
A Language for Software Variation Research

Martin Erwig
School of EECS

Oregon State University
erwig@eecs.oregonstate.edu

Abstract
Managing variation is an important problem in software engineer-
ing that takes different forms, ranging from version control and
configuration management to software product lines. In this paper,
I present our recent work on the choice calculus, a fundamental
representation for software variation that can serve as a common
language of discourse for variation research, filling a role similar to
lambda calculus in programming language research. After motivat-
ing the design of the choice calculus and sketching its semantics, I
will discuss several potential application areas.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Extensibility,
Version Control; D.2.9 [Software Engineering]: Management—
Software Configuration Management; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Theory

1. Introduction
Software variation can take quite different forms. Software can
have different versions, which refer to variations of the software
over time. Software can also be built to have different sets of fea-
tures, which provides different functionalities. Moreover, we can
consider alternative implementation choices in software. Finally,
there is variation in terms of the context in which software is used;
that is, software can exist in different configurations. Whole sub-
fields have emerged for each of these kinds of variations, for exam-
ple, feature modeling [4, 14] and software product lines [19, 20],
feature-oriented programming [3, 18], revision control systems
[21], and software configuration management [11]. What this fact
demonstrates first and foremost is that software variation is an im-
portant topic that draws much attention and addresses important
concerns of software development.

In addition, however, this specialization also raises the ques-
tion of whether all these forms of variation are completely differ-
ent or whether they have something in common. In the latter case,
wouldn’t it be a good idea to investigate the core ideas they share
and identify general properties of variations that are valid in all
these different areas? The potential benefits of studying variations
from a general perspective include (1) a more profound understand-
ing of the issues involved in variation management, (2) putting gen-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’10, October 10–13, 2010, Eindhoven, The Netherlands.
Copyright c© 2010 ACM 978-1-4503-0154-1/10/10. . . $10.00

eral results to use in several specialized areas, and (3) transferring
results developed in one area to other areas. In addition, one partic-
ular benefit will be the opportunity for the integration of different
kinds of variation.

In this paper I will present a language to represent and reason
about variation. After motivating the design of the language in Sec-
tion 2, I will sketch its semantics and discuss some of its properties
in Section 3. The main part of the paper will be a description of pos-
sible applications in Section 4. After a discussion of related work
in Section 5, conclusions follow in Section 6.

2. The Elements of Variations
In this section I will introduce the concepts of the choice calcu-
lus [10] through a small Haskell program for manipulating graphs.
Suppose our goal is to implement a module for supporting compu-
tations with directed graphs. As a simple example we consider the
implementation of the function suc that computes the successors
for a given node in a graph. The first decision we are faced with is
how to represent graphs. A very simple approach is to use a list of
edges where each edge is given by a pair of integers.

type Node = Int
type Graph = [(Node,Node)]
suc g v = [w | (u,w) <- g, u==v]

The implementation of suc uses a list comprehension to find all
edges in g that originate in the node v and projects on their second
component.

An alternative is to employ an adjacency list representation for
graphs, that is, a list of nodes, each paired with the list of its
successor nodes.

type Node = Int
type Graph = [(Node,[Node])]
suc g v = head [ws | (u,ws) <- g, u==v]

The implementation of suc is very similar: Again, find the node v,
which is in this representation directly paired with all of its succes-
sors. Since the list comprehension returns a (single-element) list of
a successor lists, we have to extract it using the head function. We
assume that in the adjacency list representation each node occurs
only once with all of its successors. Therefore, the list comprehen-
sion will result in a list of one element and the head function yields
the sought successor list. Note also that if v is not present in the
graph, the suc function will produce a runtime error since the list
comprehension will result in an empty list.

Which representation should we choose? In general, this deci-
sion depends on what further plans we have for the program. Some
operations are better supported by the first representation, other op-
erations are easier to implement or are more efficient when using
the second representation. For example, we have already seen that

the two implementations of suc differ in their behavior for non-
existing nodes. Another difference is that we cannot represent iso-
lated nodes with the first approach.

Whenever we start a programming project, it is not always clear
which operations we will need, and therefore the choice between
the two representations is not obvious. It would therefore be helpful
if we could delay this decision until later. Maybe we even want to
maintain both versions forever. In any case, it would be nice if we
could keep both options open and assume that both representations
are available.

2.1 Choices
In practical terms, we would like to write just one Haskell program
and express a choice between the two alternatives directly within
the code. Alternatively, we could consider writing two separate
programs, but this approach quickly leads to code redundancy,
which entails the danger of update anomalies, a problem I will
discuss in more detail in Section 2.3.

In a combined program, we have to make a choice at two places,
the type definition for Graph and the definition for the function
suc. What do we need to represent each choice? Of course, in each
case we need the two alternative code fragments and an annotation
that marks them as such. In addition, we need some aspect in the
representation that allows us to systematically select alternatives
later. One idea that quickly comes to mind is to assign tags to the
alternatives. With this idea we can show choices as mappings from
tags to alternatives.

We use angle brackets to enclose mappings and a colon to
separate a tag from the alternative it labels. Using this notation,
a combined graph program looks as follows.

type Node = Int
type Graph = [(Node,〈rel: Node,adj: [Node]〉)]
suc g v = 〈rel : [w | (u,w) <- g, u==v],

adj: head [ws | (u,ws) <- g, u==v]〉

We can recover each of the original two programs by traversing
this annotated program and consistently selecting alternatives with
either one of the tags rel or adj from each choice.

In this example we can notice the two implementations for suc
share much of their code, which raises the question of whether
the common part can be factored out of the choice. If we don’t
care about using different variable names, w and ws, to bind single
and lists of nodes, respectively, it seems we can simply factor out
the application of the head function in a choice. However, it is
not immediately clear what we should put into the alternative for
the rel implementation. In the original program no function was
applied, so we really want to leave that alternative empty in the
choice, which we indicate by using the symbol ε . We can therefore
represent the variation in the implementation as follows.

suc g v = 〈rel: ε,adj: head〉 [w | (u,w)<-g, u==v]

In general, we must be careful with such a representation since vari-
ation annotations do not operate on strings, but on abstract syntax
trees; that is, the first alternative of the above choice expression
represents the application of ε to the list comprehension, but there
is no such thing as an empty function in Haskell. We could instead
use the identity function in the alternative for rel.

suc g v = 〈rel: id,adj: head〉 [w | (u,w)<-g, u==v]

However, that will cause the generation of a strange-looking varia-
tion when we select the alternative rel, because we obtain a spurious
id function preceding the list comprehension. Therefore, we shall
adopt the convention that any occurrences of ε in applications, such
as ε e or e ε , that occur after a selection will be replaced by e.

