
Variational Pictures

Martin Erwig and Karl Smeltzer(B)

Oregon State University, Corvallis, USA
{erwig,smeltzek}@oregonstate.edu

Abstract. Diagrams and pictures are a powerful medium to communi-
cate ideas, designs, and art. However, authors of pictures are forced to
use rudimentary and ad hoc techniques in managing multiple variants of
their creations, such as copying and renaming files or abusing layers in
an advanced graphical editing tool. We propose a model of variational
pictures as a basis for the design of editors and other tools for managing
variation in pictures. This model enjoys a number of theoretical proper-
ties that support exploratory graphical design and can help systematize
picture creators’ workflows.

1 Introduction

Visual media such as diagrams and pictures are ubiquitous in the modern world.
These take many forms and are employed by a variety of professionals, rang-
ing from architects and industrial designers using CAD tools, graphic designers
and photographers using photo editing tools, to scientists and business owners
creating charts and technical diagrams to analyze and share data.

While the software tools for these applications are quite sophisticated, they
offer little or no support for managing variation in the produced artifacts, forcing
users to employ rudimentary techniques to manage multiple versions of their
work. For example, a graphic designer who might want to showcase changes to
a logo design might be forced to overuse the layer system in their editing tools
or simply create multiple copies of the picture file. A data scientist generating
a series of similar or related charts and tables might have to manually copy
files or images and rename them meaningfully to be able to view and compare
them. Architects and engineers frequently make revisions to their drawings and
designs and their tools offer minimal, if any support, forcing them to adopt ad
hoc approaches.

The need for variation comes in two different forms. First, one might want
to create several concurrent variants of an artifact. Second, one might need
some kind of version control for pictures. We propose variational pictures as
an underlying model to support both forms of picture variation. A variational
picture is simply a picture (here a grid of pixel values) that offers an explicit way
of representing and selecting different variant pictures. For example, a picture

This work is partially supported by the National Science Foundation under the grants
IIS-1314384 and CCF-1717300.

c⃝ Springer International Publishing AG, part of Springer Nature 2018
P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 55–70, 2018.
https://doi.org/10.1007/978-3-319-91376-6_9

erwig@oregonstate.edu

56 M. Erwig and K. Smeltzer

along with its history (or undo) states can be viewed as a variational picture.
Similarly, a collection of related but different designs is also a variational picture.
It is even possible to view an animation as a variational picture in which the
variants are the frames with a temporal ordering.

Consider a landscape architect working on the plan for a new city park, the
features of which are not fully decided yet. For example, an additional wooded
area may be cleared to make more space for the park if the budget is determined
to allow for it. In another part of the park, a pavilion may be added to provide
covered seating. Finally, on the condition that the trees are cleared, a small
fountain may be installed where they were. Even with such a small number of
undetermined features, this already means there are six possible park layouts. It
is easy to imagine this growing out of control rather quickly with more options.
By using a model of variational pictures, the architect could produce a single plan
with the areas of variability clearly marked that also allows toggling between the
options to show them to the final decision makers. We show a sequence of such
variational pictures in Fig. 1.

The example does not only show that variational pictures are useful, it also
illustrates that managing variability is a nontrivial matter that requires a number
of operations for creating, eliminating, and adapting variability. We will return
to this example later.

Trees

(a)

Trees

Pavilion

(b)

Trees

Pavilion

Fountain

(c)

Fig. 1. A sequence of variational pictures showing the design of a park. In (a) we have
one area of variability for the potential removal of trees, in (b) we have an independent
dimension for a pavilion area, and in (c) we have a nested dimension for a small fountain
that can only exist if the trees are removed.

Since variational pictures have a significantly more complicated structure
than plain pictures, their precise meaning should be captured in a formal model
that can serve as a specification for guiding the implementation of editors and
other tools. In particular, a variational picture model should explain the exact
behavior of operations for creating, modifying, and navigating variational pic-
tures, as well as for the splitting and merging of variational pictures.

erwig@oregonstate.edu

Variational Pictures 57

In the following we will present a model for variational pictures and show
how it supports editors and other tools for creating and managing variational
pictures. Specifically, this work makes the following contributions:

1. A model of variational pictures based on the choice calculus [1]. We will
present the required background of the choice calculus and how it is used to
define a model of variational pictures in Sect. 2.

2. A set of properties that describe the generality and usefulness of the presented
variational picture model. We will present these properties in Sect. 3.

3. Requirements for maintaining variational pictures and a demonstration how
the presented model satisfies these requirements. We will discuss the require-
ments and how they are supported by our variational picture model in Sect. 4.

4. Variational area trees to explore and navigate variational pictures diagram-
matically, which are presented in Sect. 5.

In Sect. 6 we discuss related work, and we present conclusions and directions for
future work in Sect. 7.

