
A Visual Language for XML

Martin Erwig
Oregon State University

erwig@cs.orst.edu

Abstract

XML is becoming one of the most influential standards
concerning data exchange and Web-presentations. In this
paper we present a visual language for querying and trans-
forming XML data. The language is based on a visual docu-
ment metaphor and the notion of document patterns. It com-
bines an intuitive, dynamic form-based interface for defin-
ing queries and transformation rules with powerful pattern
matching capabilities and offers thus a highly expressive yet
easy to use visual language.

Providing visual language support for XML not only
helps end users, it is also a big opportunity for the VL com-
munity to receive greater attention.

1 Introduction

The eXtensible Markup Language (XML) is a standard-
ized notation for documents and other data [3]. It is very
likely that XML develops into the prevailing format for
exchanging documents and presenting data in the World-
Wide Web. An XML document contains, in addition to its
content, information about its structure, which is achieved
through tagged elements: an element starts with a tag, for
example, ���������	� , is followed by an arbitrary sequence of
other elements (for example, title and author elements) and
text fragments, and ends with a corresponding tag ��
��	�����	� .
Elements might also contain attributes, which are then in-
cluded as name �� text -pairs in the start tag of the element,
as in, for example, ���	������������� ����������� � .

If all begin and end tags are properly nested in an XML
document, the document is said to be well-formed, and it de-
scribes essentially a tree. This structure can be constrained
further by a DTD (Document Type Definition), which can
be thought of as a grammar defining attributes and possible
nestings of elements. A DTD represents a kind of schema or
type information for XML documents. An XML document
conforming to a DTD is said to be valid.

We do not consider DTDs in the first place for two rea-
sons: first, many information that is currently available on
the Web will be transformed into XML without conforming
to or even having a particular DTD; this will be particularly
true for large amounts of unstructured data. It should be
possible to query all these information sources with the pro-

posed language, however, relying on the presence of DTDs
could be in many cases prohibitive. Second, we do not want
to require users of the language to have knowledge of the
concept of a “schema”. Nevertheless, there are ways to
nicely exploit DTDs when they are given. We shall discuss
this issue in Section 5.

Let us consider a small example. Below we show some
bibliographic data in XML format.
��������
����!"!$#&%�'�(*)"+�,�-$."/�/�,$
�*0���0�1�'� *2�!�3�4�)"'�0�'65�(*0�7�'98�(*0��"4�:��";*0���0�1�'�
�"(�<�0�7�!*)� �=�)�(�7�(98��";"(�<�0�7�!*)�
�"(�<�0�7�!*)� �>"3"<�0*7��";"(�<"0�7�!*)�
�"(�<�0�7�!*)� �?�(*0�(":�7"3��$#��";"(�<�0*7�!*)�

�";���!�!�#�
�"(*)"0��"4�1�'@%�'"(*)�+�,�-9."."/�,$
�*0���0�1�'� �A���3�'�(�)&?")�!�����3"BC(�3�D6=�)�(�E"7�:���;*0���0�1*'�
�"(�<�0�7�!*)� �>"3"<�0*7��";"(�<"0�7�!*)�
�"F�!�<�)�3�(�1" *G�1*B�!*)���0�7�8H�"4�("��;"F"!�<�)*3�("1"

�";"(*)�0��"4�1�'"
�";�������

We refer to this XML value as bib. A typical query on such
a data is, for example, to find all publications of a particular
author; this leaves the structure of the queried data resource
essentially unchanged. In contrast, the task of building, for
example, a list of authors with the titles of their publications
is an example that needs restructuring of data.

In the following we present a visual language, called
Xing (pronounced “crossing” and abbreviating XML in
graphics), that allows to denote XML data, queries, and
programs in a way that facilitates the comprehension of the
data’s internal structure. To give an impression of Xing,
the representation of the above bibliography data as a Xing
document is shown in Figure 1.

Elements are depicted as boxes with the element’s tag
written above it. Attributes and subelements are displayed
within the border of the father element. Subelement tags
are distinguished from attribute names by using boldface
type. The order of the subelements is given by their relative
vertical position. If a subelement contains no attributes and
only text, it can also be displayed simply in a textual way
as a tag, followed by a colon and its value. This additional
rule allows to simplify in many cases the visual appearance.

