
INTRODUCTION

Imagine a juggler who has several plates in a
row, each on a vertical pole. The juggler’s goal is
to have all the plates spinning as smoothly and as
long as possible. Each plate requires the juggler’s
frequent attendance and monitoring. The more 
or less a plate is attended to, the more smoothly or
wobbly it turns. The task of attending to a plate
is never completed solely because it was attend-
ed to once earlier. Therefore, the number of com-
pleted tasks would not represent the juggler’s
competence. A better measure would be how
smoothly the plates have been spinning on aver-
age over time.

In this paradigm, the juggler represents an op-
erator and spinning a plate represents performing
a task. A satisfaction level (SL) is assigned to
each task for its current state. For plates, a mini-
mum (zero) SL equals not spinning at all, or the

poorest task state, and a maximum (100%) SL
equals spinning perfectly, or the desired task
state. The rate that a task deviates from its desired
state if not attended to is the deviation rate (DR).
Conversely, the rate that it approaches the desired
state while attended is the correction rate (CR).
Tasks may also have different values or weights
(Ws) – for example, a fine china plate is more
valuable than a plastic plate. Therefore, the ob-
jective of the operator would translate into max-
imizing the weighted average SL across tasks
over time. In this study, the term attendance is
used for working on a task in the sense of increas-
ing its SL. Moreover, the term monitoring is used
to refer to the careful observation of a task to
evaluate its SL and parameters (DR, CR, and W).

A wide variety of multitasking situations can
be described by this metaphor. A pilot who man-
ually maintains the altitude, speed, and heading
of a plane at desired values can be viewed as a
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juggler with three plates. For example, when the
altitude is adjusted exactly to the air traffic con-
troller’s clearance, it holds a 100% SL. The less
attention this task receives, the more it deviates
until it reaches the zero (minimum) SL. In this
example, DR represents the rate at which a para-
meter moves away from its desired value when
the pilot does not attend to the task; CR represents
how responsive the parameter is to action of the
pilot or the amount of time or effort required for
returning the current task state back up to the de-
sired state. Relative value or weight (W) is the
relative importance assigned to a task, with the W
for an altitude control task being higher than the
W for, say, a task to adjust a radio frequency.

The common factor among a pilot, a nuclear
power plant operator, a commander in charge of
several units, and a corporate manager is that a
single person has to monitor multiple concurrent
tasks and make decisions about them. As the
complexity of systems increase, so does the im-
portance of good task management. In their study
of cockpit accidents and incidents, Chou, Mad-
havan, and Funk (1996) demonstrated that cock-
pit task management error occurred as a frequent
and significant type of human error in the avia-
tion domain. This error manifests itself as attend-
ing to a less important (and/or less urgent) task at
the expense of a more important (and/or more ur-
gent) task. To avoid such errors, researchers have
tried to analyze how well, in general, humans
manage multiple concurrent tasks. To find a stan-
dard of comparison (a normative model) for
human multitasking, several researchers have
made use of mathematical models.

In the next section (Task Description), we dis-
cuss a software program that was developed
based on the concept of the juggler metaphor for
conducting task management experiments. In the
subsequent section (Mathematical Programming:
ANormative Standard of Comparison), we review
other researchers’ mathematical approaches and
then explain our normative model for human
multitasking, which focuses on quality of perfor-
mance rather than task accomplishment. In the
Method section, we discuss how the software
program was used in the experiments to measure
the performance of participants. In the Results
section, we statistically compare the participants’
performance data with those of the normative
model and then qualitatively analyze the partici-
pants’ performance graphs. Finally, in the last

section, we give a summary of the research, along
with our conclusions, general observations, and
recommendations. We believe the framework
presented in this paper is the primary contribu-
tion of this research, as it can be used to model
many instances of real-life multitasking envi-
ronments.

TASK DESCRIPTION

A computer program named Tardast (Persian
for juggler) was developed to allow participants
to manage tasks in a low-fidelity task management
environment. The software had the capability of
recording the performance of participants for fur-
ther analysis. The participants observed six tasks
represented by bars in the software interface
(Figure 1). The dotted area in Figure 1 was used
only by the experimenter, and it was hidden from
the participants during an experiment.

A task was attended by simply depressing the
button underneath the bar using the mouse. As
long as the left mouse button was held down, the
SL of that bar rose at a CR up to a maximum of
100% SL. On the contrary, not attending to a task
allowed the bar to drop at a DR down to a mini-
mum of zero SL. If a task reached or stayed at
zero SL, however, the software penalized it, and
the penalty increased proportional to the length
of stay. The details of the scoring mechanism and
penalization will be discussed further.

The requirement to hold down the button (e.g.,
as opposed to making a single click) was to en-
force a closer relationship between a task that is
attended and a task that is merely monitored,
although it was still possible to work on one task
and monitor the others. Also, as long as the
mouse button was held down, the participant
could move the mouse pointer to another task
without interrupting the SL improvement in the
first task. This allowed the switching cost, in
terms of the time it takes between ending atten-
dance to one task and starting attendance to
another task, to be as small as zero. To display the
rise and fall in a task’s SL continuously and
smoothly, the software updated the system state
every 0.1 s. As a result, the participants had to
spend at least 0.1 s continuously on a task attend-
ed, or in other words, they could theoretically
switch between the tasks as quickly as 10 tasks/s.
In terms of the decision-making, this allowed 
the participants to decide every 0.1 s whether 
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to switch tasks or continue attending to the 
same task.

A task’s W was visible to the participants as
“Value” with a dollar amount. However, the DR
and CR for every task had to be estimated by
operating the software (game). The participant’s
score was a function of the average SL of tasks,
how long tasks were penalized, and the balance
of attention between higher and lower W tasks.
This score and the time remaining to the end of
the game were continuously recalculated and dis-
played on the top left side of the screen.

The scoring mechanism can be mathematical-
ly stated as

(1)

in which z is the participant’s final score; Wi is the
W of task i, i = 0, 1, 2, 3, 4, 5; and SLit = SL of task
i at time t, i = 0, 1, 2, 3, 4, 5, t = 0, 1, 2, …, 3000.

In other words, the scoring mechanism con-
sisted of a virtual snapshot of the screen at every

time unit, considering the SL of each task as the
score of that task for that time, which could vary
between 0 and 1000 (100%). For each task, the
summation of these scores across time divided by
the time elapsed, or the number of snapshots
taken up to that moment, was called the average
score across time for that task (shown as “Average
score” in Figure 1). This number, when multi-
plied by the task’s W, was called the weighted
average score across time for that task (shown as
“weighted Avg. score” in Figure 1).