2 Representing Variational Pictures

The definition of variational pictures is based on a generic model of variational
values that is discussed in Sect. 2.1, which we then apply to a model of plain
pictures described in Sect. 2.2. The resulting model of variational pictures is then
presented in Sect. 2.3. The different degrees of variability in a variational picture
give rise to a notion of variation type, introduced in Sect. 2.4, and a corresponding
notion of region, which is discussed in Sect. 2.5. Finally, in Sect. 2.6 we introduce
an operation that can create variational pictures automatically from a sequence
of plain pictures.

2.1 A Formal Model of Variation

In order to model and provide structure to variational values we make use of the
choice calculus [1], a formal system for managing variation based on the core
notion of a choice.

Choices represent sets of alternatives associated with names called dimen-
sions. For example, we can define a variational integer A⟨1, 2⟩ as a choice between
the two values 1 and 2. In this paper we consider only binary choices, that is,
choices of two alternatives. This is not an essential restriction, since choices can
be nested to represent a larger number of alternatives. For example, the vari-
ational integer vx = A⟨B⟨1, 2⟩, 3⟩ contains three total alternatives and has an
outer choice in dimension A and a nested choice in dimension B. Choice expres-
sions such as this form binary tree structures where n dimension names in the
internal nodes lead to n+ 1 plain values at the leaves.

Each dimension D in a choice expression gives rise to two selectors D.l and
D.r. Selectors can be used to extract alternatives from choices via a selection

erwig@oregonstate.edu

58 M. Erwig and K. Smeltzer

operation defined as follows (we use x to range over plain, non-variational values,
vl and vr to range over (potentially) variational values, and s to range over
selectors):

⌊D⟨vl, vr⟩⌋s =

⎧
⎨

⎩

⌊vl⌋s if s = D.l
⌊vr⌋s if s = D.r
D⟨⌊vl⌋s, ⌊vr⌋s⟩ otherwise

⌊x⌋s = x

For example, ⌊A⟨1, 2⟩⌋A.l = 1, ⌊vx⌋A.l = B⟨1, 2⟩ and ⌊vx⌋B.r = A⟨2, 3⟩. Dimen-
sions synchronize choices, which means selecting an alternative in dimension
D selects that same alternative in all occurrences of D. For example, we have
⌊B⟨A⟨1, 2⟩, A⟨3, 4⟩⟩⌋A.l = B⟨1, 3⟩.

Since one selector can eliminate only choices in one dimension, we generally
need a set of selectors, called a decision, to extract a plain value from a variational
one. This is done by repeated selection with the selectors from the decisions. With
δ = {s1, s2, . . . , sn}, we have:

⌊vx⌋δ = ⌊⌊. . . ⌊vx⌋s1 . . .⌋sn−1⌋sn

A decision that eliminates all choices from a variational value is said to be
complete. The order of selection is irrelevant. That is, for any variational value
vx and pair of selectors D.d and D′.d′ (with d, d′ ∈ {l, r}):

D ̸= D′ =⇒ ⌊⌊vx⌋D′.d′⌋D.d = ⌊⌊vx⌋D.d⌋D′.d′

This will be an important property for variational pictures. As areas of variability
will be represented by choices, we can make decisions about optional features in
pictures in any order. In the example from the Introduction we could decide, for
example, about the fountain before or after we decide about removing the trees.

However, the nesting of the choices does matter because it defines dependen-
cies among the decisions to be made. In that same example, having the fountain
area nested inside the tree area means that it is possible the outer one will make
the inner one irrelevant. This has important consequences for the design of a
variational picture editor.

The semantics of a choice calculus expression is given as a mapping from
decisions to plain expressions. (This will be made precise in Sect. 2.3.) In general,
one variational value can be represented by different choice calculus expressions,
which gives rise to a notion of equivalence for expressions that denote the same
variational values. For example, choice synchronization is the reason for the
choice domination laws that allow the elimination of nested choices in the same
dimension:

D⟨D⟨vx, vy⟩, vz⟩ ≡ D⟨vx, vz⟩ D⟨vx,D⟨vy, vz⟩⟩ ≡ D⟨vx, vz⟩

Moreover, idempotent choices have no effect on variability:

D⟨vx, vx⟩ = vx

erwig@oregonstate.edu

Variational Pictures 59

We also have choice commutation rules, that is, for D ̸= D′:

D′⟨D⟨x, y⟩, z⟩ ≡ D⟨D′⟨x, z⟩,D′⟨y, z⟩⟩
D′⟨x,D⟨y, z⟩⟩ ≡ D⟨D′⟨x, y⟩,D′⟨x, z⟩⟩

Although choice commutation preserves the choice calculus semantics, it is still
an important consideration for variational pictures, since the nesting of choices
relates directly to their structure.

2.2 Plain Pictures

We base our model of variational pictures on a model of plain pictures that is
basically defined as a set of pixels.

Specifically, given a finite domain of locations Loc, a picture is a finite map-
ping from Loc to some type T . Here T typically is a set of colors, but it can be
any type that has an equality predicate defined on it. Moreover, in most cases
pictures are given by fixed, rectangular grid of pixels, which means that the type
of locations is of the form Locn,m = {1, . . . , n} × {1, . . . ,m}. However, the def-
initions that follow do not depend on this particular structure, so that we can
simply assume a finite set Loc of elements on which equality is defined.1

Thus the type of T pictures over the domain Loc is defined as PicT = Loc →
T . A picture is an element of that type, and a pixel of a picture p ∈ PicT is
given by a pair (l, x) ∈ p with l ∈ Loc and x ∈ T .