So far this is hardly exciting, but the notation gets really

1

bib
book
year: 1988
title: Concrete Mathematics
author: Graham
author: Knuth
author: Patashnik

article
year: 1998
title: Linear Probing and Graphs
author: Knuth
journal: Algorithmica

Figure 1. Bibliography as a Xing expression

useful when formulating XML queries and programs. In its
simplest form, a query is expressed by a document pattern,
which is much like an expression, except that elements tags
and attribute names are used as variables. For example, be-
low are two patterns/queries for finding all books and all
publications of Knuth:

B: bib
book

K: bib
pub

�
* �

title
author: Knuth

Such queries are evaluated by inductively matching patterns
against XML data and returning the matched subdocument.
For example, when matching B against bib, the tags of both
outermost elements match, and the tag book, which is used
here simply as a variable, matches the first of the two bib-
liographic entries and binds it to book. The result is the
bibliography with just the book entry. The second pattern
matches both entries by using a regular expression * as a
tag (and assigning an additional tag name pub to any found
element). For any subelement, title matches because this el-
ement tag is used here simply as a variable. In contrast, only
those author-elements that have the value “Knuth” match.
In this example the resulting document contains parts of
both publication entries, see Figure 2.1

In the rest of this paper we will discuss related work in
Section 2, and we comment upon the importance of XML
in Section 3. In particular, what can XML and visual lan-
guages contribute to each other. We present the basic vi-
sual language for querying and restructuring XML in detail
in Section 4. More advanced features, such as expressing
joins and dealing with object identity and cross references

1We will explain the details of the pattern matching and query evalua-
tion process below, for example, why is the year information shown in the
result even though no such variable was specified in the query, or why is
only Knuth shown as an author of the book, or why isn’t the journal shown,
and how can we change that, ...

bib
book
year: 1988
title: Concrete Mathematics
author: Knuth

article
year: 1998
title: Linear Probing and Graphs
author: Knuth

Figure 2. Result of Query K

are briefly discussed in Section 5; there we will also com-
ment upon exploiting DTDs. Conclusions and remarks on
future work are finally given in Section 6.

2 Related Work

There exist quite a few query languages for XML by
now, for example, XML-QL [11], Lorel [14], YatL [8],
and XQL [22]. In all languages queries consist more or
less of three parts for extracting, filtering, and format-
ting/restructuring data. The flavor of formulating queries
differs, though, and there are also differences in their ex-
pressiveness. For instance, XML-QL uses XML patterns
made out of tags, constant text and variables to denote parts
of a document to be found, Lorel uses a SQL-like language,
and XQL mainly supports navigation by regular expres-
sions. All these languages have in common that they are
text-based.

There has, of course, also been work on the related is-
sue of how to query the World-Wide Web. For example,
W3QS [16] is a system offering a query language in the
style of SQL that focuses on an extensible system archi-
tecture, and WebOQL [1] is a functional language that is
based on powerful operators working on a versatile hyper-
tree representation of arbitrary web contents. WebOQL’s
design is influenced by the underlying graph data model of
UnQL [4] which was originally intended to be a query lan-
guage for semi-structured data. All these approaches (and
many others, for a survey, see [13]) view documents or web
content as tree or graph structures and define textual query
languages that are quite often similar to SQL.

In the area of document processing similar proposals
have been made. Maruta [18, 19] describes a general tree
model of documents and defines pattern matching by tree-
regular languages and deterministic tree automata. His
work generalizes the well-known approach of [15] by capa-
bilities to express contextual conditions on document trans-
formations. Approaches to text databases frequently trade
expressiveness for efficiency [2].

We have already noted that XML expressions are in
essence multi-way trees, and thus it is apparent to denote

2

these trees by pictures. XML-GL [7] is a language proposal
that is based on exactly this idea. However, trees represent
rather an abstract visual syntax of XML documents, which
is well-suited for formal language manipulations [12] but
not necessarily for end user query languages. From this
point of view, XML-GL is more like general-purpose vi-
sual programming languages that are based on trees and
graphs, such as Progress [24] or Grrr [23]. An icon-based
visual language for restructuring Web contents is presented
in [21].

To achieve a high degree of usability, in particular, in the
sense of concreteness [5] and directness [25], we instead
propose to represent XML documents in a form-like way
by nested rectangles with attached labels. On the one hand,
this notation is related to the tree structure in a precisely de-
termined way (namely by nesting) and thus directly reflects
the XML objects that are represented. On the other hand, it
is much easier to deal with from the user’s point of view.