The summation of weighted average scores
across time across tasks divided by the total W of
all tasks (which can be calculated as 19 in Figure
1) was displayed as “Total Weighted Average
Score” on the top left side of the interface. This
number, again with a maximum of 1000, was the
participant’s score, which was to be maximized.
This method of scoring captured the essence of
concurrent task management performance by lin-
early rewarding satisfactory task performance
proportional to the task’s W. All tasks started at
50% SL at time zero (i.e., SL i0 = 500).

A task at zero SL not only added no value but
was penalized by being assigned a negative score
(instead of zero) for every time unit that it re-
mained in that state. The penalty factor had to be
determined carefully, as it could change the opti-
mal behavior. An excessively low penalty would

Figure 1. Tardast interface; the dotted area was hidden from participants. Adapted from 2003 IIE Annual Conference
Proceedings, S. Shakeri & K. Funk, Acomparison between humans and mathematical search-based solutions in man-
aging multiple concurrent tasks, [CD-ROM] (2003), with permission from the Institute of Industrial Engineers.
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suggest ignoring low-W tasks in favor of excel-
ling in higher W ones. On the other hand, too high
a penalty might encourage barely avoiding zero
SL in as many tasks as possible. This approach
would result in excelling in no task or perform-
ing poorly in all. Amoderate penalty factor of 20%
of the task’s worth was chosen for this study to
allow a balance between the two extreme condi-
tions. For example, a task with W = 4 would have
a negative weighted score of –(20%)(4)(1000) =
–800 for one time unit the instant it hit zero SL
and for every time unit it continued to stay at zero
SL. However, the same task would have a posi-
tive weighted score of +(40%)(4)(1000) = +1600
for one time unit if it were at 40% SL.

MATHEMATICAL PROGRAMMING: 
A NORMATIVE STANDARD 

OF COMPARISON

Literature Review

Pattipati and Kleinman (1991) and the National
Research Council (1998, pp. 112–128) reviewed
engineering models and theories of multitasking.
The focus of engineering theories, unlike psy-
chological theories, is on the outcome of a human
decision rather than its underlying psychological
or cognitive causes. Note that in the multitasking
models we will review as well as the model for
the juggler metaphor introduced in this paper, the
focus is not on why an operator attends to certain
tasks and the effect of factors such as memory,
psychomotor skills, or stress on the operator’s
decision. Rather, the interest is in how the human
operator attends to multiple tasks – that is, which
tasks and how many are handled, in what order
they are handled, how well they are handled, and
how the operator performs overall.

The reviews of quantitative multitasking mod-
els begin with queuing theory, which is the math-
ematical study of systems described in terms of a
few servers and many customers who arrive ran-
domly and wait in lines (queues) to be serviced.
Two typical application areas are the design of
traffic control and phone answering systems, in
which intersections and operators are the servers,
and cars and phone calls, respectively, are the cus-
tomers. The designer of such systems typically
wants to minimize the mean customer waiting time
for being serviced while employing as few servers
as possible, for economic reasons. Carbonell, Ward,
and Senders (1968) used queuing theory to model

a human operator’s visual attention as a single
server and different displays to be monitored as
customers in the queue. Other researchers contin-
ued along this line, modeling more generalized
server service times and/or task (or customer)
arrival times (Chu & Rouse, 1979; Greenstein &
Rouse, 1982; Walden & Rouse, 1978).

Tulga and Sheridan (1980), on the other hand,
used dynamic programming with the branch-
and-bound approach as a form of deterministic
combinatorial optimization to model a multitask-
ing environment. Dynamic programming is used
to solve an optimization problem over discrete
stages in time in which, at each stage, a decision
is made out of a few alternatives; branch and
bound is a method for finding optimal solutions
in such discrete optimization problems. In their
model, tasks arrived in groups with random re-
wards in different queues. The solution to the
model was the task attendance that maximized
the operator’s aggregate reward earned for com-
pleting tasks.

A different form of deterministic quantitative
theory, known as scheduling theory, has been
advocated by Dessouky, Moray, and Kijowski
(1995) for the analysis of human strategic deci-
sion making. Scheduling theory addresses the
problem of optimally sequencing jobs to be pro-
cessed by one or more machines to achieve a cer-
tain goal, such as minimizing the completion
time of all jobs. Moray, Dessouky, Kijowski, and
Adapathya (1991) used this theory to find the op-
timal attendance sequence for a human operator
to attend to tasks. They considered, in scheduling
terminology, the operator as a single machine and
the tasks to be processed as jobs with specific due
dates. The objective was to maximize the num-
ber of tasks completed by their due dates. Par-
tially completed tasks were not counted, which
also meant ignoring tasks with no chance of com-
pletion on time.

A number of researchers have used models
based on estimation theory and optimal control
theory (Kleinman, Baron, & Levision, 1970; Mc-
Ruer, 1980; Pattipati & Kleinman, 1991; Rouse,
1980). These theories estimate the future state of
the system and find the optimal method of reach-
ing a desired state so as to maximize or minimize
certain system criteria. A typical example is to
optimally bring a vehicle to a straight line by
determining the turning angles of the steering
wheel to the left and right, in a series of actions,
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based on the feedback received from the vehicle’s
position.

Unlike those theories, however, the assump-
tion in this research is that as long as a task is
attended, it will progress toward the desired state
with a constant rate, but not necessarily optimal-
ly. It is which task to attend at any time that is of
concern here, not how a particular task should be
attended to improve its state. This aspect of deci-
sion making is relevant in the realm of human
supervisory control, as opposed to the manual
control domain.

The quantitative theory used for the purpose
of this research is scheduling theory. It is super-
ficially similar to that of Moray et al. (1991) in
considering the operator as a single machine that
can preemptively attend to tasks, one at a time.
However, it is significantly different from the
studies previously noted in that it assumes the
juggler paradigm for the multitasking environ-
ment – that is, it seeks a model for management
of multiple continuous tasks instead of a model
for completing multiple discrete tasks.

Normative Model: 
Standard of Comparison

Normative models based on quantitative meth-
ods have increasingly been of interest to behav-
ioral researchers in relatively recent years. The
National Research Council (1998) reported the
findings of a multidisciplinary team of qualitative
and quantitative researchers on human behavior
representation in military simulation applica-
tions. Also, federal agencies such as the Air Force
Office of Scientific Research (2007, p. 27) have
been allocating funds for the research to quanti-
tatively model different aspects of human per-
formance, in order to provide optimal rules for
performing tasks such as human decision mak-
ing and resource scheduling while subject to con-
straints of attention and memory.