Here is a small example of a 2×2 picture over a type of symbols S = {◦, •, ⋆}:
p = ◦••◦. Since the structure of T doesn’t really matter, we will mostly omit it in
the following and consider this parameter implicitly fixed, that is, we simply use
the type Pic.

2.3 Adding Choices to Pictures

A variational picture of type T is a mapping from locations to variational T
values, that is, VPicT = Loc → V (T). One could consider a more general
definition that also allows variability in the location domain. However, such a
type would complicate the following definitions considerably without gaining
much. In fact, if the type T contains some unit or null value, one can simulate
differently sized pictures using such a designated value. On the other hand, the
chosen definition still facilitates the local application of variability, which is an
important feature of our model to be discussed later.

Corresponding to plain pictures, a variational pixel is an element of a vari-
ational picture vp ∈ VPicT where vp = (l, vx) with l ∈ Loc and vx ∈ V (T).
Again, we omit the T parameter from the type in the following.

Here is a variational 2 × 2 picture over type S that varies the pixels in vp’s
second column in dimension A: vpA = ◦A⟨•,◦⟩

•A⟨◦,◦⟩. Since vpA contains only choices

1 This generality follows from the fact that our picture model doesn’t require a notion
of connectedness.

erwig@oregonstate.edu

60 M. Erwig and K. Smeltzer

in one dimension, it encodes two plain variant pictures that can be extracted
using selection, that is, ⌊vpA⌋A.l = p = ◦••◦ and ⌊vpA⌋A.r = ◦◦•◦.

In general, a variational picture may contain multiple choices in different
dimensions. Here is a picture that varies the upper right pixel in vpA again
using a nested B choice in A’s left alternative: vpAB = ◦A⟨B⟨•,⋆⟩,◦⟩

•A⟨◦,◦⟩ . Selecting the
left alternative of A in vpAB now does not produce a plain picture, since the B
choice has not been eliminated: ⌊vpAB⌋A.l = ◦B⟨•,⋆⟩•◦ . This means that we need
to also perform a selection for B. In the example we get ⌊vpAB⌋{A.l,B.l} = p and
⌊vpAB⌋{A.l,B.r} = ◦⋆•◦. On the other hand, selecting only the right alternative
still produces a plain picture ⌊vpAB⌋A.r = ◦◦•◦.

The semantics of a variational picture is a mapping from decisions to plain
pictures. The semantics definition iterates over all variational pixels and extracts
and lifts the decisions to the level of pictures, effectively commuting decisions
and locations.

!·" : VPic → V (Pic)
!vp" = {(δ, (l, x)) | (l, vx) ∈ vp, (δ, x) ∈ vx}

The type of the semantic function helps explain its definition: since V (X) =
Dec → X, Pic = Loc → T , and VPic = Loc → V (T), the type of the semantic
function reads in expanded form as (Loc → (Dec → T)) → (Dec → (Loc → T)).

As the examples vpA and vpAB illustrate, the ability to apply choices to
individual pixels, makes variability a localized feature. This is an important
property, since it allows only those parts to be varied that need it and keeps non-
variable picture parts constant across different variant pictures, which supports
editing by avoiding update anomalies [2]. For example, if we change the upper
left pixel in vpAB from ◦ to •, this change has to be done only once and will still
correctly affect all variants of the picture.

In order to support precise operations to create and modify the variability in
a variational picture, we employ the notion of a view decision, which is simply
a choice calculus decision that specifies the plain picture variant that is cur-
rently visible in the editor. View decisions are always complete, that is, they
contain exactly one selector for each unique dimension contained anywhere in
the variational picture.

2.4 Variability Types

The inclusion of choices in pictures suggests a classification of pixels according
to their variability and the grouping of pixels with the same variability into
regions. To formalize this idea we first define the notion of a variability type.
The type of a plain, non-variational value is ⋄ (called unit), and the type of a
variational value is given by its choice structure, which is obtained by replacing
all plain values in it by ⋄. The variability type of a value can be determined by
the function ϕ, which is defined as follows.

erwig@oregonstate.edu

Variational Pictures 61

ϕ : V (T) → V ({⋄})
ϕ(D⟨vx, vy⟩) = D⟨ϕ(vx),ϕ(vy)⟩

ϕ(x) = ⋄

The type of a pixel is given by the type of its value, that is, ϕ(l, vx) = (l,ϕ(vx)).
With this definition, all pixels in ◦••◦ have type ⋄. In vpAB = ◦A⟨B⟨•,⋆⟩,◦⟩

•A⟨◦,◦⟩ , the
pixels in the left column have type ⋄, the lower right pixel has type A⟨⋄, ⋄⟩, and
the upper right pixel has type A⟨B⟨⋄, ⋄⟩, ⋄⟩. For notational convenience we also
write more succinctly A for a type A⟨⋄, ⋄⟩. With this abbreviation we can say
that the lower right pixel has type A and the upper right pixel has type A⟨B, ⋄⟩.