In general, factored representations have the advantage of avoid-
ing update anomalies. On the other hand, a fully factored represen-
tation is sometimes more difficult to edit. Compare, for example,
the first definition of suc with the following one in which use the
choice 〈rel: w,adj: ws〉 to retain the different variable names in the
alternatives.

suc g v = 〈rel: ε,adj: head〉
[〈rel: w,adj: ws〉 | (u,〈rel: w,adj: ws〉)<-g, u==v]

The above code is much harder to read, but less redundant. It should
not be too surprising that different representations are more or less
suited for different purposes. If we can map unambiguously be-
tween different representations, we can exploit this fact. In Section
4.1 I will show a simple transformation rule that allows the factor-
ing of common contexts into or out of choices.

It is clear that in this example the two choices are synchronized
in the sense that if we select, say adj, for the type definition choice,
we also need to select adj for the choice defining suc, because oth-
erwise we would introduce a type error into the selected program.
This synchronization can be easily achieved by defining the selec-
tion operation to take one tag, such as adj, and select it from all
choices in the program. However, this solution is problematic since
it requires that all tags be globally visible. This can be a problem
when we want to merge two annotated files that have some tags in
common that are used to represent independent choices that should
not be synchronized.

A further problem is caused by the fact that synchronized
choices should have the same number of alternatives and the
same tags. Consider, for example, what happens if we extend the
type definition for Graph by an incidence matrix implementation,
tagged with mat, but we forget to extend the definition of suc ac-
cordingly. If we select mat, we end up with a partially annotated
program: The type definition has been selected, but the definition
for suc has not. In order to obtain a plain program, we have to per-
form a further selection, which can be only rel or adj, and that can
lead to a program with a type error, or worse, to a program that
performs nonsense computations that might remain undetected for
a long time.

The problem is that the shown representation does not enforce
the necessary constraints among synchronized choices. A solution
to this problem is to organize all synchronized choices into a larger
structure. This is what I will describe next.

2.2 Dimensions
A dimension defines the tags and scope for a set of synchronized
choices. Since a program can, in general, contain choices in differ-
ent dimensions, each dimension is identified by a name. Moreover,
the choices that belong to that dimension are labeled by the dimen-
sion name to express this connection. A dimension definition has
the following general form.

dim D〈t1, . . . , tn〉 in e

Here D is the name of the dimension, t1, . . . , tn are its tags (which
must be pairwise different), and expression e is the scope of the
dimension, that is, all choices in e that are labeled by D are bound
by this dimension declaration (as long as they are not preceded by
another definition for D).

Using a dimension declaration, our graph example can be ex-
pressed as follows.

type Node = Int
dim Rep〈rel,adj〉 in
type Graph = [(Node,Rep〈Node,[Node]〉)]
suc g v = Rep〈ε,head〉 [w | (u,w) <- g, u==v]

We can observe that choices do not contain tags anymore. Instead,
the correspondence between tags and alternatives is established by
position; that is, the ith alternative in a choice is selected by tag ti of
its binding dimension. A choice has therefore the following general
form.

D〈e1, . . . ,en〉
Coming back to the example, one might wonder about the position
of the dimension declaration. Does it have to appear in the second
line or can it be moved around? Since the scope of a dimension
declaration is the expression following the in keyword, the dim
declaration could just as well be moved to the first line, but it could
not be moved into the type definition since this would leave the
second choice unbound. Note that introducing a copy of the dim
declaration in the last line would not fix this problem since that
change would lead to two independent dimensions, which would
force us to select from the two choices independently—as we have
seen, we need them to be synchronized.

The purpose of dimensions is to structure choices and group
them into meaningful units. Since dimensions are binding con-
structs that can appear anywhere in a program, one question is what
it means when one dimension is nested within another one or within
a choice. Does the nesting matter, or is it always possible to trans-
form nested dimensions into some “flat” normal form?

Consider as an example the different behavior of the two suc
implementations for nodes that are not contained in a graph. We
could envision a variation of the code that allows us to choose
between an error-producing or error-ignoring behavior for the suc
implementation within the adj implementation. To that end we can
use a function safe that extracts the first element only from a non-
empty list and returns an empty list otherwise.

safe (s:_) = s
safe [] = []

Now we can add a dimension to the second alternative of the suc
implementation that provides a choice between head and safe.

dim Rep〈rel,adj〉 in . . .
suc g v = Rep〈ε,dim Err〈yes,no〉 in Err〈head,safe〉〉

[w | (u,w) <- g, u==v]

The nested dimension expression looks quite complicated, and it
might make the fact that there is a decision to make in addition to
the selection of the graph representation less obvious. Can we move
the Err dimension out of the choice and rewrite the program in the
following way?

dim Rep〈rel,adj〉 in . . .
dim Err〈yes,no〉 in
suc g v = Rep〈ε,Err〈head,safe〉〉

[w | (u,w) <- g, u==v]

The grouping of all the dimension declarations at the top of the
program certainly looks more tidy and is a more attractive way
of presenting the available decisions. However, this second repre-
sentation is not equivalent to the first one because the represented
decisions change. The difference is that in the nested case, the se-
lection in the Err dimension is only relevant for the adjacency-list
graph representation and has to be made only if adj was selected
for the Rep dimension. In contrast, the selection for the Err dimen-
sion must always be made in the second representation, no matter
what is chosen for the Rep dimension, even though the choice has
no effect in the case of rel.

This does not mean that the second representation is incorrect
(although it is less economic since it requires in some cases a

decision that has no effect). It is only that the two representations
are not equivalent with respect to what decisions are represented.1

We could extend this example to also distinguish between the
error and non-error case for the rel representation. For example, we
could apply a function check v g to the list comprehension that
first determines whether v is contained in g. If so, it evaluates the
list comprehension, otherwise it raises an error. Representing this
approach with nested dimension would result in the following code.

dim Rep〈rel,adj〉 in . . .
suc g v = Rep〈dim Err〈yes,no〉 in Err〈check v g,ε〉,

dim Err〈yes,no〉 in Err〈head,safe〉〉
[w | (u,w) <- g, u==v]

Since in this code the Err dimension is contained in all alternatives
of the Rep choice, the transformation that lifts the declaration of the
Err dimension out of the choice preserves the decision semantics,
and we can rewrite the program in the following form without
changing the semantics.

dim Rep〈rel,adj〉 in . . .
dim Err〈yes,no〉 in
suc g v = Rep〈Err〈check v g,ε〉,Err〈head,safe〉〉

[w | (u,w) <- g, u==v]

The fact that two decisions are merged into one does not change
the semantics here since the two decisions occur in different alter-
natives of the choice, which means that only one decision is only
ever relevant.

Much more is to be said about further transformations of the
code (for example, we can swap the Rep and Err choices, but we
cannot swap the corresponding dimension declarations). We will
encounter some more transformations later in Section 4.

2.3 Sharing
Let us consider as another variation for our program the possibility
to choose different names for Node. The way to achieve this is to
introduce another dimension declaration for the type name and re-
place all occurrences of the name Node by a corresponding choice.

dim Name〈long,short〉 in
dim Rep〈rel,adj〉 in
type Name〈Node,N〉 = Int
type Graph = [(Name〈Node,N〉,Rep〈Name〈Node,N〉,

[Name〈Node,N〉])]〉. . .

