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Nonnegative Matrix Factorization (NMF)

Given a matrix X € RP*" and a factorization rank r < min(p, n),
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in_ D(X||WH NMF
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Nonnegative Matrix Factorization (NMF)

Given a matrix X € RP*" and a factorization rank r < min(p, n),
find W € RP*"and H € R™*" such that

in_ D(X||WH NMF
wmin_, DIX[IWH), (NMF)

e.g., D(X|[WH) = [[X — WH|[2 = ¥, (X — WH)2.

NMF is a linear dimensionality reduction technique :

x data points

Why nonnegativity?



Blind hyperspectral unmixing
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Figure 1: Urban hyperspectral image, 162 spectral bands and 307-by-307 pixels.

Problem. Identify the materials and classify the pixels.



Linear mixing model
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Linear mixing model
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Blind hyperspectral unmixing with NMF

\ l"\‘f\
/ 1
A\ / 74s!
\, / Yo
\, ~ W
N 1 (1)
\ F '~
- ™
. ﬂ‘, %
M —— It !
N,
%)
s
=
=)
X =5
o
[}
>
[
=

pixels



Blind hyperspectral unmixing with NMF
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Spectral signatures of each consitutive material

» Basis elements recover the different endmembers: W > 0;



Blind hyperspectral unmixing with NMF
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Spectral signatures of each consitutive material

» Basis elements recover the different endmembers: W > 0;
» Abundances of the endmembers in each pixel: H > 0.



Urban hyperspectral image
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Urban hyperspectral image

X(:,J) ~ W(:, k) H(k, )
N——

spectral signature

of jth pixel

Figure 2: Decomposition of the Urban dataset.



Urban hyperspectral image
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Figure 2: Decomposition of the Urban dataset.



Urban hyperspectral image
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Topic recovery and document classification
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Topic recovery and document classification
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» Basis elements allow to recover the different topics;
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Topic recovery and document classification
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Sets of words found simultaneously in different texts

» Basis elements allow to recover the different topics;

> Weights allow to assign each text to its corresponding topics.



Topic recovery and document classification

— MATLAB demo.

tdt2 top30: The TDT2 corpus (Nist Topic Detection and
Tracking corpus) consists of data collected during the first half of
1998 and taken from 6 sources, including 2 newswires (APW,
NYT), 2 radio programs (VOA, PRI) and 2 television programs
(CNN, ABC). Only the largest 30 categories are kept, thus leaving
us with 9,394 documents in total.

Toolbox: https://gitlab.com/ngillis/nmfbook/


https://gitlab.com/ngillis/nmfbook/

Topic recovery and document classification
Five of the topics extracted by NMF on tdt2 top30 (top 10

words):
Lewinsky | Israeli-Palestinian Stock Winter olympics | Sports
scandal conflict Market in Nagano
lewinsky israel percent olympic game
mrs israeli stock games denver
jones* netanyahu market olympics team
lawyers palestinian stocks nagano super
clinton peace points gold bowl
president palestinians investors medal packers
sexual arafat prices team jordan
jordan** bank index japan play
relationship minister companies winter green
told talks quarter won bulls

*Paula Jones sued Bill Clinton for an earlier sexual harassment affair.

**Vernon Jordan, a friend and political adviser to Bill Clinton, helped Monica
Lewinsky after she left the White House.




Facial feature extraction and classification
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Facial feature extraction and classification




Facial feature extraction and classification

Weights to reconstruct
each face.
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The basis elements extract facial features such as eyes, nose and
lips.



Facial feature extraction and classification
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The basis elements extract facial features such as eyes, nose and
lips. — MATLAB demo.



Original

Figure 3: Experiment on facial images [LS99].



Audio source separation
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Statistical Unsupervised Machine Learning Problems

Problems that NMF can handle (incomplete list):

| 2
>
>
>
>

>

>

Topic Modeling [AGH"13, HFS16]

Crowdsourced Data Labeling [IFKH19]

Learning Joint Probability from Marginals [IF20]
Hidden Markov Model Identification [HFS18, LR10]
Community Detection [HF19a, MSC17, PSU17]

Many are less obvious as NMF models — but can be shown
through careful constructions.