In this research, to determine how well hu-
mans manage multiple tasks, we required a 
standard of comparison, a normative model of,
ideally, how operators should manage multiple
concurrent tasks (Wickens, Lee, Liu, & Gordon-
Becker, 2004, pp.157–158).We sought a mathemat-
ical model yielding optimal or (if the optimum
was mathematically intractable) near-optimal
allocation of attention among tasks over time so
as to maximize the total weighted average score
over time. The comparison of human perfor-

mance with optimal or near-optimal performance
could not only tell us how well our participants
performed but also give insights into good task
management strategies. In order to provide a mean-
ingful comparison, the normative model should
be subject to common human limitations – for
example, a normative model that switches tasks
every 0.1 s for duration of 3000 s performs be-
yond reasonable human performance.

Amathematical model for the multitasking en-
vironment discussed earlier (the juggler paradigm)
was developed, formally a mixed (binary) integer
linear programming (MILP) model (Shakeri,
2003; Shakeri & Logendran, 2007). Although the
details are beyond the scope of this paper, MILP
can be briefly described as a subcategory of lin-
ear programming, which in turn is a subcategory
of mathematical programming (MP). MP is a
technique in operations research to solve a math-
ematically described problem (mathematical
model) with the purpose of finding an optimal
value. The goal of MP, represented as an objec-
tive function, is commonly expressed in terms of
maximizing benefit (or minimizing cost), subject
to several feasibility constraints. The constraints
usually reflect limited capacities (Hillier & Lieber-
man, 2005).

The mathematical model’s objective function
in this study was to maximize the weighted aver-
age SL across tasks over time, hereafter called the
score. The model’s constraints limited the maxi-
mum and minimum SLof tasks to 100% and zero,
respectively. The constraints also enforced task
behaviors (i.e., to improve by a CR when attend-
ed or to deteriorate by a DR when not attended).
Additionally, the constraints deducted a penalty
factor from the score for every time unit that a task
stayed at zero SL. This was to lower the value of
the model’s solutions that suggested ignoring a
task for too long.

This mathematical model is believed to belong
to the class of NP-hard (nondeterministic poly-
nomial time – hard) problems, for which the com-
putational complexity of the solution algorithm
increases as a nonpolynomial (e.g., exponential)
function of the problem size. This characteristic
causes an exceedingly long wait for computing
the optimal solution by the computer as the prob-
lem size grows. Such problems are generally
solved by specific heuristics nearly (vs. truly) op-
timally, but in a reasonable time. One such heuris-
tic is the tabu search method, which is a complex
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iterative procedure to solve hard optimization
problems nearly optimally. The tabu search heuris-
tic has several parameters, which can be manip-
ulated by trial and error to effectively search and
evaluate the solution space using the search his-
tory without falling into the trap of local optima.
The details of the tabu search meta-heuristic are
described by Glover (1990).

Previous studies in the manufacturing domain
have shown excellent performance of tabu search
heuristics in other mathematically formulated
complex scheduling problems. In the current
research, an algorithm based on the tabu search
concept was developed and implemented in Mi-
crosoft Visual Basic 6.0 to solve the problem at
hand, which was similar to scheduling problems.
The near-optimal solutions found by this algorithm
were proven to be very close to the true optimal so-
lutions, where they were available (Shakeri, 2003;
Shakeri & Logendran, 2007). These near-optimal
solutions will hereafter be called tabu solutions.

The tabu solutions became a standard of com-
parison for the operator’s competence in man-
agement of multiple concurrent tasks. A solution
was a time series of ordered pairs in which an or-
dered pair (i, t) meant attendance to task i at time
t for one time unit; only one task could be attend-
ed at a time. For instance, attendance to three tasks
(0, 1, and 2) for 10 time units might be represent-
ed in a solution as {(2, 0), (2, 1), (0, 2), (1, 3), (1,
4), (—, 5), (0, 6), (1, 7), (1, 8), (1, 9)}. The ordered
pair (0, 2) means attendance to Task 0 at Time 2
for one time unit, and (—, 5) means no task was
attended at Time 5 for one time unit. The actual
problems solved in this study had six tasks and
3000 time units. As the time unit in the game was
designed to be 0.1 s, this resulted in a task man-
agement standard for a time span of 5 min. Details
of the problems solved in different scenarios, and
how they were compared with human perfor-
mance, will be explained in the next section.

METHOD

Apparatus

The Tardast software, as described in the Task
Description section, was coded in Microsoft
Visual Basic 6.0. The computer used for the ex-
periment had a Pentium II/300 MHz processor,
64 MB RAM, and the Windows NT 4.0 operating
system. The software recorded the attendance of
the participants to tasks and states of the tasks

every 0.1 s. These data were later used to replay
and review the participant’s performance on the
computer in real-time, faster than real-time, and
slower than real-time rates. The fast mode had a
zoom-out effect and helped to determine the par-
ticipant’s overall strategy. In contrast, the slow
mode had a zoom-in effect and helped to identi-
fy the parameters behind a certain action – for
example, why the user switched from one task to
another at a specific time. Further, the data were
used to generate graphs of attendance using a
Visual Basic Macro in a Microsoft Excel 2000
spreadsheet (see Figures 2–4). Statistical analy-
sis of the data was performed using the STAT-
GRAPHICS Plus 5.0 statistical package.

Participants

Ten students at Oregon State University, two
women and eight men not selected based on gen-
der, participated in this research voluntarily. They
signed a consent letter that explained matters
such as the intent of the experiment, risks and
benefits, and confidentiality of identity. The par-
ticipants were observed and their data collected
while they played the game. At the end of the ex-
periment, they were given a short questionnaire
on their task attendance strategy in the experi-
ment. For each participant, the total length of the
experiment was less than 2 hr, with repeated
breaks every 5 min. The total net time of the data
collection for playing the game on the computer
was 75 min.

Procedure

The participants were given written instruc-
tions on the mechanics, scoring, score penalization,
and intent of the experiment. Verbal comments
were also given before the start of the game on
how to play it, but following a script to maintain
consistency. The participants were told to try to
obtain the highest possible score using any strat-
egy they desired. The experiment consisted of
five different scenarios.

For one scenario, each of the three parameters
(DR, CR, and W) varied across the six tasks,
making it the most complex scenario (see Table
1). For three of the scenarios, two parameters
were fixed but one parameter (DR, CR, or W) was
varied. This allowed investigation of the effect of
varying one parameter. Finally, for one scenario,
all three parameters were fixed across six identical
tasks, making the effect of task selection minimal,
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and this was used as a baseline scenario. The goal
of these scenarios was to study the reaction of the
participants to variations in each of the parame-
ters across six tasks. It was also of interest to see
how close the participants could get to the near-
optimal tabu behavior as the complexity of the
scenarios changed.