A variability type tells us exactly what decisions are needed to extract all
plain values from a variational value. For example, the set of plain values con-
tained in vpAB is given by {⌊vpAB⌋{A.l,B.l}, ⌊vpAB⌋{A.l,B.r}, ⌊vpAB⌋A.r}. We
can compute the set of decisions required for extracting all plain values from a
variational value a particular type with the following function decs.

decs : V ({⋄}) → 2Dec

decs(D⟨vx, vy⟩) = {δ ∪ {D.l} | δ ∈ decs(vx)} ∪ {δ ∪ {D.r} | δ ∈ decs(vy)}
decs(x) = ∅

Based on the function decs we can define a variability type equivalence that holds
for types that describe the same variability.

φ ∼ φ′ :⇐⇒ decs(φ) = decs(φ′)

Note that ∼ is not a simply derived from ≡ . For example, whereas D⟨x, x⟩ ≡ x
(due to idempotency), ϕ(D⟨x, x⟩) = D ̸∼ ⋄ = ϕ(x). We can generalize the notion
to type equivalence naturally to a refinement ordering on variability types, again
based on the decisions that are represented by the variability types.

φ ! φ′ :⇐⇒ ∀δ′ ∈ decs(φ′) : ∃δ ∈ decs(φ) : δ ⊇ δ′

We have, for example, A⟨B,B⟩ ! A⟨B, ⋄⟩ and A⟨⋄, B⟩ ! A. The variability
refinement is a partial order that give rise to a lattice structure. Here is a small
excerpt of this lattice involving the two dimensions A and B. Note the two types
A⟨B,B⟩ and B⟨A,A⟩ are equivalent. This means that the nesting is not relevant,
and we can write the type more accurately as AB to indicate that neither A nor
B is in any way privileged over the another.

AB

A⟨B, ⋄⟩ A⟨⋄, B⟩ B⟨A, ⋄⟩ B⟨⋄, A⟩

A B

⋄

erwig@oregonstate.edu

62 M. Erwig and K. Smeltzer

This diagram indicates that the nesting of dimensions does not matter in
fully variationalized values, since the types are equivalent. This is an important
property we will come back to in Sect. 3.

We write more shortly D ∈ δ whenever D.l ∈ δ or D.r ∈ δ, and say that
a dimension D depends on dimension D′ in a type φ, written as D′ ←φ D, if
D ∈ decs(φ) =⇒ D′ ∈ decs(φ), that is, in order to make a selection in D one
also has to make a selection in D′. For example, B depends on A in A⟨B, ⋄⟩. We
notice that in the type AB (which is equal to A⟨B,B⟩ andB⟨A,A⟩), B depends
on A and A depends on B. In such situations, when two dimensions D and D′

depend on one another in a type φ, we say that D and D′ are co-dependent in
φ, written as D′ ↔φ D.

2.5 Variability Regions

Based on variability types we can define a notion of regions that have the same
variability. All pixels with the same type have the same variability structure,
which means that they are mapped to plain variants by the same set of decisions.
This property partitions the set of all pixels (or more precisely, their locations)
into a set of disjoint regions. Specifically, for each variation type φ ∈ V ({⋄}) we
define the region of φ-variability (or φ-region for short) as follows.

Rφ(vp) = {(l, vx) ∈ vp | ϕ(vx) ∼ φ}

In the park example from the Introduction, the part of the image affiliated with
the fountain is given by the region RTrees⟨⋄,Fountain⟩.

The following lemma is a direct consequence of the definition of φ-regions.

Lemma 1. For every variational picture vp, the set of (non-empty) regions
Rφ(vp) forms a partition of vp.

Since regions are identified by the common types of their pixels/locations, we
can derive a refinement relation for regions based on the type refinement defined
earlier. Specifically, Rφ′ ! Rφ if and only if φ′ ! φ.

As indicated by the example scenario in the Introduction, (variational) pic-
tures are typically the result of a sequence of operations performed in an editor.
In particular, variability is introduced into a picture by marking an area and
assigning a dimension to it. After that the resulting two alternatives can be
edited in different ways and will generally contain different content.

In many cases, however, not every pixel in the marked area will be different
in both alternatives. Consider again the picture vpA = ◦A⟨•,◦⟩

•A⟨◦,◦⟩. Both pixels in
the right column are variational: they are both of type A and thus belong to the
same region. However, only the upper pixel differs in its alternatives. Since both
alternatives of the lower pixel are equal, we could apply the idempotency law of
the choice calculus and replace A⟨◦, ◦⟩ by ◦ without changing the semantics of the
variational picture. Such a change would, however, change the region partition
for vpA. By systematically applying transformations for eliminating idempotent
choices (D⟨x, x⟩ 5→ x) as well as dominated choices (D⟨D⟨x, y⟩, z⟩ 5→ D⟨x, z⟩

erwig@oregonstate.edu

Variational Pictures 63

and D⟨x,D⟨y, z⟩⟩ 5→ D⟨x, z⟩) to all pixels in a variational picture, we can shrink
regions and thus increase the sharing in the picture. We can define a corre-
sponding region shrinking operation as follows. First, we define the operations
on variational values. Note that pattern matching on dominated choices is insuf-
ficient, since they can occur at arbitrary depths, so we use selection to avoid
them instead.