Warning: | will use boldface X to represent matrices and X
random variables.



Crowdsourced Data Labeling



Data Labeling, Deep Learning, and Crowdsourcing

» How many labels used in DL?
» Labeling millions of samples is costly

» Data labeling - an emerging business

» Forbes in Sep 2019: 2 of “Al 50:
America's Most Promising
Artificial Intelligence Companies”
are data labeling companies.

» Financial Times in July 2019: the
market for data labeling was
already $150 million in 2018;

» Market projected >$1B by 2023.

Amazon team taps millions of
Alexa interactions to reduce NLP
error rate

KYLE WIGGERS ~ @KYLE_L_WIGGERS
ANUARY 22, 2019 6:59 AM




» Labeling data items is nontrivial

» Any individual annotator could be easily confused
; -

sources: left: markelbroch.com, right: Joel Sartore, Nat Geo Image Collection

» Crowdsourcing: use a group of annotators to label data - and
then integrate the result
> A naive integration approach is majority voting.



» Majority voting may or may not be optimal

BREXIT VOTER BREAKDOWN
BY REGION

Remain

52%

Leave

picture source: left: https://www.outsidethebeltway.com. right: CTVNews

» Many annotators may not have been well trained
(self-registered)

amazon mech:
S

> Not all the annotators work on all the data (for cost control)


https://www.outsidethebeltway.com

» Problem setup

Classification
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» The Dawid-Skene model [DS79]

> A naive Bayes model

» (perhaps) the canonical model in statistical crowdsourcing
[ZCZJ14a, ZCZJ14b, TPZG18, TG18, TG19, RYZ10,
SOJNO08, SFB*95, ZBMP12].

» simple and effective



v

v

A closer look

PI’(Xl = kl,. . .,XM = kM)

K M
=> Pr(Y = k) [ Pr(Xm = knm|Y = k)
k=1

label prior m=1 confusion prob of annot. m

d(k) = Pr(Y = k), Am(km, k) = Pr(Xm = kn|Y = k)

d € RX is the prior PMF
A,, € RK*K is the confusion matrix of annotator m
Our goal: identify d and A, for m=1,..., M



» Consider second-order statistics (co-occurrences):

Rm,((kma kﬁ) = Pr(Xm = kmaXE = kﬁ)

K
=N "Pr(Y = k) Pr(Xm = kn|Y = k) Pr(X; = ke Y = k)

d(k) A (ko K) Ay (kg ,k)

» |n matrix form:
-
Rm’g =A,nDA,,

where D = Diag(d), R, € RK*K
> Already an NMF model:
Ry.=AmD Al .
M~
w H

» normally won't work if directly factoring R, ¢ (see Sec. ).
» we hope H to be a very fat matrix (roughly speaking)



» Annotator m may co-label data with annotators
my,..., m-,-(m).

Annotator m,

Rm,ml

Annotator m

» Assume Ry m, for t € {1,..., T(m)} are available.



» Construct

Zm - [Rm,mla Rm,mza ceey Rm,mT(m)]
_ T T
~ |AnDAL,. ... AnDAT |

my?

=An[DAL ..., DA, | € RIHKT(m)

my?

Hp,
= WmHm

» Why the trouble?

» We hope H,, to be “fat” so that it has a better chance to
attain the “separability” or “sufficiently scattered”
conditions—which makes W,, and H,, identifiable.

> See identifiability theory (Part II).



