α

and β from the result substitution (indicated in Figure 5 by using

the notation θ1\{α,β}). The condition {α,β} # vars(θ) ensures
that the mappings for α and β will not be removed in θ , where
vars(θ) compute the domain of θ and all free variables in θ . Thus,
to make this rule applicable, we may have to first rename the bound
variables α and β . Note that when C is unsatisfiable, then so is
∃αβ .C. Note also that our rule to solve existential constraints is
simpler than the one given in [40] because our constraints are only
based on boolean algebra and not cylindric algebra.

Case (b) shows that solving a variational constraints D〈C1,C2〉
requires solving each alternative. The potentially different residual
constraints are then combined again in a choice. The potentially
differing substitutions are combined with the operation t, which is
defined as follows.

θ1tD θ2(α) =


D〈θ1(α),θ2(α)〉 α ∈ dom(θ1)∧α ∈ dom(θ2)

D〈θ1(α),α1〉 α ∈ dom(θ1)∧α1fresh
D〈α1,θ2(α)〉 α ∈ dom(θ2)∧α1fresh
α otherwise

The reason for generating fresh type variables is to reflect the fact
that an alternative of a choice might not have been constrained.
For example, when α /∈ dom(θ2), the second alternative will be
replaced with a fresh type variable, which allows the second alter-
native to have any type.

Case (c) allows us to save work when constraints of two alter-
natives of a choice are the same, and case (d) deals with constraints
of the form C1∧C2, where either C1 or C2 is not plain. (Otherwise,
the constraints should be dealt with by U .) A conjunction is solved
in sequence by threading updated substitutions.

The next group of cases (e) through (i) deals with type equiv-
alence constraints of the form φ1 ≡ φ2. Case (e) handles choices
in the same dimension, which reduces to solving the equivalence
constraint between the corresponding alternatives. In case (f) one
side is a choice while the other side is not (or a choice in a differ-
ent dimension). In these cases, both alternatives of D are required
to be equivalent with the type on the other side. The ? attached
to V in this case (and the next) indicates that there is a dual case
that can be handled correspondingly, where the two arguments to
≡ are swapped. Rule (g) deals with the case that one side is a type
variable α , which succeeds by extending the substitution.

The situation becomes a little more complicated when the two
types are of different form and contain choices, which is addressed
by the rule (h). The general idea is to eliminate choices in the types
so that they become simpler, which may lead to other rules being
applicable. We achieve this by making selections into the types and
and create a choice constraint. (The function dims determines the
set of dimension names contained in types and expressions.)

A potentially more efficient strategy is to inspect the structures
of the types and take the appropriate actions. For example, if the
constraint is of the form T ϕ1 φ1 ≡ T ϕ2 φ2, we can instead solve
the constraints ϕ1 = ϕ2∧φ1 ≡ φ2. However, this works only when
the constructor T forms a free algebra, that is, has no associated
equational theory; it fails, for example, when T is commutative.

For unifying two plain types, we dispatch the task to the un-
derlying solver U , as expressed in rule (i). Solving the constraints
between two annotations of the form ϕ1 ≤ ϕ2 is similar to solving
the type equivalence constraint and will not be repeated here.

Finally, when a constraint is domain specific, it is solved by the
underlying solver U , as shown in case (j).

With the constraint solving algorithm, we derive the following
solution θ1 for the constraint C1 generated in Section 5.

θ1 = {α7 7→ (α4
β1−→ α5)

{1}−−→ α4
{2}−−→ α5,β2 7→ {2},β3 7→ {1}}

Note that θ1(α7) is also the inferred type for the expression e1
(λ 1h.λ 2x.h x). With a little extra work, we can generate and solve



constraints for the other parts of the expression e (introduced in
Section 1.1) and verify that the inference result is the same as the
result presented in Section 4.3 for e.

6.2 Relation to Variational Unification
Even though the variational constraint solving algorithm presented
in Figure 5 is more general than the variational unification algo-
rithm developed in [10], it is also simpler. We will use the follow-
ing example to illustrate the differences. Note that in [10] we use
the notation ≡?, instead of ≡, to denote a unification problem.

A〈Int,α〉 ≡ A〈α,Bool〉
The variational unification algorithm presented in [10] consists of
three steps:

(a) qualify the unification problem by attaching to each type vari-
able a path of selectors for enclosing choices,

(b) solve the qualified unification problem with a unifier for the
qualified problem, and

(c) complete the unifier obtained in step (b) to a unifier for the
original unification problem.

In the given example, we get for step (a) the following unification
problem.