A form-based query interface is also provided by EquiX
[9] whose most important goal is to achieve a simple in-
terface. However, the form metaphor is only used half-
heartedly on the outermost level, and nesting is expressed
by simple indentation. The forms are generated semi-
automatically, driven by a DTD. This means a severe re-
striction since only data sources providing a DTD can be
queried. Moreover, the expressiveness of EquiX is quite
limited, and it is not even possible to reformat the query
results – not to speak of data restructuring. It is not possi-
ble either to express conditions on arbitrarily deeply nested
elements (which is possible in most textual XML query
languages through path expressions or something similar).
Such queries were termed deep queries in [4]. Similar con-
straints apply to QBE-like languages for the nested rela-
tional data model, for example, [17, 27]. Although these
allow restructuring of data, they, too, depend on the pres-
ence of a schema and even demand the display of the com-
plete schema of queried relations. They are not able to
express deep queries either. DOODLE [10] and VQL [26]
are form-based visual query languages that are intended as
general-purpose database languages. Both are rule-based
languages, and both are similar to Xing in their visual ap-
pearance using nested rectangles for displaying data as well
as queries (although their screen space requirements are
generally larger). In VQL, but not in DOODLE, it is possi-
ble to pose queries about the schema. This is a very impor-
tant feature, especially in cases when the user has limited or
even no knowledge of the schema. In Xing this is possible
through the use of regular expressions as tags. However,
neither VQL nor DOODLE is capable of expressing deep
queries. For a survey of visual query languages, see [6].

3 XML and Visual Languages

XML is developing into a standard markup language for
documents, in particular, for documents to be presented on

the World-Wide Web. Since XML simplifies many aspects
of the more complex SGML, it can be expected to be more
widely accepted and to receive vital support through tools
etc. Moreover, XML is also recognized as a standard for-
mat for exchanging data, and there is a rapidly growing
number of XML applications. Many large and influential
computer companies invest into XML technology and have
announced to support XML.

Hence, it can be expected that the vast amount of tomor-
row’s data and web resources are available in XML format;
a large part of it will be even available exclusively in XML
format.

Thus, there is a very strong demand for languages for
processing XML documents and data resources. In particu-
lar, querying and transforming XML data from one format
into another will be an omnipresent everyday’s task. The
fact that almost every computer user is, via the Internet, a
potential user of XML data presents a challenge to design
powerful yet easy to use languages for processing XML. At
the same time this is a big chance for visual languages to
reach a larger audience.

3.1 What Can Visual Languages Contribute to
XML?

Text is good for representing linear information, but it
is tedious to retain or identify structure in textual repre-
sentations of hierarchical or even graph-like organized in-
formations. Often explicit layout, such as indenting or
bracketing, is used to emphasize the underlying structure.
Hence, XML documents are predestined to visual represen-
tation. The same is true for languages to extract information
from XML documents or to restructure XML data because
querying essentially means to identify values and structures
in documents, and this can be conveniently done visually.
Transformation of XML data can be described by combin-
ing querying (via patterns) and constructing result values,
which again is suited very well for visual notation.

3.2 What Has XML to Contribute to Visual Lan-
guages?

During last year’s VL conference, UML has been identi-
fied as one “killer application” for visual languages, that is,
many people believe that when the visual language commu-
nity can come up with semantics/tools/... for UML, visual
languages themselves will be recognized by more people
and will enjoy a much wider acceptance. These goals are,
however, quite difficult to achieve, in particular, since UML
is not very much formalized yet. This is aggravated by the
fact that UML is a collection of several different notations,
and it is far from being clear how these can be integrated
(on a formal level).

In contrast, XML has a rather simple structure, hence
providing models, semantics, and tools can be done much
easier and faster. Therefore, we believe that XML is even

3

more suited to be a “killer application” for visual languages.
And the impact of visual language technology would be
even greater because XML is expected to be just about ev-
erywhere.

Hence, we believe that XML should be a major theme of
visual language research, this paper being one contribution.

4 Xing

In this section we describe the visual query and restruc-
turing language in more detail. A Xing program is essen-
tially given by a rule that is itself made out of two patterns.
A pattern in a left-hand side of a rule creates bindings that
are used by the pattern on the right-hand side to construct
new documents.

We start in Section 4.1 with a brief sketch of the docu-
ment metaphor that forms the basis of the design of Xing.
Then in Section 4.2 we define a model of nested bindings
and describe the different kinds of patterns that are available
in Xing. Rules and simple queries are introduced in Section
4.3, and language features to facilitate more complex data
restructuring tasks are presented in Section 4.4.

