
STOCHASTIC OPTIMIZATION FOR COUPLED TENSOR DECOMPOSITION WITH
APPLICATIONS IN STATISTICAL LEARNING

Shahana Ibrahim and Xiao Fu

School of Electrical Engineering and Computer Science
Oregon State University

ABSTRACT
Coupled tensor decomposition aims at factoring a number of ten-
sors that share some of their latent factors. Existing algorithms for
coupled canonical polyadic decomposition (CPD) face serious scal-
ablity challenges, especially when the number of tensors is large.
However, a large amount of coupled tensors naturally arise in timely
applications such as statistical learning, e.g., when estimating the
joint probability mass function (PMF) of many random variables
from marginal PMFs. Stochastic algorithms that admit lightweight
updates exist for coupled decomposition, but these algorithms can-
not handle complex constraints (e.g., the probability simplex con-
straint that is important in statistical learning) due to their sampling
patterns. This work puts forth a simple data-sampling and block
variable-updating strategy for simultaneously factoring a large num-
ber of coupled tensors. The proposed algorithm enjoys low per-
iteration complexity and can easily handle constraints on latent fac-
tors. We also show that this multi-block algorithm admits a nice
connection to the classic single-block stochastic proximal gradient
(SPG), and thus it naturally inherits convergence properties of SPG.
Synthetic and real-data experiments show that the proposed algo-
rithm is very promising for statistical learning problems.

Index Terms— Coupled canonical polyadic decomposition,
stochastic optimization, statistical learning

1. INTRODUCTION

Tensors with shared latent factors (or, coupled tensors) arise in many
fields across signal processing, machine learning, and data analyt-
ics. For example, [1] uses coupled tensor decomposition for array
processing and harmonic retrieval. The work in [2] factors tensors
and matrices together to enhance performance of recommender sys-
tems. The work in [3] proposes a joint probability mass function
learning framework by decomposing a large number of coupled ten-
sors. Another recent work formulates the crowdsourcing (ensemble
learning) problem in machine learning as a coupled decomposition
problem [4].

Tensor decomposition under a certain model (e.g., canonical
polyadic decomposition (CPD) [5] and Tucker [6]) in general poses
very hard optimization problems. Coupling tensors together in-
creases the computational difficulty in practice. Classic methods
mostly focus on a small number of tensors (e.g., two tensors) who
share one or two latent factors [7–10]. For such cases, many al-
gorithms for single tensor decomposition can be easily extended to
handle the coupled decomposition problem. However, in some prob-
lems like statistical learning, a large amount of coupled tensors can

Email: (ibrahish,xiao.fu)@oregonstate.edu. This work
was supported in part by National Science Foundation under Projects NSF
ECCS-1808159 and NSF ECCS-1608961.

arise [3, 4]. For example, consider a case where K = 256 discrete
random variables and one wishes to estimate the joint probabil-
ity mass function (PMF). Then, by the coupled tensor formulation
in [3], we have

(
K
3

)
= 2, 763, 520 different possible third-order

tensors to jointly decompose. This number is prohibitively large.
On the other hand, in machine learning problems, e.g., classification,
K corresponds to the number of features—which can easily reach
thousands.

Jointly decomposing a large number of latent factor-coupled ten-
sors poses very serious complexity challenges, and the classic single
tensor decomposition algorithms such as alternating least squares
(ALS) may no longer prevail. In fact, ALS-based methods were
used in [3, 4] to tackle their respective statistical learning problems.
However, both algorithms can only handle a relatively small num-
ber of coupled tensors. This means that the number of random
variables that can be involved in their statistical inference problems
is very limited, thereby raising questions about scalability of cou-
pled tensor-based statistical learning. Stochastic gradient-based cou-
pled tensor decomposition is conceptually suitable for handling such
cases since they work with sampled data and admit low per-iteration
complexity [9, 11]. Nevertheless, these methods usually cannot ef-
fectively handle constraints that are of interest in statistical learning
(e.g., probability simplex constraints), due to their sampling patterns.