» The NMF procedure is denoted as MultiSPA [IFKH19]:

Classification Error (%) and Run-time (sec) : AMT Datasets

Algorithms TREC Bluebird RTE

(%) Error | (sec) Time | (%) Error | (sec) Time | (%) Error | (sec) Time
MultiSPA 31.47 50.68 13.88 0.07 8.75 0.28
Spectral-D&sS 29.58 919.98 12.03 1.97 7.12 6.40
TensorADMM N/A N/A 12.03 2.74 N/A N/A
Majority Voting | 34.85 N/A 21.29 N/A 10.31 N/A

AMT Dataset description

Dataset | # classes | # items | # annotators | # annotator labels
Bluebird 2 108 30 3240
RTE 2 800 164 8,000
TREC 2 19,033 762 88,385




Joint Prob. Estimation from
Marginals



A Bigger Picture - Joint PMF Learning from Marginals

» Essentially, we have shown that Pr(Xi,..., Xy) can be
learned from Pr(X;, X;).

» if Xi,..., Xy are conditionally independent given a hidden
discrete variable Y.

» In other words, the Naive Bayes structure is the key.

» Can this be generalized to handle any Xi,..., Xy?



Many ML Problems Boil Down to Joint PMF Learning

» Direct estimation for
Pr(Xi, ..., Xn) suffers from the
curse of dimensionality.

> #Sample > Q(IN), where / is
the alphabet size of X,,.

» Est. Pr(X;, Xj) is much easier.
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One-slide Proof

>

The joint PMF of Xq,..., Xy isan [y x I, x ... x Iy tensor,
where I, is the size of the alphabet of X,,.

Pr(it, ... in) = X(it, ..., in)

Every nonnegative tensor admits a nonnegative canonical
polyadic decomposition (CPD) with a finite rank F
[KSF18, SDLF*17]:

Xll,..., )\f A(I",f)
555 RTE
I=2Pr(Y=f) Pr(X;=i;| Y=F)
Hence, every joint PMF admits a Naive Bayes
representation, with a latent Y that has a finite alphabet.

When X, ..., Xy are “reasonably dependent”, F is not large
[KSF18].



Schematic of The Approach

Pairwise Marginals
(easier to observe)

R;z—

Joint PMF
(not observable)

Pr(X1 = ity X = i) 4’

Ry 1 n=Ayx DA}

Joint NMF
Process.;
estimate

Ay,..., AN, D

Reconstructed Joint PMF



» Movie Recommendation

Movie Recommendation Results on the Animation set (MovielLens)

Algorithm RMSE MAE Time (s)
CNMF-SPA [Proposed] 0.8705+0.0095 0.6798+0.0060 0.028
CNMF-OPT [Proposed] |0.8124+0.0031]0.6241+0.0041| 61.018

CNMF-SPA-EM [Proposed]| 0.8170+0.0075 0.6317+0.0086 2.424
CTD [Kargas et al] 0.8300+0.0053 0.6335£0.0029 48.253
BMF 0.8408+0.0023 0.6553+0.0015

46.637

Global Average

0.9371+0.0021

0.7042+0.0014

User Average

0.8850+0.0009

0.6632+0.0011

Movie Average

0.9027+0.0019

0.6900+0.0013

» Estimate the rating of movie N by user k via computing the

MMSE estimator:

E[re(N)|re(1), ..., (N —1)],

where the joint PMF of a user rating N movies
Pr(r(1),...,r(N)) is estimated.

» more in [IF20].




Learning Hidden Markov Models



Hidden Markov Model Learning

» HMMs are widely used in machine learning for modeling time
series, e.g., speech and language data.

> a sequence of observable data {Y;}[_, emitted from an
underlying unobservable Markov chain {X:}_,.

» The HMM estimation problem aims at identifying the
transition probability Pr[X;;1|X;] and the emission
probability Pr[Y:|X:].



» How is HMM related to NMF?

R

Pr{Ye, Yera] = D PrYelXe = xil] PrYer1|Xei1 = xj]
kj=1

X Pr[Xe = xi, Xer1 = xj]

» Define 2 € RMXM M c RMXR and © € RR*R such that

N2(m, l) = Pr[Ye = Ym, Yer1 = yil,
M(m,r) = Pr[Y: = ym| Xt = x/],
O(k,j) = Pr[X: = xx, Xey1 = xj].