Apart from the fact that the repeated use of the choice
Name〈Node,N〉 is verbose and makes the program difficult to read,
this representation reveals a serious technical challenge.

Suppose we extend the Name dimension by another alternative.
In that case, we have to make sure that we change every choice in
the same way. Should we forget to extend a choice, this might be
detected by a static analysis tool that enforces that all choices have
the same number of alternatives as Name has tags, but if we swap
two entries or mistype a name, the consequences might be subtle
semantics errors that are generally quite hard to detect.

Such update anomalies can be avoided if we represent the
choice proper only once and reuse its decision whereever needed.
This behavior can be achieved by employing a let binding that as-
signs a name to an expression and allows the reference to the ex-
pression’s result through this name. In our example program, this
would look as follows.

1 Note that the two versions do represent the same variations, so they are in
this weaker sense equivalent.

dim Name〈long,short〉 in
dim Rep〈rel,adj〉 in
let T=Name〈Node,N〉 in
type T = Int
type Graph = [(T,Rep〈T,[T])]〉
. . .

With the let binding we need only one choice and can reuse it many
times. In particular, if we want to extend the choice of names,
we can do this easily and safely at one place and have the effect
systematically replicated through the variable reference.

We can encapsulate the name choice even more by localizing
the Name dimension right after the let binding.

dim Rep〈rel,adj〉 in
let T=(dim Name〈long,short〉 in Name〈Node,N〉) in
type T = Int
type Graph = [(T,Rep〈T,[T])]〉
. . .

Here we can observe a pattern that occurs quite frequently, namely
a dimension declaration whose scope is just a choice bound by that
dimensions.

dim D〈t1, . . . , tn〉 in D〈e1, . . . ,en〉
For such a pattern, we offer the following abbreviated notation.

D〈t1: e1, . . . , tn: en〉
Note that we keep the name for the choice to be able to refer to
that choice when making selections. Using this abbreviation in our
example program leads to the following code.

dim Rep〈rel,adj〉 in
let T=Name〈long: Node,short: N〉 in
type T = Int
type Graph = [(T,Rep〈T,[T])]〉
. . .

Such an abbreviated dimension plays a similar role as an anony-
mous function (lambda abstraction) since it is defined at the place
where it is used, and it is used only at that place.

2.4 Summary
The choice calculus provides a succinct notation for describing
program variations. Similar to XML, the notation is not intended to
be used directly, but rather as an underlying representation for tools
to view, edit, query, and transform variations. We will see several
examples of such potential tools and applications in Section 4.

The chosen constructs and their notation are not arbitrary. The
language design is intended to reflect the nature of variations with
a few expressive and highly composable constructs. Getting this
design right is crucial for the applicability of the choice calculus to
problems in variation research. I believe we have achieved this goal,
but only future research can tell for sure. The choice calculus is
certainly open to all kinds of variations and extensions that emerge
in the different application areas.

3. Variation Semantics
Once we have written a program that includes variation, we will
eventually want to select specific variants from it. In the following
we call a program that contains choice calculus annotations (that is,
dimensions, choices, and sharing) a variation program in contrast
to a plain program that does not contain any such annotations. We
also use the term expression for a variation program and let the
metavariable e range over all choice calculus expressions. The plain
programs represented by a variation program are called its variants.

The selection of variants uses tags of the form D.t, which we call
qualified tags since they include the name of the dimension. This
operation is called tag selection, and it has the effect of dimension
and choice elimination on the variation program. More precisely,
tag selection with D.ti from the expression dim D〈t1, . . . , tn〉 in e
yields the expression e in which all bounds choices are replaced by
their ith alternative and where nested choices for D are recursively
replaced as well. This idea is formalized by the following two rules
that define dimension and choice elimination in two phases. Note
carefully how the selection from a dimension with a qualified tag
(D.t) name leads to the selection process with a qualified index
(D.i) to find each choice and select the alternatives based on their
position.

DIM ELIM
becD.i = e′

bdim D〈t1, . . . , tn〉 in ecD.t = e′

CHOICE ELIM
beicD.i = e′

bD〈e1, . . . ,en〉cD.i = e′

For completeness we need several additional congruence rules that
explain how tag selection moves recursively into subexpressions
and how it stops at nested dimension definitions for D. For more
details, see [10].

In general, several tag selections are required to obtain a plain,
non-annotated program from a variation program, which means the
meaning of an annotated program can be described as a mapping
from sets or sequences of qualified tags to plain programs. As
explained below, we choose a semantics based on ordered tags. For
example, the semantics of the expression

dim A〈a,b〉 in A〈dim B〈c,d〉 in B〈1,2〉,3〉
is the function

{([A.a,B.c],1),([A.b,B.d],2),([A.b],3)}.
Each pair in this function describes a decision as a sequence of
tags and the result of making the decision, which is a plain pro-
gram/expression. The essence of the semantics is captured in the
following equation.2

Jdim D〈t1, . . . , tn〉 in eK =
{((D.ti, q̄),e′) | 1≤ i≤ n∧ (q̄,e′) ∈ JbecD.iK}

Again the equation shows only the core part of the definition,
and we need additional equations to explain how to determine the
semantics recursively over subexpressions. Finally, we also have
to expand potential let expressions in the range of the function to
remove the sharing annotations.

Why is the order of tags relevant? Couldn’t we just as well de-
fine the semantics based on sets of tags? The use of sequences has
the advantage that we can give semantics to expressions that con-
tain several occurrences of one dimension. As an example consider
the case in which we might want to decide on the parameter names
of several functions independently of one another. This can be eas-
ily achieved by having a copy of a naming dimension with all the
required information at each function. To make a selection in any
one of those dimensions we have to say which one we are target-
ing, and the easiest solution is to make those selections in a specific
order, such as given by a pre-order traversal.

The goal of the semantics is to describe the decisions repre-
sented by a variation program, that is, each possible sequence of
dimensions and tags together with the plain program that results
from that decision. However, in general it is not guaranteed that
the range of the function produced by the semantics contains only
plain programs. As the above equation illustrates, all tag selections

2 Note that a nested tuple (D.t1,(D.t2,(D.t3 . . .))) represents the list of tags
[D.t1,D.t2,D.t3, . . .] and q̄ ranges over lists of qualified tags.

are initiated by dimension declarations, which means that unbound
choices will not be eliminated by the semantics. If, however, the
variation program does not contain unbound choices or let vari-
ables, which can be easily checked by a static analysis, the seman-
tics can be shown to only contain plain programs in the function
range.

4. Applications
The choice calculus is an attempt to capture the essential aspects of
variation in a small set of core constructs. Its design aims deliber-
ately at simplicity and generality. The motivation behind the choice
calculus is to have a fundamental language to support variation re-
search in several different areas.