4.1 The Document Metaphor

Many of the documents we are used to dealing with in
everyday’s life (faxes, product descriptions, all kinds of
forms, etc.) typically contain more or less portions of free
text together with categorized informations (fields). Fields
consist of a header, that is, a short textual description, and a
value, which is given by text or/and another structured part,
for example, a collection of further fields.

Our visual representation mimics exactly these kinds of
documents which are well-known to most people. This is
especially supported by the abbreviating notation for un-
structured elements, such as author: Knuth. Therefore, the
visual language should be easily accessible even to novice
computer users. This is also strongly supported by the
fact that simple queries (that is, document patterns) are just
sketches of documents containing only material that is also
used in documents, and these can be expressed with just the
knowledge of what constitutes a document. In particular,
no concept of things like keyword, variable, etc., is needed
on the part of the user. This is because tags are implicitly
interpreted as variables, text constants work as selections,
and the act of mentioning or omitting tags is additionally
interpreted as projection of data.

Of course, to pose more advanced queries, in particu-
lar, to perform data restructuring, some abstract concepts
of Xing, such as patterns or rules, have to be realized, but
as we show in the following subsection, there are only few
simple syntactic rules that have to be learned.

4.2 Patterns and Bindings

The usual notion of a binding is a mapping from identi-
fiers to some kind of values. We refine this by saying that a

nested binding is a mapping from identifiers to a sequence
of objects where an object is either a string value, an at-
tribute, an element, or a nested binding itself.

In the following we describe the different kinds of pat-
terns together with their behavior with regard to matching
and binding.

Text Patterns. These are regular expressions over string
values, that is, constants, such as “Knuth” or “1998”, and
expressions like “(Con

�
Dis)crete Math*”. We use the con-

vention that a * not following a bracket is a shorthand for
“.*”, otherwise, regular expressions are defined to match
string values in the usual way. If matching succeeds, a cor-
responding binding for the pattern and its matching string is
produced.

Name Patterns. They come in four different versions:

1. An attribute pattern is given by a text pattern, such as
“year”, and it matches and binds only attributes whose
name matches the pattern.

2. A tag pattern is also given by a text pattern, for ex-
ample, book or book

�
article, and is matched against

a list of elements. If the sublist of elements that have
a matching tag is not empty, the match succeeds and
produces a binding for that list.

3. An alias pattern consists of a tag name, such as new
and a pattern P and is written as new

�
P � . It matches

in exactly the same way as P does, but allows to refer
to the resulting bindings also through new. It is useful
in connection with or-patterns (see below) and regular
expressions used in tag patterns. Note that an alias can
be also introduced for complex patterns. For example,
if we look for “serious” publications where serious is
defined to be either JACM articles or publications by
Knuth, we can find all these items and collect them un-
der the tag serious by using the following alias pattern:

serious

�
pub

�
* �

author: Knuth

article
journal: JACM �

4. A variable pattern like title matches and binds either
attributes or elements of the same name. It is very use-
ful when the schema of the queried data is not known.
Then one can use a pattern title and be sure to find titles
in bibliographic databases irrespective of whether titles
are realized as attributes or as elements.

Or-Patterns. These are used to search for and combine
data that might be stored in different elements. It allows
a kind of generalization with respect to schema of the data
source and can be applied to tag patterns, as in book

�
article

(this is identical to a regular expression tag pattern), or even
to nested patterns (described next). For example, a search
for publications from the JVLC or the VL-conference can
be expressed by the following or-pattern:

4

inproceedings
conference: VL

article
journal: JVLC

Another example has been already given with the alias pat-
tern serious. Or-patterns match all values that match any
of the individual patterns contained in the or-pattern. No
new, separate binding is created, however. To combine the
bindings of the contained patterns, an alias pattern can be
used.