Here, M denotes the number of observable states and R the
number of hidden states.



» We then have [HFS18, LR10]:
2 =MeM'.

> Let 2=X, W =M and H=OGM’', we have an NMF
model X = WH.

» columns of M are emission probabilities.
» elements of @ are transition probabilities .

» Using HMM to handle topic modeling

daily vermin eat pct grain stocks survey provinces and cities showed ver-

min consume and pct grain stocks daily each year min pet

fruit output left rot and min pet vegetables paper waste
inadequate storage and bad preservation methods government had launched
national programme reduce waste calling for improved technology storage

and preservation and greater production additives paper gave details

china daily vermin eat /' grain stocks survey provinces and cities showed ver-
min consume and pct grain stocks china daily each year mln pet

fruit output left rot and min pet paper blamed waste
inadequate storage and bad preservation methods government had launched
national programme waste calling for improved storage
and preservation and greater production additives paper gave details




Wrap-up

» Many statistical model learning problems can be converted to
an NMF problem.

» Less obvious compared to examples like HU.

» Often need to construct some statistics from the data.

» Some more examples in
» Community detection [HF19a, MSC17, PSU17].
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Algorithms

Problem formulation:

minimize || X — WHTH2
H>0

» nonconvex and NP-hard [Vav10]
> fix one factor (say W), convex w.r.t. the other (H)

> still, nonnegative least squares has no closed-form solution

convergence at-a-glance:

» block coordinate descent (BCD) requires each update to be
unique [Ber99], which is hard to guarantee

» block successive upperbound minimization (BSUM) similar
[RHL13]

» BCD with 2 blocks: every limit point is a limit point (without
uniqueness of the minimizer) [GS00]



Multiplicative Update (MU)

MU for least squares loss [LS01]

He HeX"WoWHTH W WeXHo HWTW

an instance of BSUM
upperbound function is a quadratic with diagonal Hessian
minimizer is unique if W, H > 0 strictly

vvyYyy

if initialized dense, will remain dense (thus converges)



Hierarchical alternating least squares (HALS)

column-wise BCD [CP09]

[ wy -+ (X WHThJ-)/hJThJ-}+ j=1,...

hj [hj+(XTVl/j—HWTV|/J')/V|/J-TV|/j]+ j=1,...

» an instance of BCD with 2k blocks

» not guaranteed to converge in general



Alternating projected gradient (APG)

APG works better than direct PG [Lin07]

H [Hy(HWTW-XTW)]; W [W—y(WHTH=XH)]:

> every limit point is a stationary point (with appropriate )
» could be accelerated by extrapolation [XYWZ12]



Exact 2-block BCD

Can we apply exact 2-block BCD?
> use a double-loop algorithm

» many choices for the inner-loop

alternating optimization (AO) variants:
» accelerated MU and HALS [GG12]
» (accelerated) gradient descient [Lin07, GTLY12]
> active set [KP0S]
» block principal pivoting [KP11]
>

alternating direction method of multipliers [HSL16]



ALS revisited

minimize || X — WHT|%
W,H

» Fix W, update H: HT = (WT W)= 1WwTX.
> WTX: O(nnz(X)k);
» Cholesky decomposition of WTW = LLT: O(mk? + k3);
> L~ TL=Y(WTX) using forward/backward substitution: O(nk?).

» Then fix H and update W similarly.



AO sub-problem

Now we focus on how to efficiently solve

minimize ((X WHT) + r(H).

» For matrix factorization, this is just the update of the right

factor;
> We propose to solve it using alternating direction method of
multipliers (ADMM).



ADMM: scaled form

Consider a convex optimization problem in the following form.
minimize f(x) + g(z)
X,z

Ax+ Bz =c,

The alternating direction method of multipliers (ADMM)
[GM75], [GMT76], [BPCT11]:

x < argmin f(x) + (p/2)||Ax + Bz — ¢ + ul|3,
z 4 argmin g(2) + (p/2)||Ax + Bz — ¢ + u3,
u< u—+ (Ax+ Bz — ¢), dual update

For convex problems, converges to the global solution.