In this section I want to describe several potential applications
for the choice calculus. These applications are in my view impor-
tant areas of variation research, and the purpose in this section is not
to deliver fully worked out results, but rather to illustrate how the
choice calculus can help to identify the issues involved and present
avenues to possible solutions. Moreover, the presented list is by no
means exhaustive; the presented ideas are intended to demonstrate
the generality of the choice calculus and its relevance to variation
research.

4.1 Variation Design
Database theory provides sound guidance on how to design
database schemas in order to avoid update (and other) anomalies
with the stored data [5]. Similar considerations apply to variation
representations. In a sense, a variation program can be viewed as a
database of programs that can be queried to produce specific pro-
gram instances and updated to add, change, or remove variations.

As demonstrated in [10], the variation representation offered by
the choice calculus enjoys a rich set of laws that provides great
flexibility in how variations can be represented. Therefore, the
question arises of which kinds of representations should be favored
and which ones should better be avoided.

In general, an ω-anomaly (where ω ∈ {insert,delete,update})
occurs when the application of the operation ω to a variation pro-
gram results in a representation of programs that are inconsistent
or contain errors. The question of update anomalies is, of course,
closely tied to the question of how to maintain and edit variations,
and so the insights gained into variation design will directly support
the applications discussed in Section 4.5.

In Section 2.3 I have discussed an example that demonstrated
how forgetting to extend a choice would result in an inconsistent
variation program, while changing choices inconsistently would
lead to type errors in a selected program. The introduction of a
let binding allowed us to factor a common subexpression, which
helped prevent these update anomalies.

The transformation employed in the example is an instance
of a more general strategy to avoid redundant code as much as
possible—at least as far as it concerns variation annotations. While
it might also often be a good idea to avoid redundant code in
programs, this is not the concern of variation design; the focus here
is how redundancy can be avoided in choices and dimensions.

The following guidelines can help minimize redundancy in vari-
ation representations.

(1) Factor common parts of choices.
(2) Factor identical choices through the use of let bindings.
(3) Eliminate redundant tags/alternatives, choices, and dimensions.

The first simplification is intended to make choices smaller and can
be achieved by applying a rule that extracts a common context out
of all alternatives of a choice. One might think that the context C
used in the rule FACTOR must not contain any dimension defini-

tions since the factoring would change the semantics by fusing sev-
eral decisions into one and thus removing decisions. Therefore, one
might think the rule needs a premise BD(C) = ∅, which uses the
auxiliary function BD to determine bound dimensions in expres-
sions. However, factoring a dimension definition out of a choice
does, in fact, not change the semantics since different alternatives
do not occur together in the semantics; that is, never more than one
of the dimensions will be relevant. The factoring rule is therefore
unconditionally valid.

FACTOR
D〈C[e1], . . . ,C[en]〉 ≡C[D〈e1, . . . ,en〉]

An example application of this rule was shown in Section 2.1
where we factored the list comprehension in the implementation
of the function suc. It is easy to see that editing the non-factored
version can easily lead to update anomalies and that the factored
representation prevents much of that.

The second simplification is characterized by the following
rule SHARE, which gathers a group of identical choices and com-
bines them with a single let binding. The premise prevents mul-
tiple dimension definitions from being collapsed into one. Such
a dimension merge generally changes the semantics since it re-
places several independent decisions by one. The substitution of
v for D〈e1, . . . ,en〉 implies substituting only for free occurrences
of choices, which ensures that we don’t capture choices bound by
nested dimension definitions for D inside of e .

SHARE
∪n

i=1BD(ei) = ∅
e≡ let v=D〈e1, . . . ,en〉 in [v/D〈e1, . . . ,en〉]e

An application of this rule was shown in Section 2.3 where the
choice representing the naming decision for the node type was
factored using a let expression.

These two rules have to be supplanted by many other rules that
allow the moving of let expressions, dimensions, etc.; see [10] for
details.

The final simplification requires first a set of criteria to iden-
tify redundancy in alternatives, choices, and dimension definitions.
Once a redundancy has been spotted, the transformation to get rid
of it is rather straightforward.

It should be noted that this third level of simplification is gen-
erally not semantics preserving. For example, if we remove a re-
dundant tag from a dimension, we eliminate a possible decision.
However, the change in the semantics is not arbitrary and it might
be just the right thing to do, because after all, the decision offered
by a redundant tag doesn’t really contribute any variation that isn’t
already available without it. Still, the removal of a redundant tag
changes the semantics.

To make this idea of “benign” semantics changes more precise,
we define that two variation expressions e and e′ are variant equiv-
alent if rng(JeK) = rng(Je′K), and a transformation is called variant
preserving if it maps an expression into one that is variant equiva-
lent.

Two tags t and t ′ are equivalent if exchanging their positions
in their dimension declaration does not change the semantics of
the variation expression. In such a case, selecting t produces the
same result as selecting t ′, which means that the tags are redundant
and one of them can be removed, together with all corresponding
alternatives in choices bound by the dimension definition. The
simplified expression is variant equivalent to the original one.

A pseudo-choice is a choice in which all of whose alterna-
tives are equivalent. Note that to be equivalent, the alternatives
do not have to be identical. Consider, for example, the choice
e = A〈A〈1,1〉,1〉. Even though A〈1,1〉 is not the same as 1, all that
can ever be produced from e is 1. Clearly, any pseudo-choice can be
replaced by any of its alternatives without changing the semantics.

Finally, a pseudo-dimension is a dimension in which all tags are
pairwise equivalent. A pseudo-dimension D can be safely removed,
but we have to be careful to replace any choice D〈e1, . . . ,en〉 that is
bound by it with one of the alternatives ei.

In summary, we can see that the choice calculus provides a pre-
cise way to talk about redundancies in variations and their removal.

4.2 Support for Feature Modeling
Feature-oriented software development has become an important
paradigm for realizing variability in software [1]. One line of re-
search has been to develop languages that provide direct support for
the implementation of features. On the other hand, domain analysis
is sometimes considered as a separate activity with feature models
[2, 14] as a popular way of describing variability in the problem
space [4]. Software developers then have to ensure that the struc-
ture and constraints among features is reflected in an actual imple-
mentation. The implementation itself has to either employ language
constructs or a separate annotation language, such as CPP [13], to
implement the variability specified by the feature model. Whenever
the implementation is separated from domain modeling, there will
be a gap between the specification and implementation of software
product lines, which opens the flood gates for all kinds of errors.

This is where the choice calculus comes into play since it offers
an integrated representation for features and their implementation.
Roughly speaking, a tag corresponds to a feature, and an alterna-
tive in a choice that is selected through a tag corresponds to the
code that implements that feature. Moreover, a dimension corre-
sponds to an abstract feature whose children, given by the dimen-
sion’s tags, stand in an XOR relationship. Feature hierarchies can
be represented by nested dimensions. Even though OR and AND
groups, optional and mandatory features, as well as additional con-
straints do not have a direct correspondence in the choice calculus,
it can be shown that any feature model can be translated without
loss of information into the choice calculus [8].