Nested Patterns. Such a pattern consists of a header,
which is a tag pattern, and a body, which is given by a
non-empty sequence of (arbitrary) patterns. For example,
“author: Knuth” is a nested pattern, and so are the pat-
terns B and K from the Introduction. A nested pattern P
with header H and body B � P1 ��������� Pn matches all ele-
ments that (i) have a tag that matches H and (ii) that con-
tain attributes a1 ��������� al and subelements e1 ��������� em such
that there is a subset of attributes and a subsequence of
elements that match B. This means that there is a k �

�
0 ��������� n � and two mappings α :

�
1 ��������� k ��� �

1 ��������� l � and
ε :

�
1 ��������� m �	� �

k
 1 ��������� n � , such that Pi matches aα � i �
for 1 i k and Pi matches the list � eu ��������� ev � for k � i n
where

�
u ��������� v � � ε � 1 � i � . As a result, a binding for the list

of all matching elements is produced, and all subbindings
resulting from matching the subpatterns are included, too.

Two special-purpose nested patterns are universal and
existential list patterns. These are very handy in expressing
conditions on repeated elements, such as authors. Whereas
“author: Knuth” matches the list of author elements whose
content equals “Knuth”, the following two patterns match
the whole list of authors if there is at least one author ele-
ment matching “Knuth” ��� � or only if all author elements
match “Knuth” ��� � .

��� � author
...

Knuth...

��� � author
Knuth...
Knuth

If the condition within an existential/universal pattern is it-
self just a text pattern, we again allow an abbreviating syn-
tax that avoids one nesting level and is more readable, espe-
cially within larger contexts of somewhat complex queries:

��� � author:
...... Knuth

author:
...

��� � author: Knuth...
...

author: Knuth

Note that the universal pattern can be used to find all publi-
cations of which Knuth is the only author.

Deep Patterns. We can prefix any name, or-, or nested
pattern P with an ellipsis “

. . .” and obtain a deep version
of that pattern, which matches P arbitrarily deeply nested
in a document. This gives much more flexibility compared

to using just P because P matches only elements on one
document level. As an example consider the following deep
pattern that retrieves all publication activities of Patashnik:

bib. . .pub
�
* �

role
�
* � : Patashnik

This pattern is generalizing in
three ways: (i) it finds all kinds
of bibliographic entries (articles,
books, �����), (ii) it finds all kinds
of elements having “Patashnik”
as value (author, editor, �����), and

(iii) it finds this information on any level, for example, pub-
lication entries that are nested within collection elements
will be found as well as top-level entries.

More examples for the different kinds of patterns are pre-
sented in the following subsections.

4.3 Rules and Basic Queries

The most simple form of a query is given just by a docu-
ment pattern – like B and K from the Introduction.

In fact, any such a pattern used as a query is only an
abbreviation for a document rule which has the form P � R
where P and R are both patterns. P is called the argument
pattern, and R is called the result pattern. Now, a single
pattern like B is just a shorthand for the rule B � B.

Next we can explain several aspects concerning the result
for the query K from the Introduction:

(1) We have defined the query semantics to include, by
default, all attributes because attributes are more closely
tied to elements than subelements are. Indeed, any atomic
subelement can as well be modeled as an attribute and vice
versa. Now it can be expected that attributes will be used
for regular data whereas elements are preferred for more
variable data. However, there are no design guidelines for
XML or DTDs available yet, and this issue can be consid-
ered open. We can always suppress the binding and display
of all attributes by putting a “-” after the element tag. Se-
lecting some of the attributes can be achieved simply by us-
ing corresponding attribute patterns in the body of a nested
pattern.

(2) A variable is always bound to a complete element,
and if this variable is used without further constraints (that
is, without showing subelements), this element is shown
completely in the result. Hence, pub in K is indeed bound
to both complete bibliographic elements. However, if an el-
ement of a result pattern, contains subelements, these have
the effect of projecting only the bindings of the correspond-
ing subelements. This is the reason why journal does not
appear in the article element of the result and Knuth’s coau-
thors do not appear in the result book entry. Hence, to show
the complete bibliographic entries we can simply use a sep-
arate result pattern using just the variable pub.

bib
pub

�
* �

author: Knuth

� �
bib
pub

5

Now what can we do if we wanted to know only the titles
and authors? We could be tempted to try the rule:

bib
pub

�
* �

title
author: Knuth

� �
bib
pub
title
author

However, this does not work because the pattern binds only
“Knuth” author-elements. What we need instead is the ex-
istential pattern ��� � from above:

bib
pub

�
* �

title
author:

...... Knuth
author:

...

� �
bib
pub
title
author

There are many other variations conceivable, but before we
consider more queries we shall describe in more detail how
a document is constructed from a right-hand side pattern
and a binding.