Least-squares loss

Adopting the alternating optimization framework, reformulate the
sub-problem for H in each AO iteration as

m%ﬁMeHX—VWN%+dH)
H=HAT.
ADMM iterates:
He WTW4+ DY WTX+pH+U)T),
H « arg m,_iln r(H) + gHH - AT +U|%,

U—U+H-HAT.



Inner convergence

> Linear convergence. Theoretically, best convergence rate given
by P = Umax(W)Umin(W);

» Empirically, p = trace(W T W)/k works almost as good (and
much easier to obtain);

» Initialize H and U from the previous AO outer-loop, then
optimality gap is bounded by the per-iteration improvement of
an AO step;

» After ~ 10 AO outer-iterations, ADMM converges in only one
inner-iteration.



~

Implementation: H

He (WTW 4+ pl) Y(WTX +p(H+ U)T)

» WTX and WTW only need to be computed once,
with complexity O(nnz(X)k) and O(mk?) respectively;

» Can cache the Cholesky decomposition (O(k3)) of
WTw + pl = LLT:

» Within one ADMM iteration, H is obtained from
one forward substitution and one backward substitution,
with complexity O(nk?).



Implementation: H

H «+ argm’_iln ru(H) + gHH —HT + U)%

so-called proximity operator, in a lot of cases can be efficiently
evaluated

» non-negative: H > 0;
» |1 regularization: A||H||1 (soft thresholding);
> sumtoone: Hl=1or H'1=1;

> smoothness regularization: A|| TH||% where T is tri-diagonal
(linear complexity using banded-system solver).

All with O(nk) complexity.



ADMM inner-loop: least-squares loss

._.
i

© % Nk wh

Initialize H and U from previous AO iteration
G=WTW, F=WTX
p = trace(G)/k
Cholesky decomposition: G + pl = LLT
repeat
H« L-TL=Y(F + p(H + U)) by substitution
H « argmingy ryy(H) + &||H — AT + U||%
U« U+H-H
until convergence
return H and U.

» Most of the computations are done at line 2 and line 4;
» One iteration of ADMM has complexity = one ALS update;

» Only one matrix inversion is required (line 4).



NMF

Extended Yale Face Database B

> A dense image data set;
> 32256 x 1932.
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NMF

Topic Detection and Tracking 2 (TDT?2):
> A sparse text corpus;
> 10212 x 36771.

TDT2, k = 500 | TDT2, k = 800
! AO-ADMM - AO-ADMM
----- AO-BPP 09
. 09 accHALS
s I\ .
2 APG 508
0.8 o
o 9
2 2
307 S 07
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Extensions

all-at-once updates:
» proximal Gauss-Newton [HF19b]

stochastic algorithms:
» block-randomized stochastic proximal gradient [FGWH20]

non-Euclidean losses:
» generalized Kullback-Liebler divergence [HG20]
» [-divergence [FBDOY]
> a-divergence [CLKCO08]



Nonnegative Matrix Factorization (NMF)

PART Il — Theoretical aspects : understanding NMF, and using
NMF meaningfully

» Sec. 1: Some theory of NMF

» Geometric intepretation
» Nonnegative rank
» Computational complexity

» Sec. 2: Ildentifiability
When are the factors W and H unique, up to permutations
and scalings, in an exact NMF model X = WH?



Geometric interpretation



Geometric interpretation |: nested cones
Given X = WH with (W, H) > 0,



Geometric interpretation |: nested cones
Given X = WH with (W, H) > 0, for all j,

X(:,j) = WH(:,j) C cone(W)={x|x= Wh,h>0} C RL.

Equivalently,
cone(X) C cone(W) C RI.



Geometric interpretation |: nested cones
Given X = WH with (W, H) > 0, for all j,

X(:,j) = WH(:,j) C cone(W)={x|x= Wh,h>0} C RL.