All of the scenarios were assigned to each par-
ticipant in random order to avoid a learning effect
in the data across the scenarios. In the transition
from one scenario to the next, the participants were
informed only that the scenario had changed.
They were not provided any further information
on what had changed because the characteristics
of each scenario were meant to be learned by play-
ing the game. Outlined in Table 1 are the design of
scenarios, the numeric structure of the parameters
for six tasks (0, 1, 2, 3, 4, 5) in each scenario, and
the most successful task attendance strategy in
each scenario. For example, in dDR-iCR-iW
(short for Scenario dDR-iCR-iW), different (d)
DRs for Tasks 0, 1, 2, 3, 4, 5 were, in order, 2, 1,
3, 3, 4, 2, whereas their identical (i) CRs were 9
and their identical (i) Ws were 5. The DR and CR
numbers in Table 1 are rates per 0.1 s, and W is
the relative task importance.

It can be seen with careful examination of the
numerical structure in Table 1 that the seeming-
ly arbitrary numbers for each scenario have the
same average of parameters, approximately DR =
3, CR = 9, and W = 5. It will be shown in the re-

sults section that this structure ensured that rough-
ly four out of six tasks in each scenario could be
kept at a high SL if the other two tasks were ig-
nored (shed). Therefore, there was no great varia-
tion among the scenarios as to the number of tasks
that could be handled. It also ensured that in each
scenario, a successful strategy, which had to be dis-
covered by the participant, necessitated ignoring
the two tasks with the lowest contribution to a
high score (i.e., tasks with low Ws, high DRs, and
low CRs).

Scenarios were each 5 min long, but prior to
every scenario the participants had up to 10 prac-
tice trials, each 1 min long. The trials were de-
signed to let the participants become familiar with
dynamics of each scenario and to provide them a
chance to find the most successful strategy of
attendance for that scenario. The details of atten-
dance in practice trials were not recorded, but the
final score in each trial was recorded to monitor
the progress of the participant. If the two highest
scores in practice trials were within 2% of each oth-
er, the practice trials were halted if the participant
desired; only 6% of the possible practice trials
were not taken.

After the practice trials, data were collected
for one 5-min session of playing the game in the
same scenario. These detailed data included atten-
dance of the participant (i.e., which task at what
time was attended by depressing its button) and
the state (SL) of the tasks for every 0.1 s. Finally,

Figure 2. Summary of participants’scores in each scenario (dDR-dCR-dW: different deviation rates, correction rates,
and weights across tasks; dDR-iCR-iW: different deviation rates across tasks; iDR-dCR-iW: different correction
rates across tasks; iDR-iCR-dW: different weights across tasks; and iDR-iCR-iW: identical tasks). (a) Average orig-
inal and repaired participants’scores and corresponding tabu scores. (b) Participants’best, worst, and average scores
relative to tabu scores after the data repair.



OPTIMAL TASK MANAGEMENT 407

Figure 3. (a) Attendance frequency (%) and average state (SL) over time for each task for the best, worst, tabu, and
average participant performance. Moment-to-moment (b) best participant performance (score: 570) and (c) worst
participant performance (score: 156). (d) Tabu performance (score: 685) over time (seconds) in Scenario dDR-dCR-
dW (different deviation rates, correction rates, and weights across tasks). Adapted from 2003 IIE Annual Conference
Proceedings, S. Shakeri & K. Funk, Acomparison between humans and mathematical search-based solutions in man-
aging multiple concurrent tasks, [CD-ROM] (2003), with permission from the Institute of Industrial Engineers.



408 June 2007 – Human Factors 

Figure 4. Attendance frequency (%) and average state (SL) over time for each task for the best, worst, tabu, and
average participant performance in Scenario (a) dDR-iCR-iW (different deviation rates across tasks), (b) iDR-dCR-
iW (different correction rates across tasks), (c) iDR-iCR-dW (different weights across tasks), and (d) iDR-iCR-iW
(identical tasks).
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after the participants completed all of the scenarios
in the experiment, they filled out a questionnaire
on their age and hours per week of computer use
and driving (a type of multitasking). At the end
of the questionnaire, they explained the strategy
they used (if any) when attending to tasks in the
experiment.

RESULTS AND DISCUSSION

Data Adjustments and Considerations

The tabu search algorithm was run two to four
times in each scenario with different search para-
meters. This allowed the algorithm either to in-
tensify the search in spaces where historically
good solutions were found or to diversify the
search to spaces where solutions were historically
less explored. The best score obtained was select-
ed as the tabu score for that scenario, and there-
fore, unlike the participants’scores, the tabu score
had a zero variance within each scenario.

The participant’s score was the numerical
score calculated by the computer after 5 min of
playing the game. Two adjustments were made
to enable drawing reasonable inferences from the
comparison of participants (human) with tabu
search (computer). These adjustments focused

the comparison on the decisions made regarding
which tasks to handle and how they were handled
instead of on human delays in movement or laps-
es. The first adjustment was to handicap the pro-
gram by limiting tabu’s task switching rate to a
maximum rate of 1/s, which was 10 times slower
than the rate allowed for the participants. In other
words, tabu made a decision as to whether or not
to switch tasks every 1 s, versus every 0.1 s al-
lowed for humans. This adjustment compensated
for relatively slow human movement and deci-
sion making, so that a very skilled human would
have a chance of achieving the tabu performance.

Because tabu, unlike the participants, had lost
no time while attending to the tasks in the software,
the second adjustment (extra bonus) was to repair
the participants’data for those times (1.5%–14.7%
of the time, M = 5.6%) that the participants did not
attend to any task. Although technically the soft-
ware allowed the switching cost (or moving time
between two tasks) to be as small as zero, nonat-
tendance resulted from the participants’uncertain-
ty of which task to attend to next or just simply
failing to hold down the mouse button. This gap
in the data was repaired with the number of the
task that the participants actually attended to next,
which effectively reduced switching time to zero.

TABLE 1: Design of Scenarios With Regard to Six Tasks’ Deviation Rates (DRs), Correction Rates (CRs),
and Weights (Ws) and the Most Successful Strategy Recommended for Each Scenario

Parameter Across Tasks

Scenario DRs CRs Ws Most Successful Strategy

dDR-dCR-dW Different Different Different Attend to the most important 
[2, 1, 3, [9, 5, 8, [6, 5, 10, (highest W) tasks if there is no
3, 4, 2] 8, 9, 13] 6, 4, 2] significant difference between

their DRs and CRs.
dDR-iCR-iW Different Identical Identical Discover those tasks that dete-

[2, 1, 3, 9 5 riorate least quickly (lowest DRs)
3, 4, 2] and attend to them; attend to

others only as time permits.
iDR-dCR-iW Identical Different Identical Discover the tasks that are most

3 [9, 5, 8, 5 responsive to your efforts 
8, 9, 13] (highest CRs) and attend to

them; attend to others only as 
time permits.

iDR-iCR-dW Identical Identical Different Attend to the most important 
3 9 [6, 5, 10, (highest W) tasks; attend to 

6, 4, 2] others only as time permits.
iDR-iCR-iW Identical Identical Identical Pick a few tasks and keep them

3 9 5 satisfactory.