ρ̇(D⟨vx, vy⟩) =
{

ρ̇(vx) if ρ̇(vx) = ρ̇(vy)
D⟨ρ̇(⌊vx⌋D.l), ρ̇(⌊vy⌋D.r)⟩ otherwise

ρ̇(x) = x

Region shrinking of variational pictures then simply works by applying the oper-
ation ρ̇ to all values in all pixels.

ρ : VPic → VPic
ρ(vp) = {(l, ρ̇(vx)) | (l, vx) ∈ vp}

Note that a variational picture obtained by ρ is not guaranteed to have max-
imized the sharing of values and thus is not minimal. Consider, for exam-
ple, the variational value vx = A⟨B⟨x, z⟩, B⟨y, z⟩⟩. The definition of ρ̇ cannot
extract and share the value z, since ρ̇(vx) = vx. However, the variational value
vy = B⟨A⟨x, y⟩, z⟩, which is equivalent to vx, is smaller than vx and does share
z.

Note that the redundant value could occur deeply nested in the two alter-
natives, which means that a simple one-level dimension rotation is, in general,
insufficient to expose redundant values. Nevertheless, redundant choices in idem-
potent or dominated choices will be eliminated by the region shrinking operation.
It checks explicitly for identical alternatives and, at every step, uses selection on
both branches to ensure no nested choices in matching dimensions.

2.6 Distilling Variational Pictures

Given two plain pictures p and p′, we can automatically merge them and produce
a variational picture that captures the differences between p and p′ in choices
of some dimension D and keeps all common parts as plain values. First, we
define an operation ∆̇ for comparing individual pixel values. If we only needed
∆̇ for generating one variational picture from two plain pictures, its type could
be T × T → V (T), but since we actually want to apply the merge operation
repeatedly to a number of pictures, its type should be T ×V (T) → V (T), which
allows a plain picture to be merged with a variational picture. The operation
can, of course, still be used with two plain pictures since a plain picture is just
a special case of a variational one.

∆̇ : T × V (T) → V (T)

∆̇(x, vx) =
{
x if x = vx
D⟨x, vx⟩ otherwise

erwig@oregonstate.edu

64 M. Erwig and K. Smeltzer

Note that the equality between x and vx can only hold when vx is a plain value.
Note also that we have not specified which dimension D is to be used in the
definition, since the concrete name does not really matter. We have to postulate
however, that D has not been used in any of the vx values that ∆̇ is applied to.
Effectively, we want to use a new dimension for every new picture that is merged
into a variational picture.

Using ∆̇, the operation ∆ for merging a plain picture into a variational one
and capturing their differences in choices can be defined as follows. We assume
that both pictures are defined over the same domain of locations. Note that we
use the same l in both qualifiers of the set comprehension to express a parallel
iteration over all pixels in both pictures.

∆ : Pic × VPic → VPic

∆(p, vp) = {(l, ∆̇(x, vx)) | (l, x) ∈ p, (l, vx) ∈ vp}

We can generalize the definition of ∆ to work on not just two but a whole
set of pictures in a straightforward way. The only side condition, which is not
formalized here, is that the a fresh dimension is used in each new call to ∆̇.
This could be formalized by threading a set of dimension names through the
successive applications of ∆ and ∆̇, but this doesn’t contribute much to the
understanding of the operations, and we therefore omit it here for brevity.

∆∗ : 2Pic → VPic
∆∗ ({p}) = p

∆∗ ({p} ∪ P) = ∆(p,∆∗ (P))

We can see this in action using the small plain pictures p1 = ◦••◦, p2 = ◦◦••,
and p3 = ◦⋆••. Now we need to evaluate ∆∗ ({p1, p2, p3}), which we can expand to
∆(p3,∆(p1, p2)). Evaluating ∆(p1, p2) produces p12 = ◦A⟨•,◦⟩

•A⟨◦,•⟩. Finally, we can
evaluate ∆(p3, p12) and get the variational picture ◦B⟨⋆,A⟨•,◦⟩⟩

•B⟨•,A⟨◦,•⟩⟩.

3 Properties of Variational Pictures

In this section we collect a number of general properties of variational pictures
that serve as additional characterizations of the concept and also justify the
chosen design.

The first observation is that variational picture distillation and semantics
are in some sense inverse operations of each other. Distillation is, in fact, what
users do when they have a set of pictures in mind that they want to represent
in a variational one. Of course, users typically won’t encode the differences as
efficiently as the operation ∆∗ , which will often result in a variational picture
with maximal sharing. Now we can show that the semantics of a variational
picture that is generated by ∆∗ from a set of plain pictures produces exactly the
original plain pictures.