Equivalently,
cone(X) C cone(W) C RI.

Exact NMF is a nested cone problem:
Given two cones, cone(X) C R, find a nested cone,
cone (W), with minimum number of extreme rays.

X % Columns of W
| ¢ o Columns of X

0.5-
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Geometric interpretation |l: nested polytopes

Given X = WH, let us scale X and W to be column stochastic;
e’ X=e' and e" W =e". This implies

el = e' X = e WH = e'H,

and hence H is column stochastic.
The columns of X are convex combinations of the columns of W:
for all j

X(:j) =Y W(,k)H(k,j) with eTH(;j)=1and H(:,j) > 0.
k=1

In other terms,
conv(X) C conv(W) C AP

where conv (X) is the convex hull of the columns of X, and
AP = {x €RP |x > 0,e"x =1} is the unit simplex.



Geometric interpretation of Exact NMF

o Columns of §(X)

o Columns of X

[ X ——{x Columns of W T x Columns of (W)

0.5+

0.5 1

Figure 4: Left: nested convex cones, Right: nested convex hull on scaled data.
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Geometric interpretation of NMF

Some observations:
» For rank(W) =r and W'e = e,
conv (W) is an (r — 1)-dimensional polytope.

» If rank(X) = r, then rank(W) = r and col(W) = col(X),
conv(X) C conv(W) < APNcol(X),

so that conv (X) and conv (W) have the same dimension,
namely rank(X) — 1.

This is called the nested polytope problem in computational
geometry.



Nonnegative Rank
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What is the nonnegative rank?

The nonnegative rank of a nonnegative matrix X € Rixn is the
minimum r such that an exact NMF exists:

X=WH=Y W(,kH(k,.:), W=>0H=>0.
k=1

Geometrically: minimum number of vertices of a polytope nested
between conv (X) and AP (where X is normalized).

The nonnegative rank of X is denoted rank, (X). Clearly,

rank(X) < ranki(X) < min(p,n).



Example on nested hexagons

Example. Let

1 a 2a—1 2a-1 a 1
1 1 a 2a—1 2a-1 a
X*i a 1 1 a 2a—1 2a-1
T 6a| 2a—-1 a 1 1 a 2a—1 |’
2a—1 2a-1 a 1 1 a
a 2a—1 2a-1 a 1 1
1 2 0
0 10 -1 a—-2 -1 1—-2a 2—-3a 1-2a
1 0 0 1
= — 1 1 a 2a—1 2a-1 a
6a] 102 a 1 1 a 2a-1 2a-1
2 1 2
2 21

hence rank(X;) = 3 for all a > 1, so that conv (X,) is a polygon.

In fact, it is an hexagon.
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Example. Case 1: a =2,

conv(X)C 7 Ccol(X)NAP.
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~o-A® N col(X,)

—x—conv(X2)




Example on nested hexagons

Example. Case 1: a = 2, we have rank;(X;) = 3, with

conv (X) C conv (W) C col(X) N AP.

P

-o-A® 1 col(X,)
—x—COnV(Xz)

—+ -conv(W2)




Example on nested hexagons
Case 2: a =3,

col(X) C 7 Ccol(X)NAP.

P o

-&-A° N col(X,)

——conv(X

3)




Example on nested hexagons
Case 2: a = 3, we have rank;(X;) = 4, with

col(X) C conv (W) C col(X) N AP.

P o

A% N col(X,)
—x—conv(X3)

—|--conv(W3)




Example on nested hexagons

Example. Case 3: a — 400, the inner and outer polygons coincide, no
nested polygon with less than 6 vertices...

012210
001221
. _ll 100122
te=%6l 2100 12
22100 1
122100

What is the nonnegative rank of X7



Example on nested hexagons

Example. Case 3: a — +00.
However, rank; (X;) = 5, because there exists W > 0 with
rank(W) =4 > 3 = rank(X) such that X = WH, H > 0.