Adapted from 2003 IIE Annual Conference Proceedings, S. Shakeri & K. Funk, A comparison between humans and mathematical search-
based solutions in managing multiple concurrent tasks, [CD-ROM] (2003), with permission from the Institute of Industrial Engineers.
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For example, the gap in the time series 0, 0, [?],
1, 3, … indicated that no task was attended for one
time unit while switching from Task 0 to Task 1;
this gap was filled with “1” for Task 1. In turn, a
new numerical score was recalculated based on the
repaired data and was called the repaired score.
This score was on average 10.1% higher than the
original score, and it was used as the participant’s
score in the statistical comparisons henceforward.

One consideration in reflecting on the experi-
ments is that the order in which scenarios (see
Table 1) were assigned to participants was ran-
dom. However, for each scenario, the physical left-
to-right order of tasks (i.e., bars in Figure 1) was
fixed; in retrospect, it should have been random.
The fixed order of tasks may have contributed to
the participants gaining better scores (relative to
those of the other participants) as they advanced
through the scenarios, F(1, 48) = 23.13, p < 0.01,
rs = .57, for a test of the null hypothesis that the
slope of the fitted line is zero. Nonetheless, this
research does not focus on how much or why a
participant’s score improved by going through
the scenarios. The focus is on the best strategies
the participants developed (as to which tasks to
handle or shed) and the effectiveness of their
strategies when compared with the optimal
strategies (as judged by tabu) for each scenario.
Therefore, the primary statistical and general
behavioral conclusions in this study should be
robust and reliable for the population of par-
ticipants.

Statistical Comparison of 
Tabu and Participants

Because the parameters (DR, CR, and W) of
the scenarios were different, tabu and participants
also obtained different scores between the sce-
narios. Therefore, the scores could be compared
only by a pairwise comparison between that of
the participant and tabu in each scenario. The fol-
lowing two null hypotheses were statistically test-
ed using a two-sample pairwise comparison at a
95% confidence level: (a) The mean for the pair-
wise difference between the participant’s score
and the tabu score is zero when combining all of
the scenarios (n = 50, M = 121.83, SD = 105.12);
and (b) the mean for the pairwise difference
between the scores of participants and that of
tabu is zero when evaluating each scenario (n =
10) independently. In top-to-bottom order of sce-
narios in Table 1, means (and SDs) were 203.66

(127.46), 134.78 (101.41), 133.65 (92.65), 76.55
(90.68), and 60.51 (50.86), respectively.

The first null hypothesis was rejected with 95%
confidence, t(49) = 8.20, p < .01 (two sided); that
is, there is substantial evidence that tabu outper-
formed the participants. The second null hypoth-
esis was also rejected for every scenario with 95%
confidence. The t statistic (and two-sided p) for
every scenario in Table 1, in order, was t(9) = 5.05
(p < .01), 4.20 (< .01), 4.56 (< .01), 2.67 (= .03),
and 3.76 (< .01); that is, there is strong evidence
that tabu outperformed the participants in every
scenario independently. It should be noted that
these results were obtained despite repairing the
participants’ data and effectively “allowing”
them to switch between the tasks up to 10 times
faster than tabu.

Figure 2a illustrates the differences between
the participants’ original, repaired, and corre-
sponding tabu scores in each scenario. These
scores should be compared within a scenario, but
not between the scenarios, as each scenario had
its own parameters. Figure 2b shows that the best
participant’s score in each scenario came within
1% to 15% of the tabu score. More discussion of
the data in Figure 2b will follow, in the General
Discussion section.

Performance Analysis in Scenarios

Besides the statistical comparison of scores,
there was yet much to be learned from the com-
parison of the pattern of attendance between the
participant and tabu search. This comparison was
made using several different methods. The atten-
dance of all 10 participants was observed while
they played the game, and it was replayed and
reviewed on the computer after the game. Fur-
ther, the tabu performance was simulated in the
game environment. That is, the tabu solution was
used to drive the program in real time so that it
could be visualized and qualitatively compared
with human performance. Additionally, the par-
ticipants’ verbal comments while playing the
game and their written comments on the ques-
tionnaire after the game were reviewed with
respect to the task attendance strategy that they
had in mind while attending to tasks.

Finally, several different types of graphs were
generated to summarize different aspects of
attendance (see Figures 3 and 4). When generating
the graphs for performance analysis, we inten-
tionally used the participants’ original data (not
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repaired) to preserve the uniqueness of the partic-
ipants’ behavior. Performance is depicted in two
forms: attendance frequency and average SL.
The former is the percentage of time (out of over-
all 300 s) that a task was attended altogether; the
latter is the average SL gained for a task over time
resulting from the attendance. It should be noted
that two identical attendance frequencies may not
result in the same average SLs for two identical
tasks. The reason is that one task might be attend-
ed only when its SL is low, thus resulting in low
average, whereas the other task gains a high aver-
age because it is usually attended when its SL is
already high. To address this aspect of perfor-
mance, we generated moment-to-moment per-
formance graphs for all scenarios, but here we
present only those for dDR-dCR-dW, which was
the most complex scenario (see Figures 3b, 3c,
and 3d).

The best, worst, and average performance
analysis of the participants and that of tabu are
presented in the following passages for each sce-
nario. Further, looking at the performance of all
10 participants and that of tabu in each scenario,
we provide a strategy that is thought to give the
best results, called the “most successful strategy”
for that scenario.

Scenario dDR-dCR-dW: Different DRs, CRs,
and Ws. This was the scenario in which all of the
parameters were different (DR = [2, 1, 3, 3, 4, 2],
CR = [9, 5, 8, 8, 9, 13], W = [6, 5, 10, 6, 4, 2]).
The DR, CR, and W of the tasks were identical
to dDR-iCR-iW, iDR-dCR-iW, and iDR-iCR-dW,
respectively. The performance of the participants
and that of tabu are illustrated in Figure 3. Figure
3a shows the attendance frequency (percentage)
and average state (SL) of tasks over time in two
graphs. Figures 3b, 3c, and 3d illustrate, in order,
the moment-to-moment task attendance for the
best performer, worst performer, and tabu. Each
of those three graphs consists of six parallel,
smaller, horizontal graphs, in which the zigzag line
between 0% and 100% shows the variation of SL
for each task over time. The start and end of an
upward line in the graph represent the start and
end of continuous attendance to a task. Because
no more than one task could be attended at any
point in time, with the SL line for one task being
upward, the rest of the lines should be downward
or steady at zero SL.