4.4 Data Restructuring by Grouping and Un-
grouping

In fact, the operational semantics for nested documents
that do not perform restructuring is fairly simple: for each
binding, construct a new element or attribute, and apply this
rule recursively to all subelements/subbindings. However,
this does not explain result patterns for computing, for ex-
ample, the list of all title/author pairs or a bibliography that
gives for each author all publication titles.

Therefore, we introduce rules for ungrouping and group-
ing bindings. In general, a binding for a pattern P is in-
cluded as a subbinding within several enclosing patterns
P1 ��������� Pk. Ungrouping is necessary if P is used in a re-
sult pattern which omits some Pi. Then, all the bindings
for Pi

�
1 are concatenated into one binding. If in addition to

P more patterns Q � R ������� are used, then first their cartesian
product is computed, followed by concatenation. The use
of the patterns P� Q � R ������� in the result pattern then has the
effect of projecting the corresponding column.

For example, assume the bibliographic entries are further
grouped by nested elements topic and year (and, as before,
by kind of publication, that is, book, ...). Consider now the
following result patterns:

bib
topic
year
pub
author

bib
topic
year
author

bib
topic
pub
author

bib
year
author

The first pattern keeps the original nesting structure and
shows for each topic, year, and publication the list of au-
thors. The second pattern shows the list of all authors for
each topic and year; the author lists of all publications have
been concatenated. In contrast, the third pattern concate-
nates all pub-bindings for different years and yields all pub-
lication entries grouped only by topic and yields for each
publication the list of authors. The last pattern performs
two independent groupings and yields the list of all authors
for each year.

Although we can now perform “flattening” of data, it has
still to be explained how to completely restructure data. For
example, we might ask for a list of authors together with the
titles of all their publications.

This can be achieved by the following rule:

bib
pub

�
* �

title
author

� �
bib
author
titles
title

The crucial point here is the omission of the pub-pattern
(which performs ungrouping) together with the introduc-
tion of a new titles-elements (which causes grouping): after
flattening the author/title information, we (at least conceptu-
ally) obtain an intermediate list of author/title tuples. Using
only some of the columns of the intermediate relation (here,
author) causes one such element being created for each dif-
ferent combination of values (here, for each author). The
introduction of the nested titles-element performs grouping
by creating a separate relation for the remaining fields. In
this example, it is a relation of just one column, namely
title, for each author. Thus, the result pattern creates an
alternating sequence of author- and titles-
elements, each of which contains a list of
all title-elements for the preceding author-
element.2 To make the relationship between
the titles and each author stronger and not de-
pendent on the order of the elements in the re-
sult pattern, we can use an additional element
for grouping them together, see the pattern to

bib
byname
author
titles
title

the right.

5 Some Advanced Topics

Due to space limitations, we were able to describe only
the most basic concepts of Xing. However, we will give at
least a brief sketch of some of the more advanced features
in this section.

Joins. In database languages cartesian product and join
operators are used to combine data from two or more differ-
ent data sources. We can achieve the same effect by simply

2If the author-element is swapped with the titles-element in the result
pattern, the titles precede each author.

6

putting two or more patterns next to each other in a left-
hand side of a rule. For example, assume that we have an
XML document person containing information about peo-
ple, such as affiliation or interests. Each entry is grouped
into a person-element which has the name of a person
stored in a name-element. Now we could ask, for instance,
for all publications by authors from Stanford. This can be
expressed as follows:

bib
pub

�
* �

author

people
person
author

�
name �

school: Stanford

� �
bib
pub

Note how the join-condition is expressed by an alias pattern:
the name-element of person is renamed to author, and the
use of equal variables signifies the condition that the bound
values must be equal to become part of the result. If the
names in the person document were, too, stored in author-
elements, then we would have not needed renaming and just
could use the author-tag.

By default, the join on list elements like author is de-
fined with an existential semantics, that is, in the above ex-
ample, all publication are found that have at least one author
from Stanford. This is equivalent to using an existential pat-
tern on the author-variable. In contrast, to find publications
exclusively written by Stanford authors, we have to use a
universal pattern.