A〈Int,αA.2〉 ≡ A〈αA.1,Bool〉
We then obtain the following qualified unifier for step (b).

{αA.1 7→ Int,αA.2 7→ Bool}
Finally, step (c) yields the completed unifier {α 7→ A〈Int,Bool〉}.
The decomposition of the algorithm into three steps poses a big
challenge to both the implementation and the correctness proof of
the algorithm.

Our constraint solving algorithm in Figure 5 simplifies the pre-
vious algorithm through the use of context splitting (cases (e) and
(f)) and context merging (through the operation θ1 tD θ2). Fol-
lowing this idea, we derive for the problem Int≡ α the solution
θ3 = {α 7→ Int} in the context of the first alternative of A and θ4 =
{α 7→ Bool} in the context of the second alternative of A. The oper-
ation θ3tD θ4 produces the expected solution {α 7→ A〈Int,Bool〉}.

The constraint solving algorithm in Figure 5 has the time com-
plexity O(mn) when it is instantiated with Robinson’s unification
algorithm, where m and n are the size of the left and right constraint,
respectively. This is the same as the time complexity of step (b) of
the previous variational unification algorithm. The implementation
of the new algorithm, however, is much simpler. Moreover, proving
the properties of the algorithm is also easier. We’ll do this next.

6.3 Properties
The solver V inherits desirable properties of U . For example,
V is sound and principal provided that U is. We say (C1,θ1) is
principal for (C,θ) if C1  θ1(C) and for any other (C2,θ2) such
that C2  θ2(C) implies θ1 v θ2 and C2  θ2(C1). Here θ1 v θ2
holds if there is some θ3 such that θ2 = θ3 ◦ θ1. The definition is
similar for the case of primitive constraints.

THEOREM 4 (Soundness of V ).
If (P′,θ ′p) = U (P,θp) implies P′  θ ′p(P) and θ ′p(P

′) = P′, then
(C′,θ ′) = V (C,θ) implies C′  θ ′(C) and θ ′(C′) =C′.

THEOREM 5 (Principality of V ).
If (P′,θ ′p) =U (P,θp) implies (P′,θ ′p) is principal for (P,θp), then
(C′,θ ′) = V (C,θ) implies (C′,θ ′) is principal for (C,θ).

PROOF The proof for both theorems is based on the induction over
the structures of constraints C. �

-- Module F1
class A extends Object {

D mc(Object a) {
return new D() ;

}
C ma(C e) {

return new C() ;
}

}

class C extends Object {}
class D extends C {}

-- Module F2
class A extends Object {

F mc(Object a) {
return new F() ;

}
E ma(E e) {

return new E() ;
}

}

class E extends Object {}
class F extends E {}

-- Module F3, which requires exactly either F1 or F2
Object test2 = (new A()).ma ((new A()).mc(new Object())) ;

-- Output of FFJPL
*** Exception: Type error: Method invocation:
new A().ma(new A().mc(new Object())) is not well-formed!

-- Output of VHMX(X)
The SPL is well typed.

Figure 6. Discrepancy between FFJPL and VHM(X).

Thus the solver V has the same capability as U . For example,
if U is the Robinson unification algorithm, then V is a variational
unification algorithm as developed in [10]. If U is the UCFA algo-
rithm [28] for 0CFA analysis, then V is the solver for variational
0CFA analysis.

We conjecture that V and U are in the same complexity class.
For example, when U is decidable, then so is V . Also, when U is
semi-decidable, then so is V . We leave this for future work.

7. Evaluation
Does our framework make true on its promise to increase the ac-
curacy of analysis lifting under an acceptable amount of overhead?
We address this question in the following two subsections.

7.1 Reliability of Analysis Lifting
To evaluate the accuracy of VHM(X), we could compare its output
with our previously developed variational type inference. However,
it might be more informative if the evaluation is conducted by com-
paring VHM(X) with tools developed by other researchers. Since
most variability-aware analyses have been done for imperative lan-
guages, we have choosen the FFJPL (Feature Featherweight Java
Product Lines) system2 developed by Apel et al. [1] as our eval-
uation counterpart. Another advantage of using FFJPL is that it
demonstrates that our lifting framework is not tied to the specific
calculus presented in this paper. Thus we have adopted our frame-
work to Featherweight Java (FJ) and refer to this version as VFJ(X).

The idea of FFJPL is to allow each module to define new
classes, extend, or refine classes defined in another module. Each
FFJPL program consists of a set of modules and a feature model,
which describes how modules may be combined together. To derive
a particular program, decisions about which modules to select have
to be made. All selected modules constitute the product.