The best performer attended only to the three
highest W tasks (Task 0, W = 6; Task 2, W = 10;

Task 3, W = 6) without being influenced by their
differences in DR and CR. It can be seen in Fig-
ure 3b that although these three tasks were attend-
ed equally from the beginning, it took about 50 s
to be able to keep them at a high SL. Each of
these tasks gained a high average SL, whereas the
rest of the tasks were ignored.

In contrast, the worst performer attended to
too many tasks in order to avoid penalization and
never took the time to raise (and maintain) a few
of the tasks to (and at) a high SL, which resulted
in a poor overall score. This behavior can be clear-
ly seen in Figure 3c, in that all tasks were large-
ly attended only when they hit the zero SL line (or
penalization line). Task 2 differed from the other
tasks only in that more time was spent to take it
to a higher SL whenever attended. Therefore,
Task 2 (the highest W task, W = 10) had a mod-
est average SL, whereas the rest of the tasks had
a poor average SL (see Figure 3a).

The tabu strategy was to initially bring the two
highest W tasks (Task 0, W = 6; Task 2, W = 10)
up to near 100% SL while maintaining around
50% SL for the lowest DR task (Task 1, DR = 1,
W = 5). When the two high-W tasks (Task 0, W =
6; Task 2, W = 10) were stable at high SLs, the
third task (Task 1, W = 5) also was improved to
a near 100% SL. The selection of Task 1 (DR =
1, CR = 5, W = 5) in favor of Task 3 (DR = 3, CR =
8, W = 6), which had a higher W and CR, may be
justified by its very low DR. After all the three
tasks (Task 0, W = 6; Task 1, W = 5; Task 2, W =
10) were stable at a high SL, the fourth task (Task
3, W = 6), which had the second highest W, was
also attended to around the 50th s. By the 100th s,
all four of these tasks (Task 0, W = 6; Task 1, W =
5; Task 2, W = 10; Task 3, W = 6) reached a steady
state near 100% SL.

Figure 3d indicates the success of this strate-
gy in managing the four highest W tasks, which
was one task more than the best human perfor-
mance. Although Task 5 (DR = 2, CR = 13, W =
2) had the lowest W, it was sporadically attended
probably because of its very high CR and low DR.
The average performance of the participants had
a relatively higher SL in the three highest W tasks
(0, 2, 3) in comparison with the rest of the tasks.
Most successful strategy: For heterogeneous tasks,
attend to the most important (highest W) tasks if
there is no significant difference between their
DRs and CRs.

Scenarios dDR-iCR-iW, iDR-dCR-iW, and
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iDR-iCR-dW: In order, different DRs, CRs, and
Ws. In each of these scenarios, tasks had two
identical parameters while differing in only one
parameter. In order, the parameters were DR = 
[2, 1, 3, 3, 4, 2], CR = 9, W = 5; DR = 3, CR = [9,
5, 8, 8, 9, 13], W = 5; and DR = 3, CR = 9, W =
[6, 5, 10, 6, 4, 2]. Figures 4a, 4b, and 4c show the
attendance frequency and average state (SL) of
tasks in these scenarios.The tasks with the highest
contribution to the score (effective tasks, in short)
in each scenario were the tasks with the lowest
DRs, highest CRs, and highest Ws. The first few
effective tasks in each scenario were, respectively,
Task 0 (DR = 2), Task 1 (DR = 1), Task 5 (DR =
2); Task 0 (CR = 9), Task 3 (CR = 8), Task 4 
(CR = 9), Task 5 (CR = 13); and Task 0 (W = 6),
Task 2 (W = 10), Task 3 (W = 6).

The best performers in these scenarios dis-
covered the effective tasks and focused on them.
Initially in each scenario, two of these tasks were
attended, and then the third and sometimes the
fourth one. These participants maintained good to
excellent average SLs in the two most effective
tasks; fair to good average SLs in the next one or
two effective tasks; and poor average SLs in the
remaining tasks. The attendance frequency to
three or four of the tasks focused on was rough-
ly within a 10% range, and in the rest of the tasks,
one up to three tasks were completely ignored.
Note that tasks with high DRs (or low CRs) had to
be attended more often to maintain the same aver-
age SL in tasks with low DRs (or high CRs).

The worst performers in these scenarios were
overly concerned with penalization and tried to
avoid it by attending to all tasks and not ignoring
any task. This hypothesis was supported by the
participants’verbal comments, the fact that tasks
were maintained barely above zero SL, and that
tasks were largely attended for a short time im-
mediately after they hit the zero SL line. Overall,
these participants maintained a poor average SL
in all tasks by not ignoring (or not focusing on) a
few of them – for example, attending to all tasks
uniformly in a cyclic, sequential order gave poor
results. Although a relatively better average SLwas
gained in more effective tasks in dDR-iCR-iW
and iDR-dCR-iW, that is believed to be largely
attributable to the parameters of these tasks. For
example, attending to a task with low DR (or high
CR) gains a better average SL as compared with
identically attending to a task with high DR (or
low CR).

The tabu performance in these scenarios was
fairly similar to that of the best performers in that
it focused on two or three most effective tasks
and ignored the rest. It was slightly different,
however, in that after the first few tasks were sta-
ble at high SLs, the model gradually moved on to
the next effective task or tasks while maintaining
the first few tasks at high SLs. Considering that a
task’s SL could not go beyond 100%, some of the
best performers put too much effort in perfecting
an already great task state instead of moving on
to the next task or tasks being penalized. The
average performance of the participants, in these
scenarios, had a relatively higher average SL in
the effective tasks in comparison with the rest of
the tasks. Most successful strategy: Attend to the
most effective tasks; attend to others only as time
permits.

Scenario iDR-iCR-iW: Identical tasks. In this
scenario, tasks were identical (DR = 3, CR = 9,
W = 5) and task management had the least effect
(see Figure 4d). The best performer primarily
attended to three tasks while keeping a high aver-
age SL, and practically ignored the rest of the
tasks. The worst performer kept a modest average
SL in the four tasks equally attended and ignored
the rest of the tasks. No task was kept at a high
SL long enough to improve the score much. The
tabu performance was similar to the best partici-
pant performance in that primarily three of the
tasks were attended. Other tasks were occasion-
ally attended for just a short time and mostly
when they were at zero SL, which can be ex-
plained in terms of the desire to avoid penaliza-
tion. The average performance of the participants
had a relatively higher attendance frequency to
each of the tasks in the middle of the screen (3
and 4) and a lower attendance frequency to tasks
on the left side of the screen (0 and 1). Most suc-
cessful strategy: For identical tasks, pick a few
tasks and keep them satisfactory.