Theorem 1. ∀P ∈ 2Pic : range(!∆∗ (P)") = P.

erwig@oregonstate.edu

Variational Pictures 65

This theorem states that the semantics of variational pictures are correct; it
says that distilling a variational picture from a set of plain pictures does not
lose any information, because the original set of pictures can be extracted by
the semantics.

Since a choice tree with n leaves contains n − 1 dimensions (as mentioned in
Sect. 2.1), that also means that n pictures are distilled into a variational picture
with n − 1 dimensions.

A closely related result is that from the plain pictures encoded in a variational
picture we can recover an equivalent variational picture using ∆∗ . Note that the
reconstructed variational picture may not be identical to the original one in terms
of how the variation is represented, that is, in general we have ∆∗ (range(!vp")) ̸=
vp; all we can guarantee is that the reconstructed picture has the same semantics.

Theorem 2. ∀vp ∈ VPic : !∆∗ (range(!vp"))" = !vp".

As the example scenario in the Introduction has shown, areas of variability are
often nested, which leads to correspondingly nested choices in the pixel values.
This is the case, for example, for the optional fountain. The fountain itself is an
area of variability, but it is also nested inside one alternative of another area in
which a wooded area is cleared. If we call these dimensions Trees and Fountain,
we would expect to see many pixel values with the type Trees⟨⋄,Fountain⟩.

One concern is that the initially chosen area and thus choice nesting commits
a user to a particular nesting that cannot be changed at a later stage of editing.
The next theorem shows that this is actually not the case and that variation
creation, in particular, the nesting of choices, does not lead to a premature
commitment to a particular variation structure.

Consider the situation that an area for choice B has been created inside
an area for choice A, and let’s assume that the B choice lives inside A’s left
alternative (just as in the example vpAB from Sect. 2.3). The type of the pixels
inside the B area is A⟨B, ⋄⟩, and the type of the pixels outside of B but inside
of A is simply A. We call a pair of regions such as RA and RA⟨B,⋄⟩ a region
refinement pair, since A⟨B, ⋄⟩ ! A (and thus RA⟨B,⋄⟩ ! RA), and write such a
pair as RA[RA⟨B,⋄⟩] to indicate that it was probably the result of creating a B
choice in an A area (or creating an A choice around a B area).2

We can observe that for the pixels in RA⟨B,⋄⟩, B depends on A. If we consider
the dual case of a region refinement pair RB [RB⟨A,⋄⟩], we can see that the depen-
dency is the other way around, since for the pixels in RB⟨A,⋄⟩, A depends on B.
So it seems that the chosen nesting for the areas and dimensions determines two
incompatible dependencies among the dimensions. However, there is a straight-
forward way to reconcile these different refinement pairs by refining the region
RA⟨B,⋄⟩ to RA⟨B,B⟩ = RAB (or dually refining RB⟨A,⋄⟩ to RB⟨A,A⟩ = RAB).

2 Since regions are derived from the pixel types, such region pairs do not necessarily
occur in any particular geometric relationship. However, such region pairs typically
result from editor actions that create one choice area within another.

erwig@oregonstate.edu

66 M. Erwig and K. Smeltzer

A region refinement RA⟨B,⋄⟩ to RAB can be achieved by simply expanding
the right alternative of all A choices in the region’s pixels into idempotent B
choices, that is, by replacing A⟨B⟨x, y⟩, z⟩ with A⟨B⟨x, y⟩, B⟨z, z⟩⟩.3

We can then apply a similar region refinement to RA, turning it as well
into a region of type AB. This automatically merges the region refinement pair
RA[RA⟨B,⋄⟩] into one region RAB , and if we assume that the region is not nested
within another area, we can consider it together with the surrounding non-
variational pixels of type ⋄ as a new, bigger region refinement pair R⋄[RAB].
Next we can refine (part of) the region R⋄ to RB , leading to RB[RAB]. We can
summarize the sequence of transformations as follows.

RA[RA⟨B,⋄⟩] " RA[RAB] " RAB [RAB] " RAB " R⋄[RAB] " RB[RAB]

We can perform a similar transformation for the region pair RB [RA⟨B,⋄⟩]:

RB [RA⟨B,⋄⟩] " RB[RAB] " RAB [RAB] " RAB " R⋄[RAB] " RA[RAB]

This shows that while we can’t turn RA[RA⟨B,⋄⟩] into RB[RA⟨B,⋄⟩] (or vice versa)
without removing information, we can invert the nesting of choices if we refine
the innermost region sufficiently.

Theorem 3. RA[RA⟨B,⋄⟩] "∗ RB[RAB] and RB [RA⟨B,⋄⟩] "∗ RA[RAB]

We consider an application of this theorem in the next section.

4 Maintenance of Variational Pictures

It is unrealistic to expect variational picture authors to know the precise and
final locations of variability they will need from the outset. This means that our
model of pictures should support changing areas of variability that have already
been defined.