This work puts forth a simple yet effective coupled tensor de-
composition algorithm, tailored for large-scale statistical learning
problems such as joint PMF learning [3] and ensemble learning [4].
Our idea is based on a two-stage sampling paradigm. Specifically,
the method first samples a latent factor to update, and then samples
a tensor that contains this factor—and performs one-step proximal
gradient (PG) with respect to (w.r.t.) the chosen factor using the se-
lected data. This way, all the operations involved are lightweight
in terms both memory and computational flops. The algorithm is
reminiscent of block randomized block coordinate descent (BCD)
and stochastic proximal gradient (SPG), and thus can easily han-
dle complex constraints and regularizations. We also show that the
algorithm is essentially a single-block SPG algorithm with a scaled
version of an unbiased stochastic oracle, thereby enjoying all conver-
gence properties of the classic SPG. Synthetic and real-data experi-
ments on a couple of stochastic learning problems show the proposed
method is very promising.

2. BACKGROUND

2.1. A Closer Look at The Motivating Examples

• Joint PMF Learning: In [3], Kargas et al. established an in-
triguing link between coupled CPD and joint PMF estimation of a
large number of random variables. Consider a joint PMF Pr(Z1 =
i1, . . . , ZK = iK), where Zk can take Ik different values. This can

be represented as a Kth-order tensorX ∈ RI1×...×IK with

X(i1, . . . , iK) = Pr(Z1 = i1, . . . , ZK = iK).

Note that since every nonnegative tensor admits a nonnegative CPD
[3, 6], we can represent the joint PMF as

X(i1, . . . , iK) =

F∑
f=1

K∏
k=1

λ(f)Ak(ik, f), (1)

where λ ∈ RF and Ak ∈ RIk×F , and all the latent factors (i.e.,
Ak’s and λ) are nonnegative. Note that one can also assume that the
columns ofAk’s have unit 1-norm, sinceλ can ‘absorb’ the scalings.
Note that we also have 1>λ = 1 and λ ≥ 0 since the tensor is a joint
PMF [3]. Interestingly, the CPD representation can be considered
as a naive Bayesian model, i.e., Pr(Z1 = i1, . . . , ZK = iK) =∑F

f=1

∏K
k=1 Pr(H = f)Pr(Zk = ik|H = f), where we have

Pr(H = f) = λ(f), Pr(Zk = ik|H = f) = Ak(ik, f).

In practice, the joint PMF is of great interest for learning and in-
ferences. However, it is impossible to directly estimate the joint
PMF of a large number of random variables, since the sample com-
plexity is prohibitive. However, marginal PMFs of two or three
random variables are much easier to estimate. The idea of [3] is
to estimate Ak’s and λ from marginal PMFs of three variables—
and then using the latent factors to construct the joint PMF. This
is enabled by the link between the naive Bayesian model and
high-order tensors. Specifically, marginalizing Pr(Z1, . . . , ZK)
to Pr(Z`, Zm, Zn) is equivalent to ‘collapsing’ K − 3 modes of
the tensor X , leading to [3] Pr(X` = i`, Xm = im, Xn = in) =∑F

f=1 λ(f)A`(i`, f)Am(im, f)An(in, f). Hence, the joint PMF
learning problem boils down to jointly factoring

X`,m,n = Jλ,A`,Am,AnK,

for all available `,m, n, where we use Jλ,A`,Am,AnK to denote
a third-order tensor with column normalized latent factorsA`,Am,
and An, and λ, i.e., the ‘weights’ of the rank-one components. The
optimization problem is as follows:

minimize
{Ak}Kk=1

,λ

K∑
`=1

K∑
m=`+1

K∑
n=m+1

∥∥X`,m,n − Jλ,A`,Am,AnK
∥∥2
F

subject to 1>Ak = 1>, Ak ≥ 0, ∀k (2)

1>λ = 1, λ ≥ 0.

• Crowdsourcing: In machine learning, data labeling is oftentimes
crowdsourced to multiple annotators for efficiency and robustness.
Since different annotators may create different labels for the same
sample, an effective algorithm for result fusion is desired. The
so-called Dawid-Skene method was proposed in 1979 for this pur-
pose [12]. Consider a classification problem. Suppose that there
are K annotators who label the data samples {fq}Qq=1 and pro-
vide a class label from {1, . . . , F} . Let Zk represent the response
of the annotator k to a data sample. The goal is to estimate the
true label of any data sample fq from the annotator responses.
The Dawid-Skene model assumes that given the ground-truth la-
bel, the responses of the annotators are conditionally independent,
i.e., Pr(Z1 = i1, . . . , ZK = iK |Y = f) =