It remains to be seen how well an integrated feature model-
ing/code development environment can be built on the basis of the
choice calculus representation. Such an integration is not what I
want to advocate at this point; this will be a question of future re-
search. Nevertheless, the fact that the choice calculus offers an inte-
grated representation for feature models and their implementation
promises several other possible ways to support feature modeling.

One potential application is to check whether a program P is
a faithful implementation of a feature model M. This can work as
follows. First, we need a way to identify code fragments in P with
features. For example, for a CPP-annotated program, some subset
of the macros corresponds to features. For simplicity, we assume
here that such a correspondence is given.

Checking the feature model can now proceed in two main
stages. First, the CPP-annotated code is parsed and translated into
a choice calculus expression. This works by interpreting boolean
macros as binary dimensions and mapping conditional code into
choices. Consider, for example, the following code fragment.

#ifdef A
e

#else
e’

#endif

Assuming that the macro A corresponds to fea-
ture A, the code would be translated into the choice
A〈e,e′〉 where e and e′ are the choice expressions
obtained from the translation of e and e’, respec-
tively. The resulting choice calculus expression en-
capsulates the relationship between features, rep-
resented as tags, and their implementation, repre-

sented as alternatives in choices. As explained above, the dimen-
sions and tags of the constructed choice calculus expression repre-
sent a feature model, which we call MP.

The next step is to determine whether or not MP and M are
equivalent, which is not an easy problem. The equivalence of two
feature models is generally difficult to check, because equivalence

is defined based on the set of denoted products and the number
of products for a given feature model is generally exponential in
the number of features. This basically rules out as a method to
simply compare the sets of products entailed by the feature models.
A direct structural comparison is complicated by the fact that,
due to the simple parsing process, the feature model MP consists
only of binary features and requires some extensive refactoring to
become similar to M. It is unclear whether using such a refactoring
of MP, guided by the structure of M, is a practical method to
decide the equivalence of M and MP. Therefore, we have to find an
approach to compare M and MP indirectly. The goal is to compute
some kind of measure µ that represents a feature model more
abstractly. One such measure is the information about included
and excluded features. For each feature f in a feature model, the
function I(f) yields the features that are included in every product
that contains f , and similarly, E(f) yields the features that cannot
appear in any product that contains f . These functions have at
most quadratic size, and even though their computation might still
require exponential time in the worst case, the average case is
expected to be much faster [8].

Given a measure µ for a feature model, such as the pair of
functions I and E, we can now formulate equivalence criteria. For
example, µ(MP) 6= µ(M) implies that the feature models are not
equivalent. In contrast, we cannot conclude their equivalence of M
and MP if µ(MP) = µ(M).

A second application of the choice calculus in the context of
feature modeling is to support the post-hoc reconstruction of fea-
ture models for existing code. We have already indicated how a
CPP-annotated program can be translated into a choice calculus
expression. We have also noted that, due to the boolean nature of
macros, the choices and corresponding dimensions of the resulting
expression are binary. While this often does not reflect the way in
which a feature model for the implementation would be structured,
it still provides useful information about the relationships among
features.

We can try to identify patterns in the choice calculus expres-
sion that are indicative of specific arrangements in feature models.
Consider, for example, the following nested choice.

dim A〈yes,no〉 in
dim B〈yes,no〉 in
dim C〈yes,no〉 in A〈e1,B〈e2,C〈e3,e4〉〉〉

We can observe that the choice for B becomes relevant only in the
case when no is selected for A. Likewise, the choice for C becomes
relevant only when no is selected for B (and A). In other words, we
can select a yes alternative for only one of the involved dimensions,
which means that only one of the represented features, A, B, or C
can be selected. Therefore, we can replace the cascaded nesting of
the features by just one abstract feature with four children. In terms
of the choice calculus this means to replace the expression by just
one dimension with four tags.

dim D〈a,b,c,d〉 in D〈e1,e2,e3,e4〉

Cases like this can be used to create suggestions about parts of the
feature hierarchy of a reverse engineered feature model. Of course,
sometimes features might appear in multiple chains, maybe incon-
sistently, which requires then more analysis before a suggestion is
made, but the example demonstrates that the choice calculus repre-
sentation and its selection semantics provides a basis for identifying
transformations that hint at higher-level variation structures, which
can be exploited for deriving feature models.

4.3 Processing Program Changes
The difference between two programs is an important source of in-
formation about the evolution a program has undergone. There have

been many proposals to compute program differences; a nice sur-
vey and classification can be found in Miryung Kim’s dissertation
[17].

On the abstract syntax level, program changes can be expressed
as follows in the choice calculus. Consider two programs P and Q,
represented as abstract syntax trees, that differ at n nodes in the
following way: The subexpression ei in P is replaced in Q by the
expression e′i. It is obvious that we can represent the changes by the
following choice calculus expression: dim δ 〈old,new〉 in P′ where
P′ results from P by replacing each subexpression ei by the choice
δ 〈ei,e′i〉.

At this point it seems not much has been gained. We have only
obtained a very specific representation of the differences. However,
we can now observe that specific kinds of changes are reflected
in specific patterns of choice calculus expressions. For example,
insertion, removal, and replacement have the following obvious
choice calculus patterns.

Change Choice Calculus Pattern
insert e δ 〈ε,e〉
remove e δ 〈e,ε〉
replace e by e’ δ 〈e,e’〉

These simple changes are identified by most diff tools. In addi-
tion, however, there are more complex kinds of changes that can be
expressed through choice calculus patterns.

For the following discussion note that we employ three different
kinds of metavariable. First, we have variables that range over
code fragments. For simplicity we use here one-letter symbols set
in typewriter font, such as f, x, or e. Second, we have v that
ranges over let-bound variables of the choice calculus. Finally, we
also need context variables, such as C, that range also over code
elements with (multiple) holes.

An example of a complex change is the swapping or exchanging
of two program elements, which means to identify two expressions,
say e and e’ within some context C, and to simultaneously replace
e by e’ and e’ by e. Swapping can come in many different forms,
for example, swapping two lines in a program or swapping two
parameters. Therefore, we need in addition to the expressions that
are swapped a context parameter that defines the positions of the
swapped elements in the program. A similar example of a complex
code change is the moving of an expression from one place to
another. Both complex changes can be expressed by choice calculus
patterns as follows.