For example, Figure 6 presents a small FFJPL program, which
consists of three modules F1, F2, and F3. The feature model (not
shown here) requires that the presence of F3 requires exactly one
of F1 or F2. In both modules F1 and F2, we define a class A with
the same methods mc and ma. However, note that their signatures
are different in different modules. Module F3 contains a single
statement for creating new objects. This product line contains 2
valid products, one consisting of modules F1 and F3, and the other

2 http://www.fosd.de/ffj



consisting of modules F2 and F3. It is easy to check that each
product is well typed. According to the completeness theorem
in [1], a product line is well typed if all valid products are well
typed. Thus, the product line in Figure 6 should be well typed.

However, while our VFJ(TC) (VFJ(X) instantiated to type
checking) correctly reports that the product line is well typed,
FFJPL reports, incorrectly, a type error. We have not attempted
to debug their type system or implementation. The important les-
son here is that the general lifting framework VFJ(TC) gets it right
while the hand-crafted analysis is erroneous.

Of course, this anecdotal piece of evidence does not prove the
superiority of VFJ(X) or VHM(X) in general, but it is a reflection
of the fact that the stratified approach that requires fewer definitions
and much less implementation effort is more likely to be correct.3

For illustration, we present the typing rule for method invoca-
tions in both systems.

T-INVK-FFJPL
Γ ` t0 : E aΦ ∀E ∈ E : validref(Φ,E.m) Γ ` t : G aΦ

mtype(Φ,m, last(E)) = H→ F ∀G ∈ G,∀H ∈ H : G <: H
Γ ` t0.m(t) : F11, . . . ,Fn1, . . . ,F1m, . . . ,Fnm `Φ

T-INVK-VFFJX
C;Γ ` t0 : E aΦ/ϕ1

validrefc(Φ,E.m) C;Γ ` t : G aΦ/ϕ2
G = G1×·· ·×Gn mtypec(Φ,m, lastc(E)) = H→ϕ3 F

C  G� H aΦ C  RInvk ϕ1 ϕ2 ϕ3 ϕ4

C;Γ ` t0.m(t) : F aΦ/ϕ4

The rule T-INVK-FFJPL is a reproduction of the T-INVKPL rule in [1]
except for renaming B, C, and D to F , G, and H, respectively, to
avoid notational conflicts. The typing relation Γ ` t : E a Φ says
that when feature Φ is chosen (similar to the notion about applying
a selector to an expression), the expression t can have any potential
mutually exclusive class type in E. An expression can have more
than one type because the same expression can have different types
when different modules are selected.

We will not analyze each part of this rule. However, a notable
difference is how types are represented. While FFJPL uses a flat list
to represent a set of alternative types, VFJ(X) uses nested choice
types to represent alternative types.

The bottom line is this. An important merit of the lifting frame-
work is that the correctness of a variational analysis depends only
on the easier to establish correctness of a single analysis (and its
correct embedding in the framework).

7.2 Framework Runtime Overhead
We would like to know the overhead incurred by the general ma-
chineries of the lifting framework over manually lifted variational
analysis algorithms. To this end, we have implemented VHM(X)
and VFJ(X) (mentioned in Section 7.1) in Haskell and compared
three instantiations with hand-crafted analyses.

First, we compared the FFJPL implementation with VFJ(TC)
for 5 product lines (1 came with the FFJPL implementation and
four others were created by us). The running time of VFJ(TC) is at
most 32% slower than the FFJPL implementation.

Due to the limited number of available FFJPL product lines,
we also compared the performance of VHM(X) with our own pre-
viously developed variational type inference algorithm for Varia-
tional Lambda Calculus (VLC) [10] and a manually created varia-
tional control-flow analysis algorithm.

3 The definition of FFJPL is given in 26 rules, while the VFJ(X) extension
requires only 6 rules. Moreover, the FFJPL implementation of the typing
rules takes 250 LOC, while the VFJ(X) extension takes 30 LOC.
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Figure 7. Efficiency comparison between VHM(X) and VLC

For the definition of VHM(TyInf), that is, VHM(X) instantiated
for type inference, no extensions for T , A , C and � are needed;
each element of R is set to true, and U is the Robinson unification
algorithm [36]. To instantiate VHM(X) to VHM(TyInf), 9 LOC of
Haskell are needed (to declare the class instance to specify R).
On the other hand, VLC has over 220 LOC of Haskell. (Here,
we exclude the code for the Robinson unification algorithm that
is common to both implementations.)