∑F
f=1 Pr(Y =

f)
∏K

k=1 Pr(Zk = ik|Y = f), where f ∈ {1, . . . , F} repre-
sents the class label, and ik denotes the response of the kth an-
notator. If one defines a series of matrices Ak ∈ RF×F and let

Ak(ik, f) := Pr(Zk = ik|Y = f), Af ∈ RK×K can be consid-
ered as the ‘confusion matrix’ of annotator k. Also define the vector
λ ∈ RK such that λ(f) := Pr(Y = f); i.e., the prior probabil-
ity of the ground-truth label Y . Then the crowdsourcing problem
amounts to estimating Ak for k = 1, . . . ,K and λ. By observing
the co-occurrences of different annotators, tensors following the
form of X`,m,n = Jλ,A`,Am,AnK can be constructed. Then,
the problem of estimating the label prior and the confusion matrices
becomes the same problem as in (2) again, with the same constraints
as in the previous example.

2.2. Challenges, Prior Art
The idea of the algorithms in [3, 4] for handling Problem (2) can
be summarized as follows. The algorithm cyclically updates each
of A1, . . . ,AK ,λ when fixing the others. When updating Ak, the
subproblem can be written as a constrained least squares problem,
i.e.,

minimize
1>Ak=1>

Ak≥0

∑
m 6=k

∑
n 6=k
n>m

‖X(1)
k,m,n − (An �Am)DA>k ‖2F , (3)

where D = Diag(λ) and � denotes the Khatri-Rao product. The
above is nothing but fitting a least squares model to a collection of
tensors that share Ak, and X(1)

k,m,n is the mode-1 unfolding of the
tensor Xk,m,n; see definition of tensor unfolding in [6]. The prob-
lem in (3) is convex and thus many off-the-shelf algorithms can be
employed. The works in [3,4] use an ADMM algorithm to handle it.
The challenge is that whenK is large, some key steps in the ADMM
algorithm involve a large number of flops. In particular, consider the
following step in the ADMM algorithm proposed in [3]:

(λλ>)
∑
m 6=k

∑
n 6=k
n>m

(An �Am)>X
(1)
k,m,n. (4)

This step needs O
((

K
2

)
IkImInF

)
flops. In statistical learning

problems such as classification, both K (number of random vari-
ables/features) and I (number of values each feature can take) can
be very large. Consider a case where K ≈ I` = I , the complexity
of (4) easily goes to the level of O(I5)—which makes the algorithm
quite slow even when I is moderate. In fact, computation of terms
like (An � Am)>X

(1)
k,m,n has been a bottleneck for even single

tensor decomposition. This so-called multiplication of tensor and
Khatri-Rao product (MTTKRP) operation [5, 6] is now repeated(
K
2

)
times in the coupled decomposition of interest, which worsens

the complexity issue substantially.
Random sampling and stochastic gradient (SGD) have been con-

sidered for single/coupled tensor decomposition [7, 9, 13]. SGD
is known for its lightweight per-iteration update, and is a good fit
for tackling Problem (2). However, existing stochastic coupled ten-
sor factorization methods sample part of the tensors (e.g., random
entries X`,m,n(i`, im, in)) to update the latent factors, which is
not suitable for the problem in (2). The reason is that random en-
tries like X`,m,n(i`, im, in) only contain information of the rows
of Ak’s, e.g., A`(i`, :), Am(im, :), and An(in, :)—but the statisti-
cal learning problems have constraints on the columns ofAk’s (i.e.,
1>Ak = 1>). Therefore, new stochastic algorithms are desired for
the problem of interest.

3. PROPOSED ALGORITHM
Our idea for handling (2) is natural yet simple. Instead of work-
ing with all the tensors all the time, we work with a randomly sam-
pled tensor Xk,m,n to update Ak. This way, the computing many

Algorithm 1: Proposed
input : tensors {X`,m,n ∈ RI`×Im×In}`,m,n; rank F ;

initialization {A(0)
k }

1 t← 0;
2 repeat
3 sample k from {1, . . . ,K + 1};
4 sample (m,n) from {1, . . . ,K};
5 if k ≤ K then
6 formHk = (An �Am)D,

Vk = (λλ>) ~ (A>nAn) ~ (A>mAm);

7 Gk ←
(
A

(t)
k H>k Hk − (X

(1)
k,m,n)

>Hk

)
;

8 A
(t+1)
k ← Proj

(
A

(t)
k − α

(t)Gk

)
;