Change Choice Calculus Pattern
swap e and e’ in context C C[δ 〈e,e’〉,δ 〈e’,e〉]
move e in context C C[δ 〈e,ε〉,δ 〈ε,e〉]

The point of the choice calculus representation is to be able to give
a succinct description of complex changes. The patterns illustrate
rather nicely that, for example, swapping is essentially given by two
related replacements and that moving is the same as an insert and
remove.3

However, swapping and moving are examples of only “mildly
complex” changes since they contain only two simple changes. In
general, a complex change may involve a group with an unspecified
number of changes. For obtaining descriptions of such cases we
must be able to systematically relate a group of changes. To achieve
this goal, we first have to analyze the set of all raw changes and find

3 Note that we can apply the FACTOR rule (from right to left) and obtain
the equivalent patterns δ 〈C[e,e’],C[e’,e]〉 and δ 〈C[e,ε],C[ε,e]〉, respec-
tively, which provide an alternative, more transactional perspective on those
changes.

groups of related changes. At this point the dimension construct and
its ability to assign a different name to each group comes in handy.

Consider the following program, which contains a definition of
the function twice and a test value.

twice x = x+x
test = 5

Suppose that in an edited version of the program the parameter x
was renamed to y and the value was changed from 5 to 7. A diff
tool could produce the following raw differences, represented as
variation annotations.

dim δ 〈old,new〉 in
twice δ 〈x,y〉 = δ 〈x,y〉+δ 〈x,y〉
test = δ 〈5,7〉

We can see that all changes are lumped together in the global δ

dimension. A simple program analysis could detect that the three
variable renamings belong together, and this could be exploited to
generate a distinct dimension to group them together.

dim δ 〈old,new〉 in
dim ρ〈x,y〉 in
twice ρ〈x,y〉 = ρ〈x,y〉+ρ〈x,y〉
test = δ 〈5,7〉

In this representation all the changes pertaining to the renaming are
grouped together into one dimension while all other changes are
left unaffected.

To capture the renaming of a function parameter by a choice
calculus pattern we have to denote all individual renamings in the
function body. This can be achieved by employing a special kind of
context that contains a varying number of holes, which are all filled
by the same expression. We write C∗[e] for such a “forall context”,
and we can use C∗[ρ〈x,y〉] for the pattern of the function body to
capture all the renamings in the body. The choice calculus pattern
for characterizing a renaming could then be given as follows.

Change Choice Calculus Pattern
renaming dim ρ〈x,y〉 in f ρ〈x,y〉 = C∗[ρ〈x,y〉]

The identification of complex changes in the form of choice calcu-
lus patterns can be exploited on the user-interface level, and we can
envision a tool that instead of showing all individual changes sim-
ply reports the renaming. A GUI could, for example, mark the def-
inition of the variable (here the parameter) and show on a mouse-
over event a tooltip message saying that this variable has been re-
named to y (or, dually, when we show the new name, that it previ-
ously had the name x). The choice calculus patterns can also serve
as high-level update scripts or programs, as discussed in [9].

We can thus see that the variation representation can be used as
glue between all kinds of diff algorithms and tools on one end
and change reasoning components and user interfaces on the other
end. The algorithms can produce a collection of raw changes in
the form of δ choices. A reasoning component can then identify
patterns, such as swapping or renaming, and group changes into
different dimensions. Finally, a GUI or some other tools can present
or report changes, based on their form, in the most intuitive way to
programmers.

The variation representation can also be used for higher-order
change descriptions. Consider, for example, the case when a pro-
gram P was edited in parallel by two programmers who produced
the two changed programs Q and R. As before we can represent the
changes between P and each of the new versions by two variation
programs PQ and PR, respectively. If somebody wants to continue
to work on the program, they have to decide which changes of ei-
ther programmer to adopt or to ignore. Representing the differences

between PQ and PR as a second-order variation program PQPR
can easily reveal which changes are in conflict, which are com-
plementary, or identical. Consider the following example programs
and the changes between them.

P = a b c
Q = x y c
R = x z c

PQ = δ 〈a,x〉 δ 〈b,y〉 c
PR = δ 〈a,x〉 δ 〈b,z〉 c
QR = x δ 〈y,z〉 c

Note that PQPR is different from QR, which simply shows the
differences between the plain programs Q and R and not the differ-
ences between the changes.

PQPR = δ 〈a,x〉 δ
2〈δ 〈b,y〉,δ 〈b,z〉〉 c

The choice calculus provides a rule that allows the regrouping of
nested choices [10]. We can apply it here to the second choice of
PQPR, which then yields the expression:

PQPR = δ 〈a,x〉 δ 〈b,δ 2〈y,z〉〉 c
This second-order change pattern gives a very detailed and precise
account of the changes that happened: It shows that c was not
changed in either program, that a was changed to x in both, and
that both programs differ in how b changed, namely in Q it was
changed to y, and R it was changed to z. Note that the difference
between Q and R can be obtained from PQPR by tag selection,
that is, QR = bPQPRcnew.

Summarizing, the choice calculus provides a structured way to
represent program changes as variations. In particular, dimensions
can be employed to group sets of small changes into complex
ones, and applying the variation notation to itself leads to second-
order change patterns that can support the reasoning about change
conflicts to support the merging of changes.

4.4 Property Preservation
A variation program represents a potentially huge number of plain
programs. Since the annotation schema provided by the choice cal-
culus operates on the level of abstract syntax trees, the syntactic
correctness of all programs can be automatically maintained across
variations.4 However, the question of type correctness for all pro-
grams is quite different. The approach of constantly re-running the
type checker on all program variants is not scalable since the num-
ber of different programs that can be represented in a variation pro-
gram can be enormous. For example, a variation program that con-
tains n independent dimensions of k tags each represents kn plain
programs.

This problem has been investigated before for Java [15], and
we consider it here in the context of the variation representation
offered by the choice calculus. The interesting challenge is to
exploit the structured sharing that is inherent in the choice calculus
representation to obtain a more efficient approach to type checking.

To illustrate this problem, let us consider a typical typing judg-
ment Γ ` e : T that says that expression e is of type T within the
context of the type assumptions Γ. The first thing to do is to extend
the context of the typing judgment by a new parameter ∆ that pro-
vides information about the context of the dimension declarations.
Specifically, we associate each defined dimension with its size (the
number of its tags).

Since we want the extended type system to be a conservative
extension of existing ones, we next start to reformulate typing rules
for the object language using the extended judgment. In many cases
this will require only the use of the extended typing judgment.

4 The situation is quite different for CPP, which is based on the linear textual
representation of programs and which cannot guarantee any syntactical
correctness.

The interesting questions arise when we consider what the typ-
ing rules should be for choices or dimensions. Consider, for exam-
ple, the choice e = A〈3,True〉. Since there is no one single type T
that we could assign to this choice, it seems we have two options
for defining the type of choices like e. First, we could consider e to
be type incorrect. However, that would be overly restrictive since,
as we have seen in Section 2, variations in types and expressions
that have this type seems to be an essential element of exploratory
variations. The second option is to extend the set of types to include
variations. With this concept, we can assign the type A〈Int,Bool〉
to e. We can capture this idea in the following typing rule.

CHOICE
∆(D) = n ∆,Γ ` e1 : T1 · · · ∆,Γ ` en : Tn

∆,Γ ` D〈e1, . . . ,en〉 : D〈T1, . . . ,Tn〉
The first premise ensures that the choice contains the correct num-
ber of alternatives while the remaining premises verify that all al-
ternatives are well typed individually.