We show the performance for the two analyses in Figure 7. All
times have been measured on a laptop with a 2.8 GHz dual core
processor and 3GB memory running GHC 7.0.2 on Windows XP.
We reuse the test cases from [10] that represent the worst-case per-
formance for VLC. The X-axis denotes the number of dimensions.
For these cases VLC doesn’t do much better than the brute-force
approach of generating and checking each variant individually. This
is because there is no sharing in the expressions. For example, the
expression with 21 dimensions essentially represents 221 different
variants by using a lot of abstractions.

The graph labeled “vhmx-naive” represents the performance of
the most conservative strategy for solving type equivalence con-
straints using rule (h) from Figure 5. When two types are non-
plain and the root of the types are not choices, the constraint is
solved by splitting it into two constraints. Although this ensures
correctness, it misses an opportunity for sharing. For example,
given the constraint int→ bool≡ int→ D〈bool,α〉, using (h),
this will leads to two subproblems int→ bool≡ int→ bool and
int→ bool≡ int→ α .

An alternative, more aggressive approach exploits the fact that
two function types are equivalent if their corresponding argu-
ment and return types are equivalent. This means that we can
decompose the above constraint into subproblems int≡ int and
bool≡ D〈bool,α〉, which are more efficient to solve. The graph
labeled “vhmx” in Figure 7 shows the performance of an imple-
mentation of VHM(X) that employs this strategy.

We can observe that for the “vhmx” implementation the slow-
down of VHM(X) over VLC is bounded by a factor of 2. This is
also the case for non-worst-case expressions that offer more oppor-
tunities for sharing.

In Figure 8, we show another performance comparison between
VHM(X), VLC, and the brute-force approach. The expressions
used for Figure 8 are created from the expression used in Figure 7
whose number of dimensions is 21 by expanding the expressions
by adding choice alternatives. Note that we only show part of the
brute-force curve because the running time of it grows exponen-
tially fast in the size of expressions, and showing its whole curve
will make the difference between “vhmx” and VLC indiscernible.
Again we observe that the running time of “vhmx” is within a factor
of 2 of VLC, demonstrating that the price we pay for the flexibil-
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Figure 9. Efficiency comparison between VHM(X) and manually
created 0CFA for variational programs

ity is acceptable. An interesting phenomenon in Figure 8 is that
there is a more conspicuous discrepancy between the performance
of “vhmx” and “vhmx-naive” than in Figure 7. One potential reason
for this is that there are more opportunities for sharing for the ex-
pressions in Figure 8 than for those in Figure 7, and while “vhmx”
takes the full advantage of these opportunities, “vhmx-naive” fails
to do so.

Finally, we have also compared the performance of
VHM(0CFA) and a manually lifted 0CFA. For this analysis
no extension for T , A , C and � are needed. For R, we only
need Rx l ϕ1 ϕ2 ϕ3 = {l} ≤ ϕ2 as discussed in Section 4.2. For
U , we use the unification algorithm presented in [28]. Again,
instantiating VHM(X) for VHM(0CFA) requires 9 LOC whereas
the hand-written 0CFA requires over 240 LOC in Haskell.

Figure 9 shows the running times of the brute-force approach
that generates each program variant and applies 0CFA to each
variant separately, VHM(0CFA) and the manually lifted 0CFA.
Note that, like in Figure 8, we can’t show the whole curve of the
brute-force approach. To give a sense of the complexity, it takes the
brute-force approach about 10 days to finish the case when the size
is 18831. We observe that the slowdown of VHM(0CFA) over the
manually created variational 0CFA is bounded by 1.73.

One possible reason for the smaller overhead for VHM(0CFA)
compared to VHM(TyInf) is that more of the infrastructure of
VHM(X) is used in 0CFA than in type inference. We conjecture that
the overhead will be even lower for more complicated analyses, but
we leave this question for future work to verify.

8. Related Work
The idea of this paper is inspired by the work of HM(X) [40, 29]
and recent numerous efforts to verify properties of software product
lines [2, 10, 14, 24, 22, 4, 25, 11, 1, 12, 17]. In this section, we
compare VHM(X) with the most closely related work.

HM(X) and extensions Odersky et al. [29] formalized an extensi-
ble constraint-based type inference framework for Hindley-Milner-
style type systems. Later, Sulzmann et al. [40] reformulated and
improved the HM(X) framework by shifting the type descriptions
from a type language to a constraint language.