9 A
(t+1)
` ← A

(t)
` for ` 6= k, λ(t+1) ← λ(t);

10 else
11 sample (`,m, n) from {1, . . . ,K};
12 formHk = An �Am �A`;

13 GK+1 ←
(
H>k Hkλ−H>k vec(X

(1)
k,m,n)

)
;

14 λ(t+1) ← Proj
(
λ(t) − α(t)GK+1

)
;

15 A
(t+1)
k ← A

(t)
k , ∀k;

16 end
17 end
18 t← t+ 1;
19 until some stopping criterion is reached;

output: {A(t)
k }

K
k=1

MTTKRPs at a single iteration can be avoided. Specifically, we
propose the following two-level sampling strategy: At each iter-
ation, we first sample a block variable to update; i.e., we sample
k ∈ {1, . . . ,K,K + 1}, where the first K blocks correspond to the
Ak’s and the (K + 1)th block the λ. Then, we sample m,n from
{1, . . . , k − 1, k + 1, . . . ,K} and updateAk using the following:

A
(t+1)
k ← Proj

(
A

(t)
k − α

(t)G
(t)
k

)
.

where G(t)
k = A

(t)
k Vk − (X

(1)
k,m,n)

>Hk, Hk = (An � Am)D,
Vk = (λλ>) ~ (A>nAn) ~ (A>mAm), Proj(Z) projects the
columns of Z onto the probability simplex, and ~ denotes the
Hadamard product. The above is essentially a stochastic proximal
gradient with respect to Ak. Note that the projection step is impor-
tant since it keeps the columns of Ak in the feasible set, which is
particularly meaningful for statistical learning problems. We also let
A

(t+1)
j ← A

(t)
j , ∀j 6= k and λ(t+1) ← λ(t). In addition, we let

G
(t)

k′ = 0, ∀k′ 6= k and g(t) = [vec(G
(t)
1)>, . . . , vec(G

(t))
K+1)

>]>

as the overall stochastic oracle in iteration t—which has an interest-
ing connection to the gradient, as we will show shortly.

The vector λ can be updated in a very similar fashion. The al-
gorithm is summarized in Algorithm 1. The proposed algorithm is
naturally more lightweight compared to the algorithms in [3,4] since
it only works with partial data in each iteration.

One remark is that the proposed two-layer sampling strategy
makes sure that the information about the entire picked Ak (or λ)
is contained in the sampled data, and thus constraints on these latent
factors can be easily imposed in the iterations. This is important, es-
pecially for real-data problems - since prior information can improve
identification accuracy under severe noise or model mismatch.

As we will see, the proposed algorithm enjoys very competi-
tive runtime performance. However, since in every iteration we only
work with sampled data and a small portion of the optimization vari-

ables, a natural question is, does the algorithm even converge? To
answer this question, we first show the following:

Proposition 1 Denote the objective function in (2) as f(θ) where
θ = [θ>1, . . . ,θ

>
K]>, θk = vec(Ak) for k = 1, . . . ,K and θK+1 =

λ. Let Jk denote the number of available tensors whose mode-1
factor is Ak. Also let B(t) be the filtration up to iteration t − 1.
Then, by uniform sampling of the tensors, the gradient computed at
iteration t, G(t)

k satisfies E
[
G

(t)
k | B

(t)
]
= Ck∇θkf(θ), ∀k where

Ck > 0 is a certain constant.

Proof: For any k = 1, ...,K, we have the following conditional
expectation:

G
(t)
k = E

[
G

(t)
k |B

(t)] = E
[
G

(t)
k |{θ

(t−1)
k }Kk=1

]
= Ek′

[
1

Jk′

∑
m 6=k′

∑
n 6=k′
n>m

(
A

(t−1)

k′ Vk′ − (X
(1)

k′,m,n)
>Hk′

)]

(a)
=

K∑
k′=1

δ(k − k′)
(K + 1)Jk′

∑
m 6=k′

∑
n 6=k′
n>m

(
A

(t−1)

k′ Vk′ − (X
(1)

k′,m,n)
>Hk′

)
= Ck

∑
m 6=k

∑
n 6=k
n>m

(
A

(t−1)
k Vk − (X

(1)
k,m,n)

>Hk

)
(5)

where Ck = 1
(K+1)Jk

and δ(·) is the Dirac function and the expec-
tation in (a) is taken over the possible values of k. The last equality
shows that G