Consider the park example from the Introduction. Suppose that, after cre-
ating the design shown, the architect is told that the Fountain area needs to
include pipes connecting from the water main. This means that the associated
area needs to not only grow, but grow such that the nesting order with the Trees
area is reversed. The final result can be seen in Fig. 2.

Fortunately, we have already seen in Sect. 3 that region refinement allows us
to change the nesting order without issue. We just need to transform the appro-
priate pixels by expanding them all with an outer Fountain choice. There are
three transformations to make, namely for those pixels originally non-variational
which are now contained in Fountain, those which were originally in Trees but
outside of Fountain, and those inside of Fountain. They are transformed as fol-
lows.

3 There are situations in which other transformations, such as A⟨B⟨x, y⟩, B⟨z, y⟩⟩ may
be more appropriate, but the point is that a region refinement is easy to achieve.

erwig@oregonstate.edu

Variational Pictures 67

Trees

Pavilion

Fountain

Fig. 2. The variational picture
after resizing the previously
nested Fountain area to contain
the Trees area, in order to depict
the connecting water pipes.

Fig. 3. A Variational Area Tree (VAT) that
showing an entire variational picture at
once. Here the VAT for the view decision
{Trees.l,Fountain.l,Pavilion.r} is shown.

x 5→ Fountain⟨x, x⟩
Trees⟨x, y⟩ 5→ Fountain⟨Trees⟨x, y⟩,Trees⟨x, y⟩⟩

Trees⟨x,Fountain⟨y, z⟩⟩ 5→ Fountain⟨Trees⟨x, y⟩,Trees⟨x, z⟩⟩

Although we do not depict it here, we could similarly envision scenarios where
we want to shrink regions. The swapping works in exactly the opposite way
to expanding. The only difference is we must remove part of the variability by
performing a selection of the dimension that we are shrinking. Since we need to
choose one alternative or the other to select, we defer to the value of the view
decision. This gives the user control over the different possibilities.

5 Variational Area Trees

Although the described model of variational pictures is sufficiently flexible to
build variational pictures, so far we have limited ourselves to viewing a single
variant at a time. While this simplifies editing operations, there is still a need
to produce overviews to better understand and navigate the pictures, which
calls for a visual language with a graphical domain [3]. To this end, we present
variational area trees (VATs), a diagrammatic approach to viewing an entire
variational pictures simultaneously.

VATs show the currently selected variant in its entirety as a root node, and
then also all of the other possible selections as branches. Left and right alter-
natives are always connected via a dotted line and shown either to the left and
right of one another or above and below, in order to use space more efficiently
(we assume a reasonable layout algorithm). Dotted outlines show unselected

erwig@oregonstate.edu

68 M. Erwig and K. Smeltzer

variants and solid outlines indicate selected ones. A variational area tree for the
view decision {Trees.l,Fountain.l,Pavilion.r} the park example are shown in
Fig. 3.

VATs have a number of use cases. Obviously, they provide a concise overview
of an entire variational pictures including all of its variants. In addition, the
design of VATs has a number of useful properties.

(a) (b)

Fig. 4. Additional configurations of the park picture VAT. In (a) we see the view deci-
sion {Trees.r,Fountain.r,Pavilion.r}, and (b) shows the case after the commuting of
the Trees and Fountain regions for the view decision {Trees.l,Fountain.l,Pavilion.r}.

First, the total number of regions shown gives the total number of different
drawing areas and provides a clue to the variability of the picture. Second,
since unselected areas are never nested and thus all unselected areas are always
placed on the top level, counting all top-level unselected areas provides a concrete
measure of what is hidden in the current view. Third, the number of boundaries
that are crossed by a (horizontal or vertical) connector line indicates the nesting
level of that choice/variational area, and the types of the crossed boundaries
(unselected vs. selected) tell immediately what decisions have to be flipped (at
minimum) to make the area visible. Fourth, VATs illustrate nicely where in the
choice tree the current variant is located. For example, the VAT in Fig. 4(a) is
located rightmost/bottommost, which means that the right alternative must be
selected in all dimensions.

VATs can also serve as quick navigation tools. It is easy to conceive of an
interface in which a user can zoom out to a VAT and then change the selection
of arbitrary dimensions quickly. Finally, VATs could also support compound
operations or queries. For example, a picture creator may want to view the parts
of the picture that are not variational or all the areas affected by a particular
dimension. These kinds of operations could be supported by a simple filtering
operation on VATs. Figure 4 demonstrates some additional examples for different
selections and after expanding the Fountain region as done in Sect. 4.

erwig@oregonstate.edu

Variational Pictures 69

6 Related Work

Although there are a large number of potential applications for variational pic-
tures, the research in this area is limited in scope. There are many tools design
to offer digital image version control and asset management, although most are
proprietary and do not describe their specific model. Examples of these include
Adobe Drive and AutoDesk Vault. Some more general version control tools offer
support for image diff operations including Perforce and Git via services such as
Github.