We have built VHM(X) on the constraint-based HM(X) frame-
work [40] and have extended it by adding labels to abstractions and
annotations to types. The computation of annotations is expressed
through relations between annotations attached to types and typing
derivations, which are supplied as arguments for correspondingly
parameterized syntax-directed typing rules. As a result, VHM(X)
can encode more static analyses than HM(X). Second, and most
importantly, we have introduced choices to all components of static
analyses (types, constraints, and annotations), which allows us to
lift static analyses to variational programs.

Type-based static analysis Type-based analysis, together with
dataflow analysis, constraint-based analysis and abstract interpre-
tation, are the main static analysis approaches [28].

Several type-based static analysis frameworks have been pro-
posed. For example, the framework developed by Hankin and
Métayer [20] is based on untyped lambda calculus and allows users
to extend type as well as expression definitions. The biggest dif-
ference to VHM(X) is the way in which analyses are encoded. In
VHM(X), we use type annotations whereas in their system this is
done by interpreting types as specific sets of values (which requires
users to also specify mappings from types to sets of values when
encoding a static analysis). This makes it impossible to attach in-
formation to typing derivations, making the encoding of side-effect
analysis and exception analysis close to impossible.

Instead of building an extensible analysis framework, Prose [34]
took another approach by formalizing static analyses in a vari-
ant of System F [42]. The expressiveness of System F, together
with the extensions, makes the proposed approach very expressive:
some static analyses can be directly encoded without any extension
needed from users. However, there are also some drawbacks. First,
the problem of type checking System F is undecidable [42], which
makes encoded static analyses undecidable as well. Second, the ex-
traction of useful information is program specific and not analysis
specific, that is, even for the same analysis different information has
to be supplied to derive the analysis results for different programs.
For example, to find dead expressions in a program, users first have
to find the substitution such that the most general derivation tree for
the program is preserved, which is not a simple task. Finally, with
the limitation to two universes ⊥ and >, some static analyses are
hard to embed. For example, it is not clear how to formalize effect
and exception analysis.

The most important difference between VHM(X) and other
frameworks is that instead of encoding analyses for single pro-
grams, VHM(X) lifts static analyses to program families.

Analyses for program families The software product line com-
munity has developed numerous variability-aware static analysis
approaches (see citations above). A crucial difference to VHM(X)
is that VHM(X) is a generic framework that can be instantiated to
different analyses.

The main idea of variability-aware analysis is to take special ac-
tions when encountering variation constructs so that a whole pro-
gram family can be checked directly. Liebig et al. [25] discussed
that the principle for variability-aware analysis is to keep variability



local and follow the ideas of late splitting and early joining. For ex-
ample, when typing the expression id D〈succ,odd〉 3, late splitting
means we shouldn’t separate the typing before we encounter the
choice D〈succ,odd〉. Thus, id should only be type checked once.
Similarly, early joining ensures 3 is also only checked once. In [10]
we have identified that sharing and reduction are the main factors
for improving performance in variational type inference. Sharing
corresponds to the principle of keeping variability local. Reduction
means to replace a choice whose alternatives have the same type
with either alternative. In this paper, we have exploited the idea of
sharing and reduction to make VHM(X) efficient.

Bodden [3] has described the automatic lifting of static analyses
to variational programs. His approach applies to dataflow analyses
that are based on the IFDS framework [35]. However, a formal
relation between the lifted analyses and the original analyses is
not given. In contrast, analyses that are lifted within the VHM(X)
framework provably retain their correctness for program families.

Choice types The concept of named choices was introduced in
[18] as a basis for a unified and principled representation for soft-
ware variations. This choice representation has facilitated a method
for variational type inference [9, 10]. The idea of choice types was
also adopted by Kästner et al. [24] to implement an efficient type
checker for C programs with compilation macros and by Liebig et
al. [25, 26] for implementing scalable type checking and dataflow
analysis. Recently, we have successfully employed choice types for
providing better feedback when type inference fails [7, 8].

9. Conclusions
Observing a growing need for static analyses for program fami-
lies, we have developed the framework VHM(X) that supports the
automatic generation of such analyses from single-program anal-
yses. The two major advantages of our approach are the ability to
reuse much of the computation infrastructure for new analyses and
a correctness assurance (lifted analyses work correctly if the orig-
inal analyses do). The presented framework helps to separate the
concerns of static analysis and program variability, that is, any new
program analysis can first be developed for the single-program case
and then automatically lifted to work on program families.
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Strategies for Product-Line Verification: Case Studies and Experi-
ments. In IEEE Int. Conf. on Software Engineering, pages 482–491,
2013.
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