(t)
k is a scaled version of the gradient of the objective

function of (3) taken w.r.t.A(t)
k . In the same fashion, it can be shown

that G
(t)
K+1 is a scaled version of the gradient of the objective func-

tion (3) taken w.r.t. λ(r). �
The proof is straightforward and shares the idea for stochastic

single tensor decomposition in [14]. In spite of its simplicity, the im-
plication is interesting—it means that by using such two-stage sam-
pling, we are effectively applying stochastic proximal gradient to the
original problem using an unbiased stochastic oracle. By this con-
nection, all the convergence properties of the single-block stochastic
proximal gradient (SPG) algorithm hold for the proposed block op-
timization algorithm. One caveat for nonconvex SPG is that, to en-
sure convergence to a stationary point, the variance should converge
to zero along with the number of iterations [15]. Many variance
reduction methods exist for circumventing this issue, e.g., SVRG-
based methods [16–18] and growing batch size-based methods [15].
Nevertheless, in our experiments, we found that the algorithm works
very well even without variance reduction.

Another key consideration in stochastic optimization is stepsize
scheduling, i.e., determining α(t) for each iteration. SPG normally
works under the Robbins-Monroe rule, i.e.,

∑∞
t=0 α

(t) = ∞ and∑∞
t=0(α

(t))2 < ∞. In practice, practitioner may need more de-
tailed guidance. In this work, we use the Adagrad rule as proposed
in [14, 19].

4. EXPERIMENTS AND CONCLUSION

In this section, we use both synthetic and real data to showcase the
effectiveness of the proposed algorithm. We use the block coordi-
nate descent (BCD)-based algorithm developed in [3] to serve as the
baseline, since it solves the same stochastic learning problem. For
the real data part, the Kullback-Leibler (KL) divergence-cost ver-
sion of the algorithm developed in [20] is also used as benchmark.

0 25 50 75 100
Time in Seconds

10-10

10-5

100

M
SE

F=5

Proposed
LS-BCD

0 25 50 75 100
Time in Seconds

10-10

10-5

100

M
SE

F=10

Proposed
LS-BCD

Fig. 1. Convergence of the proposed algorithm and the baseline for
N = 20, In = 15 for different values of F

The two algorithms are denoted as LS-BCD and KL-BCD, respec-
tively. For real data experiments in crowdsoursing, the algorithms
in [4] and [21] are used as baselines and are denoted as LS-ADMM
and S-D&S, respectively. LS-ADMM is based on a coupled tensor
and matrix decomposition formulation, and S-D&S employs a sym-
metric orthogonal tensor decomposition technique to initialize the
Dawid-Skene algorithm [12].
• Synthetic Data We consider a joint PMF recovery problem as de-
scribed in Sec. 2. In this case, we have K = 20 random variables
with each variable taking Ik = 15 discrete values. The rank of the
joint PMF tensor is set to different values F ∈ {5, 10}. The columns
of the conditional PMF matrices (factor matrices) Ak ∈ RIk×F

and the prior probability vector λ ∈ RF are drawn from the prob-
ability simplex uniformly at random. We assume that the third or-
der statistics of the random variables X`,m,n = Jλ,A`,Am,AnK,
∀`,m, n ∈ [K] are available. In this case, we have 1, 140 third-
order tensors. The average Mean Squared Error (MSE) of the factor
matrices is computed as the performance metric. We stop all the al-
gorithms when the relative change of their respective cost function
becomes smaller than 10−4.

The result is shown in Fig. 1. One can see that the algorithm
outperforms the deterministic BCD algorithm in [3] in both accuracy
and runtime by very large margin. In particular, when F = 10, the
proposed method reaches MSE ≈ 10−4 after 25 seconds, while the
deterministic algorithm has a MSE ≈ 10−1 at the same time. The
performance gap is even larger when F = 5.
• Real Data - Classification In this case, different UCI datasets 1

are used to evaluate the classification performance using the pro-
posed approach. Each dataset consists of feature vectors and the
corresponding true labels for the data samples. Most features are
continuous-valued, and we follow [3] to discrete the features val-
ues, and use Iave = (1/K)

∑K
k=1 Ik to denote the averaged alpha-

bet size of the discretized features for each dataset in Table 1. For
each dataset, we run 10 Monte Carlo simulations by randomly par-
titioning the dataset into training, validation and testing sets. Us-
ing the training dataset, X`,m,m are estimated via counting the co-
occurrences of the values taken by features `,m and n. After iden-
tifying the parameters Ak and λ, we use the maximum a posteriori
(MAP) predictor to estimate the labels for each run and average the
results. For each dataset, F is chosen by observing classification
accuracy on the validation set.