This topic also emerges in the field of information visualization, Heer et al. [4]
performed a large survey of graphical history tools from the context of informa-
tion visualization and exploratory analysis which covers this topic well beyond
the scope of our work. Chen et al. [5] proposed a graph-based revision control
system for images. Being based on graphs, it focuses on paths of editing opera-
tions rather than pixels or image objects, and challenges such as diff and merge
are solved with graph operations. They also offer support for selective undo and
“nonlinear exploration”, in which the user can adjust parameters to operations
that have already been performed. Gleicher et al. [6] demonstrated compara-
tive visualization as a fundamental idea, which can be viewed as an application
of variability to pictures within the scope of information visualization. To our
knowledge, none of this work describes a general variability-aware model either.

Another related body of work is on model difference techniques. Kolovos et
al. [7] includes an overview of the topic. Specific examples include Ohst et al. [8]
who described an approach to model difference in UML and Cicchetti et al. [9]
who showed a technique for representing differences between models independent
of the metamodel. As models are generally expressed using graphs, none of this
work describes a pixel-based approach.

Terry and Mynatt proposed Side Views [10] for previewing commands such as
image rotation and coordinate transformations, which makes use of variational
pictures but does not model them explicitly. Terry et al. [11] expanded on this by
managing variations more explicitly. Their tool, Parallel Paths, allows operations
to be applied to individual picture variants or groups of them and also tracks
history to navigate throughout their notion of a variational picture. That work is
primarily focused on a specific user interface, however, and not on a formal model
of variational pictures. Hartmann et al. [12] described an approach to creating
variational interactions and user interfaces based on editing linked source code
alternatives and parallel execution. Finally, Foo et al. [13] summarize existing
work and propose new ideas in the challenge of identifying similar (in the sense
of different resolutions, compression techniques, fragments, etc.) images. This
work focuses on identifying similar images rather than explicitly managing the
variability.

7 Conclusions and Future Work

In this work we have introduced the notion of a variational pictures and intro-
duced a formal model that captures their functionality and behavior based on

erwig@oregonstate.edu

70 M. Erwig and K. Smeltzer

the choice calculus. We have established several basic properties of the model
that support tools for editing and transforming variational pictures. The gen-
erality of the presented model (as reflected, for example, by the general types
Loc and T) allows more specific models of variational pictures to be targeted at
specific application domains, which provides a rich area for future work.

References

1. Erwig, M., Walkingshaw, E.: The choice calculus: a representation for software
variation. ACM Trans. Soft. Eng. Methodol. 21(1), 6:1–6:27 (2011)

2. Date, C.J.: Database in Depth: Relational Theory for Practitioners. O’Reilly Media
Inc., Sebastopol (2005)

3. Erwig, M., Smeltzer, K., Wang, X.: What is a visual language? J. Vis. Lang.
Comput. 38(C), 9–17 (2017)

4. Heer, J., Mackinlay, J., Stole, C., Agrawala, M.: Graphical histories for visual-
ization: supporting analysis, communication, and evaluation. IEEE Trans. Vis.
Comput. Graph. 14, 1189–1196 (2008)

5. Chen, H.T., Wei, L.Y., Chang, C.F.: Nonlinear revision control for images. In:
ACM SIGGRAPH, pp. 105:1–105:10 (2011)

6. Gleicher, M., Albers, D., Walker, R., Ilir, J., Hansen, C.D., Robers, J.C.: Visual
comparison for information visualization. Inf. Vis. 10, 289–309 (2011)

7. Kolovos, D.S., Ruscio, D.D., Pierantonio, A., Paige, R.F.: Different models for
model matching: an analysis of approaches to support model differencing. In: ICSE
Workshop on Comparison and Versioning of Software Models, pp. 1–6 (2009)

8. Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML diagrams.
In: European Software Engineering Conference Held Jointly with ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 227–236
(2003)

9. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A metamodel independent approach
to difference representation. J. Object Technol. 6(9), 165–185 (2007)

10. Terry, M., Mynatt, E.D.: Side views: persistent, on-demand previews for open-
ended tasks. In: ACM Symposium on User Interface Software and Technology, pp.
71–80 (2002)

11. Terry, M., Mynatt, E.D., Nakakoji, K., Yamamoto, Y.: Variation in element and
action: supporting simultaneous development of alternative solutions. In: SIGCHI
Conference on Human Factors in Computing Systems, pp. 711–718 (2004)

12. Hartmann, B., Yu, L., Allison, A., Yang, Y., Klemmer, S.R.: Design as exploration:
creating interface alternatives through parallel authoring and runtime tuning. In:
ACM Symposium on User Interface Software and Technology, pp. 91–100 (2008)

13. Foo, J.J., Sinha, R., Zobel, J.: Discovery of image versions in large collections. In:
Cham, T.-J., Cai, J., Dorai, C., Rajan, D., Chua, T.-S., Chia, L.-T. (eds.) MMM
2007. LNCS, vol. 4352, pp. 433–442. Springer, Heidelberg (2006). https://doi.org/
10.1007/978-3-540-69429-8 44

erwig@oregonstate.edu