General Discussion 

Initial overreaction to penalization. The pen-
alty factor in this study was set to 20%. If it had
been much higher, it would probably have been
wise for participants to avoid penalization at all
costs. The participants initially attempted to han-
dle too many (more than four) tasks, usually
attending to them just when they hit zero SL
(penalization line) to avoid penalization. The
drawback of this approach was that none of the
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tasks could draw enough attention to approach a
high SLand, in turn, contribute to raising the score.

The results of fitting a linear model indicate a
significant negative relationship between the
number of tasks handled (i.e., tasks attended over
5% of the time) and the scenario order to which
participants were exposed, F(1, 48) = 10.47, p <
.01, rs = –.42, for a test of the null hypothesis that
the slope of the fitted line is zero. That is, the
majority of participants learned to handle fewer
tasks (or ignore more tasks) as they advanced
through the scenarios. This resulted in better
scores.

Therefore, the pattern observed in this re-
search suggests that humans initially overesti-
mate the magnitude and effect of a penalty but
gradually learn its true effect via practice. In a
real-life multitasking environment, the penalty of
performing poorly in a task might be further
exaggerated by light, noise, vibration, and other
salient stimuli. In such an environment, it would
be extremely hard for the operator to ignore the
salient task in favor of other tasks, even if that is
the right thing to do. This suggests that design
should explicitly consider the salience of likely
stimuli or that training should be provided to help
operators understand the real consequences of
unsatisfactory task performance. At the same
time, it is important for operators to dynamically
evaluate which tasks to shed, the value of con-
tinuing a task, and the consequences of shedding
a task to achieve the best results.

Importance of strategic versus tactical task
management. The results of fitting a linear model
indicate a convincing relationship between the
score of participants relative to that of tabu and
the scenario order to which the participants were
exposed, F(1, 48) = 30.04, p < .01, rs = .62, for a
test of the null hypothesis that the slope of the fit-
ted line is zero. That is, the score of participants
relative to that of tabu improved as the partici-
pants advanced through the scenarios. Note that
earlier we also provided convincing statistical evi-
dence that the participants learned to handle fewer
tasks as they advanced through the scenarios.

These results are indirectly in agreement with
the observation of the performances within each
scenario that the participants who worked on the
same tasks, with regard to type and number, and
showed the same level of reaction to penaliza-
tion, had very similar scores: good or bad. This
relationship was observed despite the fact that the

participants’ moment-to-moment attendance to
tasks was quite different.

The choices of which tasks to handle, which
tasks not to handle, and the trade-off between avoid-
ing penalization for all tasks versus excelling in a
few tasks (at the cost of penalization for some other
tasks) were considered as the participants’ strate-
gic task management. The participants’moment-to-
moment behavior was considered as their tactical
task management, which can be attributed to task-
switching frequency, order of attendance to tasks,
length of continuous time spent on a task, or the
number of times attended to a task.

Participants appeared to consciously determine
their strategy (many times expressed verbally)
just prior to starting a scenario based on their ex-
periences in practice trials and previous scenar-
ios; a chosen strategy was rarely changed during
a scenario. However, given a selected strategy,
the participants seemed to change tactics intu-
itively throughout that scenario.

Attendance to effective tasks. As mentioned
earlier, effective tasks are high-W tasks that have
low DRs and high CRs and thus do not need
much attention to attain high weighted average
SLs. The general rule of priority (or the biggest
bang for the buck) was to first attend to and main-
tain a high average SL in such tasks because they
provide the maximum benefit (score) for the least
effort (attendance).

The results of fitting a linear model indicates
a convincing relationship between the task aver-
age SL and the tasks in the increasing order of
Ws, DRs (negative relationship), and CRs within
iDR-iCR-dW, dDR-iCR-iW, and iDR-dCR-iW,
respectively. In order, the corresponding statis-
tics for a test of the null hypothesis that the slope
of the fitted line is zero are F(1, 58) = 106.10, 
p < .01, rs = .88; F(1, 58) = 40.12, p < .01, rs =
–.64; and F(1, 58) = 37.34, p < .01, rs = .63. That
is, the participants performed better in those tasks
that had a higher effectiveness in each of these
scenarios.

This result is also in agreement with the par-
ticipant performance in dDR-dCR-dW (see Fig-
ure 3), but it is not applicable to iDR-iCR-iW, as
all tasks had the same effectiveness. It is specu-
lated that if a real-life operator is not attending to
effective tasks, it might be because of his or her
misperception of the relative value of the W, DR,
or CR of the tasks – for example, attending to a
low-W task just because it is visually more salient.



414 June 2007 – Human Factors 

Importance of parameter conspicuity in at-
tending to tasks. The decreasing order of con-
spicuity for the parameters was in the following
order: W, DR, and CR. That is, the participants
had perfect knowledge of the Ws as they were
displayed on the screen next to each task (as dol-
lar values). They also had good knowledge of the
DRs, as adjacent tasks could be compared while
deteriorating simultaneously. However, they had
only a fair knowledge of the CRs because simul-
taneous comparison of tasks was not possible, so
CRs could be estimated only one at a time, while
a task was attended.

Interestingly, it also appeared that the majority
of participants, when deciding on which task to
attend, considered the system parameters in the
order of W, DR, and CR. That is, if the Ws of 
the tasks differed significantly, the higher W tasks
were attended to with little concern regarding
their DR or CR (see the performance analyses for
iDR-iCR-dW and dDR-dCR-dW). When there was
no significant difference among the Ws, tasks with
lower DRs were attended to with little or no concern
for CR (see the performance analysis for dDR-
iCR-iW). If Ws and DRs were equal or nearly
equal, tasks with high CRs were attended to (see
the performance analysis for iDR-dCR-iW).

Although no conclusive evidence can be 
provided for this observation, it is in general
agreement with that of other researchers, that par-
ticipants choose the path of least cognitive effort
(Gray & Fu, 2004; Payne, Bettman, & Johnson,
1993). Although in practice, it might be harder to
perceive a task’s W than in this study, operators
usually have a good understanding of a task’s W
or which task is more important. In contrast, it is
more difficult for operators to understand the sub-
tle differences in task DRs and, even more so, the
differences in task CRs.

Performance in scenarios with distinguish-
able tasks. The participants considered that dis-
tinguishing tasks was easiest in dDR-dCR-dW
and most difficult in iDR-iCR-iW. Ironically, dis-
tinguishable tasks did not help the participants’
scores relative to that of tabu in dDR-dCR-dW (see
Figure 2b). On the other hand, the participant
scores relative to those of tabu in iDR-dCR-iW,
dDR-iCR-iW, and iDR-iCR-dW improved as the
varying task parameter became more conspicuous
and tasks became more distinguishable, F(1, 28) =
4.03, p = .05, rs = .36, for a test of the null hypoth-
esis that the slope of the fitted line is zero.