bib
pub

�
* �

author...
author

people
person
author

�
name �

school: Stanford

� �
bib
pub

Cross-Referencing. XML uses three special types of at-
tributes to represent graph-like structures. Any element
can have a single attribute of type ID that uniquely iden-
tifies that element. Other elements can refer to these identi-
fiers through IDREF and IDREFS attributes, which estab-
lish links between the elements. Whereas an IDREF at-
tribute always contains a single reference, an IDREFS at-
tribute contains a sequence of references. Continuing the
previous example, assume each person element in person is
defined to have an ID attribute called “id”, and the author
information in bib is realized as an IDREFS attribute called
“authors”. Then the above join queries could still be posed
value-oriented, that is, by matching equal values; we only
have to change the element variables to attribute variables
accordingly. However, we can also use a graph-notation that
is explicitly tied to ID and IDREF(S) attributes of elements:
the fact that an element A references some other element B
is then represented as an arrow A � B. The above example
could then expressed by:

bib
pub

�
* �

authors

people
person
school: Stanford

� �
bib
pub

Again, this query is interpreted with an existential default
semantics. To find publication having only authors from
Stanford we use a variation of the universal pattern for ar-
rows:

bib
pub

�
* �

authors �����

people
person
school: Stanford

� �
bib
pub

Note that the use of cross-references makes it possible to
build cyclic structures. If pattern matching is given the
power to exploit them, visited elements have, in general, to
be marked during pattern matching to ensure termination.

Aggregation. Dealing with collections of object also re-
quires some support for aggregating such collections. A
standard approach is to introduce aggregation functions,
such as count, and use expressions like count � author �
in result patterns, or constrain queries by conditions like
count � author � �

2 (which could be put, for example, un-
der the “ � � ” in rules).

Since there is no number data type in XML, aggregate
functions like maximum or average cannot be easily de-
fined. Hence, having actually only count-aggregation, we
can well introduce a specialized visualization, at least with
regard to conditions: put the condition next to the ellipsis of
a universal pattern.

Exploiting DTDs. DTDs define the attributes and the
possible subelement structure of elements. It was a deliber-
ate design decision that the query language capabilities do
not depend on DTDs. On the other hand, if present, DTDs
provide useful information about the data source that should
be taken advantage of. There are at least two ways in which
DTDs could be exploited:

First, in the user interface that offers means to build up
documents by inserting tags and expanding them (that is,
inserting boxes), DTDs can be very nicely utilized to offer
all the possible attributes and/or subelements through pop-
up menus. This offers on the one hand a convenient and fast
way of constructing patterns, and on the other hand, it also
provides automatic and incremental static type checking of
patterns.

Second, DTDs can be used to optimize queries. For ex-
ample, if a deep query asks for author-elements, a simple
analysis of the DTD can reveal all those nodes in the docu-
ment tree beyond which no author-elements can be found.
This can be used to prune the search at exactly these points.
Another example is to avoid unnecessary marking during
matching with cross-references because a DTD can easily

7

tell which ID attributes are possibly referenced at all. There
are certainly many more opportunities for optimization, and
it is a very fruitful area of future research to apply and ex-
tend type-based optimization to XML and DTDs.

6 Conclusions

We have presented a visual language to represent and
query XML data. We believe that the language is immedi-
ately usable by a broad audience because of:

� the underlying document metaphor which reflects
common knowledge about forms

� the readily accessible notion of document pattern,
which relies, in particular, on implicit variables

� the absence of key words and the independence from a
complex, textual formal query language

Concerning the implementation of the query back-end, we
are currently investigating two possibilities: (1) tree match-
ing, for example, based on the work in [15, 18] or (2) map-
ping to the relational model. The second option has the
advantage that a huge body of work exists for query opti-
mization and indexing, although it might not always be ap-
plicable (see [2] for trade-offs). On the other hand, the first
alternative requires more implementation efforts, but might
be in the end more efficient. Some results, for example, on
indexing, are already available [20].

References

[1] G. O. Arocena and A. O. Mendelzon. WebOQL: Restructur-
ing Documents, Databases and Webs. Theory and Practice
of Object Systems, 5(3):127–141, 1999.

[2] R. Baeza-Yates and G. Navarro. Integrating Contents
and Structure in Text Retrieval. ACM SIGMOD Record,
25(1):67–79, 1996.

[3] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, edi-
tors. Extensible Markup Language (XML) 1.0, 1998.7�0"0�E�� ;";����������
	�� !�)"B�;����;�����2�����8H1

.
[4] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A

Query Language and Optimization Techniques for Unstruc-
tured Data. In ACM SIGMOD Conf. on Management of
Data, pages 505–516, 1996.

[5] M. M. Burnett. Visual Programming. In Webster, J. G., edi-
tor, Encyclopedia of Electrical and Electronics Engineering.
John Wiley & Sons, 1999.