Do we really need to add the dimension name to the inferred
choice type? To understand the need for dimension names, com-
pare the expression A〈succ,not〉 e, which is type correct, with
the expression B〈succ,not〉 e, which isn’t. The difference lies in
the fact that both choices are synchronized in the first expression,
which ensures that whenever succ is selected, it will be applied to
3 (and correspondingly for not and True), whereas the choices in
the second expression are in different dimensions and are therefore
unrelated, which means we can produce, for example, the variation
not 3, which is not type correct. If we didn’t represent the dimen-
sion names on the type level, we couldn’t distinguish between the
two cases.

Since the dimension names that appear in the types are scoped,
we have to include a dimension binding construct on the type level
as well. The typing rule for dimensions is rather straightforward:
It extends the dimension environment with the size information for
the dimension and then type checks the scope of the declaration.

DIM
(∆,(D,n)),Γ ` e : T

∆,Γ ` dim D〈t1, . . . , tn〉 in e : dim D〈t1, . . . , tn〉 in T

These two rules seem to illustrate that the type checking effort for
this type system is not multiplicative in the sizes of dimensions, but
rather additive, which is exactly the goal we started out with. How-
ever, the challenge does not lie in the two shown rules, but in the
typing rule for function application, which is the place where the
combination of types across different dimensions must be consid-
ered.

The traditional typing rule for function application requires that
the expression that is applied has a function type, but this is too
rigid in the presence of choice types, because it would prevent the
obviously type-correct expression A〈succ,even〉 3 from passing
type checking. This is because the type of the choice expression
is required to be Int -> T , whereas it has in fact the following
choice type.

∆,Γ ` A〈succ,even〉 : A〈Int -> Int,Int -> Bool〉
We therefore need to relax the condition so that, for example,
choices of function types can also be accepted in applications. We
do this by requiring that the applied expression have a type that is
equivalent to a function type.

APP
∆,Γ ` e : T ′′ ∆,Γ ` e′ : T ′ T ′′ ≡ T ′→ T

∆,Γ ` e e′ : T

Much of the type systems strength and flexibility depends on the
definition of ≡, and the efficiency of the type checking process
requires a generalization of unification that can efficiently unify

types modulo ≡. It turns out that ≡ is generically defined and is
valid for any object language instance of the choice calculus, which
means that unification, normalization algorithms, etc. can be reused
in different application areas.

In our example the rule FACTOR that commutes choices with
syntactic structure gives rise to the following equivalence.

A〈Int -> Int,Int -> Bool〉 ≡ Int -> A〈Int,Bool〉

Now the APP rule can be applied to our example to derive the
following type.

∆,Γ ` A〈succ,even〉 3 : A〈Int,Bool〉

We observe that the notion of variation and dimension types mir-
rors the corresponding concepts in choice calculus expressions. As
the rules CHOICE and DIM illustrate, the choice calculus helps to
structure the variation aspect of both the expression language and
the type language in a systematic way that supports the formula-
tion of typing rules and that suggests a standardized approach to
investigating the preservation of properties under variation.

4.5 Variation Maintenance
The variation annotations of programs add a layer of complexity on
top of the program representation that makes reading, understand-
ing, and editing programs more difficult. It is therefore important to
develop tool support that can provide all the benefits of the variation
annotations without adding too much burden to the programming
activity. Currently, programs such as diff, program editors, and
IDEs, serve that function. However, with increasing degree of vari-
ability in program representation, more sophisticated tools and sup-
port environments are needed to manage the additional complexity.
For example, while diff can report the raw differences between
two programs, its output is often too low level and requires non-
trivial interpretation to make sense. As I have argued in Section
4.3, the choice calculus can support the advancement of tools, such
as diff, to produce more sophisticated high-level explanations of
program changes.

Reporting and explaining changes between program versions is
just one aspect of the more general task of maintaining software
variations. In addition, we need to be able to add new variations or
change existing ones. Moreover, given a variation repository, we
would like to be able to navigate among variations and express
queries. We can envision a whole new class of query and trans-
formation languages for the choice calculus that process variation
representations for various purposes, much like XQuery or XSLT
for XML.

Since most editing of programs probably happens by using
some editor or IDE and is based on the textual representation of
programs, the first step is to find a textual representation of varia-
tion programs that supports editing operations well. One possible
approach is illustrated in the IDE mockup shown in Figure 1. Di-
mensions and their tags are shown color-coded on the left of the
editing window. Each dimension contains a “current choice” of one
of its tags, which selects a current variation to be displayed in the
main window. In the example, it is the program obtained by select-
ing long and adj. All parts of the program that do not vary across the
different versions are shown on white background, whereas those
parts that do vary are shown with a background color corresponding
to the dimension in which the variation occurs. For example, Node
varies in the Name dimension, and head and ws vary in the Rep di-
mension. The fact that the type [Node] varies on both dimensions
is indicated by nested colors.

While such an editor representation inherently shows only one
version, it is vital to make the context of that current version
clear (as it is done here through the dimension sidebar) and also
support the easy transition between variants and, in particular, the

Variations

Node Type Name
Long
Short

Graph Representation
Relational
Adjacency list

All variations compile successfully.
>>

Relational: Node?
type Node = Int
type Graph = [(Node,[Node])]

suc g v = head [ws | (u,ws) <- g, u==v]

Figure 1. Variation editor mockup.

exploration of alternatives in the code. In Figure 1 this is done
by interpreting mouse-over events to shows alternatives for the
pointed-at code.

This envisioned user interface is very similar to the CIDE tool
[16], which allows the association of parts of code with features
of a feature model. In CIDE, features are represented by colors,
and code implementing a feature is shown using the feature’s color
as background color. However, CIDE can only represent optional
code and not alternatives.

While this small example looks quite nice, it is not at all clear
whether this visual representation scales well. In particular, the
nested coloring seems to break down quickly when more and more
independent dimensions come into play. Certainly, more HCI re-
search with user studies is needed to find an effective represen-
tation. The purpose of Figure 1 is not to advocate this particular
design, but rather to illustrate some important issues of variation
editing that have to be addressed.

For example, suppose we change in the editing window the
name suc to successor. Which variations does this change af-
fect? Does this mean to change the name in all variations, or only
in the currently selected one? In the latter case, the changed text
would need to be displayed using the nested blue/yellow back-
ground color. A third possible interpretation is to create a new vari-
ation, much like we have done for the names Node and N. In that
case, a further question is, whether we also want to create a new
dimension or whether this variation should rather be be part of the
already existing Name dimension. It seems we need to equip edit-
ing actions with more details to specify their intended scope and
meaning. This will certainly complicate the user interface, and it
is not obvious what the best design is. In any case, the choice cal-
culus representation can serve as a guide in investigating these op-
tions. Enumerating all the possible ways to represent the changed
program using the choice calculus provides examples for different
editing actions that may or may not become part of a user interface.