The average runtime and the classification accuracy using dif-
ferent algorithms are given in Table 1. For all the datasets, one can
see that the proposed method outperforms the other baselines in both
accuracy and runtime. This is consistent to our observations in the
synthetic experiments. In particular, for a challenging case where
K = 21 (i.e., the Mushroom data), one can see that the proposed

1https://archive.ics.uci.edu/ml/datasets.html

method is 8 times faster compared to the deterministic algorithm
in [3] that solves the same optimization problem, with similar clas-
sification errors. Furthermore, the proposed algorithm is 47 times
faster than the KL-objective function based algorithm in [20], with-
out compromising accuracy.

Table 1. Real data-classification results using UCI dataset
Misclassification(%) Runtime(seconds)

UCI Dataset (K, Iavg, F) Proposed LS-BCD KL-BCD Proposed LS-BCD KL-BCD

Nursery (9,4,15) 0.086 0.087 0.094 2.98 9.85 8.34
Car (7,4,15) 0.097 0.107 0.1068 4.29 14.79 7.725
Adult (15,14, 15) 0.187 0.247 † 6.57 48.49 †
Connect4 (22,7,15) 0.338 0.363 0.356 6.54 52.47 389.22
Credit (15,10,10) 0.189 0.347 0.254 5.22 40.02 30.51
Heart (9,3,10) 0.198 0.213 0.2113 2.02 8.87 8.11
Mushroom (21,6,15) 0.042 0.043 0.043 8.19 69.95 378.67
Voters (17,2,15) 0.045 0.076 0.053 3.87 27.44 27.64
† means the algorithm does not converge in 500 sec. and the result is not meaningful.

• Real Data - Crowdsourcing In this experiment, we create crowd-
sourcing data as follows: We use K = 10 different classification
algorithms from the MATLAB machine learning toolbox such as
various k-nearest neighbour classifiers, support vector machine clas-
sifiers and decision tree classifiers to serve as annotators. Using 20%
of the available data samples, each annotator is trained. Then, we al-
low the annotators to label the unseen data samples with probability
p. Setting p < 1 is equivalent to the practical scenario where not
all data samples are annotated by an annotator. Once the annotator
responses are available, we estimate the co-occurrences of the an-
notator responses `,m and n to obatin X`,m,n. Following this, the
confusion matrices and prior probabilities are estimated via solving
(2). Again, a MAP predictor for true labels can be built after ob-
taining Ak’s and λ. We perform 10 trials to take the average of the
results and in each trial, a randomly selected testing set is labeled by
the annotators with probability p. In our experiments, we set p = 0.2
for all annotators.

The performance of the algorithms are shown in Table 2. Similar
to the classification case, the results show that in most of the cases,
the proposed algorithm exhibits better performance compared to the
baselines, both in accuracy and runtime.

Table 2. Real data-crowdsouring results using UCI dataset
Misclassification(%) Runtime(seconds)

UCI Dataset (K,F) Proposed LS-ADMM S-D&S Proposed LS-ADMM S-D&S

Adult (10,2) 0.182 0.258 0.238 0.19 4.17 2.10

Connect4(10,3) 0.273 0.344 0.333 0.72 50.96 14.38

Credit (10,2) 0.166 0.175 0.166 0.18 0.45 1.49

Mushroom (10,2) 0.061 0.064 0.061 0.18 0.44 2.40

In this work, we proposed a stochastic sampling and optimiza-
tion strategy for coupled tensor decomposition, tailored for statis-
tical learning problems. The algorithm can handle a large number
of latent factor-coupled tensors and can easily deal with a variety
of constraints on the latent factors. Although the algorithm works
with partial data and updates only a block of the optimization vari-
ables, we showed that the algorithm admits an interesting connection
to the classic single-block stochastic proximal gradient scheme—
thereby enjoying the same convergence properties. Simulations and
real experiments showed that the proposed algorithm outperforms
deterministic BCD algorithms devised for the same problems in both
runtime and accuracy.