There is no statistically significant evidence of
a difference among the mean scores of the partic-
ipants relative to those of tabu in the five scenar-
ios, F(4, 45) = 1.99, p = .11. However, the Fisher’s
LSD method indicates that the mean score of par-
ticipants relative to that of tabu in iDR-iCR-dW
was significantly higher than those gained in
iDR-dCR-iW and dDR-dCR-dW: respectively,
15.8 and 16.3, ±15.46, 95% LSD.

It was noticed in the experiments that as the
varying task parameter became more conspicuous,
tasks became more distinguishable. However, it
was also noticed that as the number of varying
parameters increased, tasks became more distin-
guishable. Therefore the conspicuity of the vary-
ing parameter (or paramenters) and the number
of varying parameters were confounding factors
in this experiment.

That is, the scenario with the least distin-
guishable tasks (iDR-iCR-iW) had no varying
parameter and, obviously, no conspicuous vary-
ing parameter. In contrast, the scenario with the
most distinguishable tasks (dDR-dCR-dW) had
three varying parameters with three levels of
conspicuity. This might be the reason that in the
three scenarios with one varying parameter, 
the score of participants relative to that of tabu
improved as the tasks became more distinguish-
able. However, this relationship was no longer
statistically significant when all five scenarios
were considered together.

SUMMARY, CONCLUSIONS, 
AND RECOMMENDATIONS

The metaphor of a juggler spinning plates was
introduced to model an operator responsible for
multiple concurrent tasks. This paradigm is par-
ticularly applicable to those environments in
which tasks are ongoing and do not have a clear
completion point, and consequently the number
of completed tasks is not a good measure of per-
formance. The mathematical model developed
for this paradigm was solved by tabu search
heuristic methods, and the tabu solution found
was considered as a normative model or a near-
optimal method of managing multiple concurrent
tasks. The tabu performance was then compared
with human performance.

A software environment was developed to
measure and analyze human performance while
managing six concurrent tasks. Five different
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scenarios, each 5 min long, were developed based
on the variations of DR, CR, and W of the tasks.
The performance of the 10 study participants was
recorded, replayed, reviewed, and analyzed statis-
tically and graphically.

In the statistical comparison, there is substan-
tial evidence that tabu outperformed the partici-
pants in all scenarios together and for each of the
five scenarios considered individually. Although
the participants could not beat the tabu score, the
best performers and the participants on average
gained scores that were, respectively, as close as
82% to 99% and 71% to 87% of the tabu score in
each scenario. These numbers show that there is
chance for a skilled participant to beat the tabu
score with additional practice and experience.

In general, it appeared that the participants’
strategy with respect to the level of reaction to pen-
alization and the selection of type and number of
tasks attended was more important in attaining a
high score than the participants’intuitive, moment-
to-moment tactics on how to attend to tasks.
There is substantial statistical evidence that as the
participants advanced through the scenarios, they
handled fewer tasks and their scores improved.
However, a rather focused experiment is needed
to convincingly support the importance of strate-
gic versus tactical task management.

The generic approach of tabu in attending to
tasks seemed to be a stepwise strategy. Three of
the tasks were first raised concurrently to a high
SL; then the fourth and sometimes a fifth task
were attended to while maintaining the high state
of the previous tasks. The majority of the partic-
ipants had poor performance in this regard. They
either attempted to handle too many tasks all at
once (as overreaction to penalization in early sce-
narios) or handled fewer tasks than they were
capable of handling (in late scenarios).

As expected, the participants identified and at-
tended to effective tasks (i.e., tasks with high Ws,
low DRs, and high CRs); good performers were
more successful in doing so. The conspicuity of the
parameters in this experiment decreased in the or-
der of W, DR, and CR. The participants seemed to
consider the more conspicuous parameter as the
primary attendance decision factor, although no
statistical evidence is provided. However, there is
strong statistical evidence that the participants’
scores relative to those of tabu increased as the con-
spicuity of the varying parameter increased in the
three scenarios with only one varying parameter.

In the design of the scenarios in this experiment,
the number of varying parameters and the conspic-
uity of the varying parameters were confounding
factors, and both affected the distinctiveness of 
a scenario in the eyes of the participants. There-
fore, a more thorough study is recommended that
includes rather isolated variations of parameter
conspicuity and/or the number of varying para-
meters.

This study could be extended in numerous
ways for further research. One research extension
could be defined by varying the software design.
Examples include changing the task parameters
(DR, CR, W, and penalty factor) and their salience,
introducing discrete and/or stochastic changes in
a task’s SL instead of continuous changes, and
comparing easy scenarios with a manageable
number of tasks and reasonable CR/DR rates ver-
sus difficult scenarios. However, in this category
the most critical experiment would be to assess
how closely this software environment repre-
sents real-life task management by validation
against real-world or high-fidelity simulated
environments. Another research extension could
be related to the participants in the experiment,
such as the investigation of the effects of gender,
age, fatigue, instruction, practice, or expertise in
different multitasking fields. The last suggested
extension to this research is to investigate differ-
ent scoring mechanisms and penalty factors,
which could very well lead to different optimal
behaviors.

The main contribution of the present work is
the development of an abstract but flexible frame-
work to which many multitasking environments
can be mapped. The software environment devel-
oped based upon this framework facilitates the
measurement, analysis, and comparison of human
multitasking performance with that of others or
with optimal (or near-optimal) performance. It
should be noted that the good, bad, or near-optimal
task attendance strategies we have discussed are
highly dependent on the structure of the experi-
ment and the parameters chosen. Therefore, any
generalization of the conclusions in this study to
other environments with different parameters has
to be done cautiously.

General Observations

Humans can use information about system
dynamics (DR, CR) and task weight (W) in man-
aging multiple, concurrent tasks, and those who
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invest the time to explore these parameters can
perform surprisingly well (almost optimally when
human performance data were repaired and com-
pared against a normative model that was handi-
capped to account for human limits). Operators
who ignore this information (DR, CR, and W),
however, allow themselves to be distracted by
tasks that do not contribute much value when
attended or that do not result in extremely bad
consequences when ignored.

General Recommendations

Design equipment, procedures, and training
so as to keep operators comfortably aware of the
rate at which the state of tasks deteriorates when
not attended (DR), the responsiveness of tasks to
operators’ efforts (CR), the value or weight (W)
of performing tasks at satisfactory levels, and the
consequence of shedding tasks (penalty). To
avoid the possible detrimental consequences of
information overload, it might be best to provide
this information in type layers (i.e., the capability
to view or hide the task DRs, CRs, and Ws in three
separate layers) and/or provide them in ranges
(e.g., high, medium, or low DR). This informa-
tion is complex, highly related to other system
and environment parameters, and very dynamic.
Thus, providing this awareness will be very chal-
lenging, but even modest success in achieving it
could have significant benefits.
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