[6] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual
Query Systems for Databases: A Survey. Journal of Visual
Languages and Computing, 8:215–260, 1997.

[7] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi,
and L. Tanca. XML-GL: A Graphical Language for Query-
ing and Restructuring XML Documents. In 8th Int. World
Wide Web Conference, 1999.

[8] S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your Me-
diators Need Data Conversion! In ACM SIGMOD Conf. on
Management of Data, pages 177–188, 1998.

[9] S. Cohen, Y. Kanza, Y. Kogan, W. Nutt, Y. Sagiv, and
A. Serebrenik. EquiX – Easy Querying in XML Databases.
In 2nd ACM SIGMOD Int. Workshop on The Web and
Databases, pages 43–48, 1999.

[10] I. F. Cruz. DOODLE: A Visual Language for Object-Oriented
Databases. In ACM SIGMOD Conf. on Management of
Data, pages 71–80, 1992.

[11] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Su-
ciu. A Query Language for XML. In 8th Int. World Wide
Web Conference, 1999.

[12] M. Erwig. Abstract Syntax and Semantics of Visual Lan-
guages. Journal of Visual Languages and Computing,
9(5):461–483, 1998.

[13] D. Florescu, A. Levy, and A. O. Mendelzon. Database Tech-
niques for the World-Wide Web: A Survey. ACM SIGMOD
Record, 27(3):59–74, 1998.

[14] R. Goldman, J. McHugh, and J. Widom. From Semistruc-
tured Data to XML: Migrating the Lore Data Model and
Query Language. In 2nd ACM SIGMOD Int. Workshop on
The Web and Databases, pages 25–30, 1999.

[15] P. Kilpeläinen and H. Mannila. Retrieval from Hierarchi-
cal Texts by Partial Patterns. In 16th ACM SIGIR Conf. on
Research and Development in Information Retrieval, pages
214–222, 1993.

[16] D. Konopnicki and O. Shmueli. W3QS: A Query System
for the World Wide Web. In 21st Int. Conf. on Very Large
Databases, pages 54–65, 1995.

[17] N. A. Lorentzos and K. A. Dondis. Query by Example for
Nested Tables. In 9th Int. Conf. on Database and Expert
Systems Applications, LNCS 1460, pages 716–725, 1998.

[18] M. Maruta. Transformation of Documents and Schemas by
Patterns and Contextual Conditions. In 3rd Int. Workshop
on Principles of Document Processing, LNCS 1293, pages
153–169, 1996.

[19] M. Maruta. Data Model for Document Transformation and
Assembly. In 4th Int. Workshop on Principles of Digital
Document Processing, LNCS 1481, pages 140–152, 1998.

[20] H. Meuss. Indexed Tree Matching with Complete Answer
Representations. In 4th Int. Workshop on Principles of
Digital Document Processing, LNCS 1481, pages 104–115,
1998.

[21] M. Minas and L. Shklar. Visual Definition of Virtual Doc-
uments for the World-Wide Web. In 3rd Int. Workshop
on Principles of Document Processing, LNCS 1293, pages
183–195, 1996.

[22] J. Robie, editor. XQL (XML Query Language), 1999.7�0�0�E�� ;"; 8�'�0�("1�(���� <"3�4�� '�D�<�;����1";�����1��*E�)�!�E�!�:�("1�� 7�0�8�1
.

[23] P. Rodgers. A Graph Rewriting Programming Language for
Graph Drawing. In 14th IEEE Symp. on Visual Languages,
pages 32–39, 1998.

[24] A. Schürr, A. Winter, and A. Zündorf. Visual Programming
with Graph Rewriting Systems. In 11th IEEE Symp. on Vi-
sual Languages, pages 326–335, 1995.

[25] B. Shneiderman. Direct Manipulation: A Step Beyond Pro-
gramming Languages. Computer, 16(8):57–69, 1983.

[26] K. Vadaparty, Y. A. Aslandogan, and G. Ozsoyoglu. To-
wards a Unified Visual Database Access. In ACM SIGMOD
Conf. on Management of Data, pages 357–366, 1993.

[27] L. Wegner, S. Thelemann, S. Wilke, and R. Lievaart. QBE-
like Queries and Multimedia Extensions in a Nested Rela-
tional DBMS. In Int. Conf. on Visual Information Systems,
pages 437–446, 1996.

8