5. REFERENCES

[1] M. Sørensen and L. De Lathauwer, “Multidimensional har-
monic retrieval via coupled canonical polyadic decomposition-
part i: Model and identifiability,” IEEE Trans. Signal Process.,
vol. 65, no. 2, pp. 517–527, Jan 2017.

[2] D. Choi, J. Jang, and U. Kang, “Fast, accurate, and scalable
method for sparse coupled matrix-tensor factorization,” Com-
puting Research Repository, Aug 2017.

[3] N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, learning,
and kolmogorov extension for finite-alphabet random vectors,”
IEEE Trans. Signal Process., vol. 66, pp. 4854–4868, Jul 2018.

[4] P. Traganitis, A. Pages-Zamora, and G. B. Giannakis, “Blind
multiclass ensemble classification,” IEEE Trans. Signal Pro-
cess., vol. 66, pp. 4737–4752, Jul 2018.

[5] T. G. Kolda and B. W. Bader, “Tensor decompositions and ap-
plications,” SIAM Review, vol. 51, no. 3, pp. 455–500, Sep
2009.

[6] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E.
Papalexakis, and C. Faloutsos, “Tensor decomposition for sig-
nal processing and machine learning,” IEEE Trans. Signal Pro-
cess., vol. 65, no. 13, pp. 3551–3582, July 2017.

[7] N. Vervliet and L. De Lathauwer, “A randomized block sam-
pling approach to canonical polyadic decomposition of large-
scale tensors,” IEEE J. Sel. Topics Signal Process., vol. 10,
no. 2, pp. 284–295, Jan.

[8] M. Sørensen and L. De Lathauwer, “Coupled tensor decom-
positions for applications in array signal processing,” in Proc
CAMSAP 2013, Dec 2013, pp. 228–231.

[9] A. Beutel, P. P. Talukdar, A. Kumar, C. Faloutsos, E. E. Pa-
palexakis, and E. P. Xing, “Flexifact: Scalable flexible factor-
ization of coupled tensors on hadoop,” in Proc. SIAM SDM
2014, 2014, pp. 109–117.

[10] C. I. Kanatsoulis, X. Fu, N. D. Sidiropoulos, and W.-K. Ma,
“Hyperspectral super-resolution: A coupled tensor factoriza-
tion approach,” IEEE Trans. Signal Process., vol. 66, no. 24,
pp. 6503–6517, 2018.

[11] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods
for large-scale machine learning,” SIAM Review, vol. 60, pp.
223–311, 2018.

[12] A. P. Dawid and A. M. Skene, “Maximum likelihood estima-
tion of observer error-rates using the em algorithm,” Applied
Statistics, pp. 20–28, 1979.

[13] C. Battaglino, G. Ballard, and T. G. Kolda, “A practical ran-
domized cp tensor decomposition,” SIAM Journal on Matrix
Analysis and Applications, vol. 39, no. 2, pp. 876–901, 2018.

[14] X. Fu, C. Gao, H.-T. Wai, and K. Huang, “Block-randomized
stochastic proximal gradient for low-rank tensor factorization,”
arXiv:1901.05529, Jan 2019.

[15] S. Ghadimi and G. Lan, “Stochastic first- and zeroth-order
methods for nonconvex stochastic programming,” SIAM Jour-
nal on Optimization, vol. 23, no. 4, pp. 2341–2368, 2013.

[16] R. Johnson and T. Zhang, “Accelerating stochastic gradient de-
scent using predictive variance reduction,” in Proc. NIPS, Jan
2013, pp. 315–323.

[17] L. Xiao and T. Zhang, “A proximal stochastic gradient method
with progressive variance reduction,” SIAM Journal on Opti-
mization, vol. 24, pp. 2057–2075, 2014.

[18] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incre-
mental gradient method with support for non-strongly convex
composite objectives,” in Proc. NIPS, 2014, pp. 1646–1654.

[19] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient meth-
ods for online learning and stochastic optimization,” Journal of
Machine Learning Research, vol. 12, no. Jul, pp. 2121–2159,
2011.

[20] N. Kargas and N. D. Sidiropoulos, “Learning mixtures of
smooth product distributions: Identifiability and algorithm,” in
Proc. AISTATS, 2019 [to appear].

[21] Y. Zhang, X. Chen, D. Zhou, and M. I. Jordan, “Spectral meth-
ods meet em: A provably optimal algorithm for crowdsourc-
ing,” Journal of Machine Learning Research, vol. 17, no. 102,
pp. 1–44, 2016.