A different and potentially more user-friendly approach to the
editing of variations would be to not require up front any additional
specification from the user for editing actions, except for marking
the beginning and the end of an editing transaction. Then simply
take an edited piece of text and merge it “intelligently” into the ex-
isting choice calculus expression. Of course, an automatic merging
algorithm cannot guess the right decisions in cases where changes
can be ambiguously attributed to different dimensions. Therefore
some form of user interaction is required to accomplish the merg-
ing properly according to the intent of the user. But doing this in a
demand-driven way, while exploiting clues from other changes that
have been performed as part of the same transaction, might make
this approach on the whole less burdensome. This problem is very
similar to the “view update” problem in relational databases [6],

which also has become popular in the programming language field
under the name of “bidirectional programming” [12].

The design of editors and other variation maintenance tools is
supported by the choice calculus since it defines a clean interface
for variation annotation to be used by editors. The succinct repre-
sentation also encourages the search for basic editing principles for
variations, which can be derived from a systematic investigation of
update operations for choice calculus expressions.

5. Related Work
Languages for describing variations have been proposed in the dif-
ferent specific research areas of variation, such as feature modeling
or configuration management, and they are too numerous to list
and discuss them all here. Most of these proposals are domain spe-
cific in that they exploit the particular structures and requirements
of their application or variation domain. This also applies to the
many metaprogramming languages, which can also be used to ex-
press variation. In contrast, the choice calculus provides a generic
representation for variation that is applicable, in principle, in any
domain. Therefore, most closely related to the choice calculus are
language proposals that are, in principle, agnostic about the lan-
guage or domain for which they describe variation.

Probably the most well known variation description language
is provided by the C Preprocessor (CPP) [13]. It is also the most
widely used tool for annotating variations [7]. In addition to its ca-
pabilities to define and use macros, CPP offers a set of directives,
such as #ifdef, to mark parts of a document and to conditionally
include or exclude these parts based on given definitions of macros.
While CPP is extremely simple and versatile, it also lacks structure,
which makes the maintenance of CPP-annotated programs difficult
and prone to errors. The two major differences between CPP and
the choice calculus are this. First, CPP works on the textual rep-
resentation of a language and not its abstract syntax, which means
that we can easily represent syntactically incorrect programs with
CPP. In contrast, the choice calculus guarantees syntactic correct-
ness of the annotated object language. Second, CPP provides no
means to represent relationships or constraints among macros used
for describing variations, which leads to a flat decision structure
that basically consists of a huge unstructured set of choices. In con-
trast, using the choice calculus we can structure variations along
dependent and independent dimensions.

Another closely related approach is CIDE [16], which is also
based on code annotations and also operates on abstract syntax.
However, CIDE’s underlying annotation (which seems to be based
on a mapping from XPath-like pointers into the code to sets of
features) is used only internally and is not formalized and defined
for use by other tools.

6. Conclusions
Variation plays an important role in the software development pro-
cess. The choice calculus is a well formalized language for rep-
resenting and reasoning about variation that enjoys many useful
properties and shows promise for a wide range of applications. The
choice calculus is intended to be a new tool to describe and solve
problems in all areas of variation research.

Acknowledgments
I would like to thank the organizers for inviting me to give the 2010
joint GPCE and SLE keynote address and write this paper.

Special thanks go to Eric Walkingshaw, the co-designer of the
choice calculus, who provided me with detailed comments on an
earlier version of this paper.

This work is supported by the Air Force Office of Scientific
Research under the grant FA9550-09-1-0229 and by the National
Science Foundation under the grant CCF-0917092.

References
[1] S. Apel and C. Kästner. An Overview of Feature-Oriented Software

Development. Journal of Object Technology, 8(5):49–84, 2009.
[2] D. Batory. Feature Models, Grammars, and Propositional Formulas.

In Int. Software Product Line Conf., LNCS 3714, pages 7–20, 2005.
[3] D. Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling Step-

Wise Refinement. IEEE Trans. on Software Engineering, 30(6):355–
371, 2004.

[4] K. Czarnecki and U. Eisenecker. Generative Programming: Method,
Tools, and Applications. Addison-Wesley, 2000.

[5] C. J. Date. Database in Depth: Relational Theory for Practitioners.
O’Reilly Media, Inc., 2005.

[6] U. Dayal and P. A. Bernstein. On the correct translation of update
operations on relational views. ACM Trans. on Database Systems,
7(3):381–416, 1982.

[7] M. D. Ernst, G. J. Badros, and D. Notkin. An Empirical Analy-
sis of C Preprocessor Use. IEEE Trans. on Software Engineering,
28(12):1146–1170, 2002.

[8] M. Erwig and D. Le. Supporting Feature Modeling with the Choice
Calculus. 2010. In preparation.

[9] M. Erwig and D. Ren. An Update Calculus for Expressing Type-Safe
Program Updates. Science of Computer Programming, 67(2-3):199–
222, 2007.

[10] M. Erwig and E. Walkingshaw. The Choice Calculus: A Representa-
tion for Software Variation. ACM Trans. on Software Engineering and
Methodology, 2010. To appear.

[11] J. Estublier, D. Leblang, A. van der Hoek, R. Conradi, G. Clemm,
W. Tichy, and D. Wiborg-Weber. Impact of Software Engineering
Research on the Practice of Software Configuration Management.
ACM Trans. on Software Engineering and Methodology, 14(4):383–
430, 2005.

[12] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bidirectional tree transformations: A lin-
guistic approach to the view-update problem. ACM Trans. on Pro-
gramming Languages and Systems, 29(3):17, 2007.

[13] GNU Project. The C Preprocessor. Free Software Foundation, 2009.
http://gcc.gnu.org/onlinedocs/cpp/.

[14] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-21, Software Engineering Insti-
tute, Carnegie Mellon University, 1990.

[15] C. Kästner and S. Apel. Type Checking Software Product Lines—
A Formal Approach. In IEEE Int. Conf. on Automated Software
Engineering, pages 258–267, 2008.

[16] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software
Product Lines. In IEEE Int. Conf. on Software Engineering, pages
311–320, 2008.

[17] M. Kim. Analyzing and Inferring the Structure of Code Changes. PhD
thesis, University of Washington, 2008.

[18] H. Ossher and P. Tarr. Hyper/J: Multi-Dimensional Separation of
Concerns for Java. In IEEE Int. Conf. on Software Engineering, pages
734–737, 2000.

[19] D. L. Parnas. On the Design and Development of Program Families.
IEEE Trans. on Software Engineering, 2(1):1–9, 1976.

[20] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer-
Verlang, Berlin Heidelberg, 2005.

[21] W. F. Tichy. Design, Implementation, and Evaluation of a Revision
Control System. IEEE Int. Conf. on Software Engineering, pages 58–
67, 1982.