- conv(X) N col(W)
-5 conv(W) N col(1¥)
-o- col(W) N A°




Factorization of the nested hexagon matrix

012210
001221
100122
Koo = 2100 12
2 2100 1
122100
100 1/2 0 012100
010 1 O
001001
001 1/2 0
= 100012
001 0 1/2
000220
0 10 0 1 220000
100 0 1/2

where 4 = rank(W) > rank(X) = 3, so that
conv (W) has dimension 3, while conv (X) has dimension 2.
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An amazing result: NMF and extended formulations
Let P be a polytope

P={xeRK| b —A(@i,)x>0forl<i<p},

and let v;'s (1 <j < n) be its vertices.
We define the p-by-n slack matrix Sp of P as follows:

Sp(i,j)=bj —A(i,:)vj> 0 1<i<p,1<j<n.

The hexagon:

01 2 2 1 0
001 2 2 1
s, | 100 122
P=]1 2 1 0 0 1 2
2 21 0 0 1
1 2 2 1 0 0
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An amazing result: NMF and extended formulations

An extended formulation of P is higher dimensional polyhedron
Q C RK*P that (linearly) projects onto P. The minimum number
of facets of such a polytope is called the extension complexity
xp(P) of P.
Theorem [Yan91]

rank4(Sp) = xp(P).

Application: limits of LP for solving combinatorial problems: given
a polytope, what is the most compact way to represent it?

Its extension complexity = nonnegative rank of its slack matrix.
Key tool: lower bound techniques for the nonnegative rank.

Ex. The matching problem cannot be solved via a polynomial-size
LP [Rot14]. (Fulkerson prize 2018)



The Hexagon

6 tacets

O ANN—HO

— NN OO

ANAN—=OO

N—=OO—=«N

— OO~ NN

OO~ NN~



The Hexagon

5 facets

6 tacets

O NOO

oo+-NO

-OOoONO

N-OOO

HOoOOood«N

HANNHOO

NN-HOOH

N-HOO-N

s OOmdNN

OO AN

with

min(m, n) = 6.

<

5

rank,(Sp)

<

3

rank(Sp)
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Bounding the nonnegative rank
Providing lower bounds for the nonnegative rank has been an
important direction of research. Two simple examples:
» If the columns of X have different supports

rank (X) > log,(n). (Goemans, 2008)
Example: For X(i,j) = (i —j)? fori,j =1,2,...,n,
rank(X) = 3 while rank(X) > log,(n).
» The nonnegative rank is larger than the minimum number of
binary rectangles needed to cover X; see [FKPT13].
Example (continued): for n = 6, ranky(X) > 4 since

0 0 0 0 0 0 0 0 0 0 0 o0 01 0 0 1 1
0 0 0 0 0 0 1 0 0 1 o0 1 0 0 0 0 0 O
0 0 0 0 0 O 1 0 0 1 0 1 001 0 0 1 1
1 1.1 0 0 0 |T| 0o 0o o0 0o o0 o |fT|[o 1 0 0 1 1
1 1 1 0 0 o0 1 0 0 1 0 1 0 0 0 0 0 O
1 1 1 0 0 0O 0 0 0 0 0 O 0 0 0 0 0 O

000 1 1 1 o0 001 1 1 2 1

000 1 1 1 o 1 0 1 2 1 1

oo 0o o 0o o0 |11 0 1 1 2

Tl o oo 0o 0 o[ |1 2 1 0 1 1|
0 0 0 0 0 O 2 1 1 1 0 1
0O o 1 1 1 o0 i1 2 1 1 o0



Computational Complexity
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Complexity of NMF

min |IM — WH||% such that W >0,H > 0.
WeRPXr HeRrxn
» For r = 1, Eckart-Young and Perron-Frobenius theorems.

Polynomial-time algorithms for the Kullback-Leibler divergence
[HVDO08], for £+, [GS19].

» Checking whether there exists an exact factorization X = WH:
» NP-hard where p, n and r are not fixed [Vav10].
» Using quantifier elimination:
> [CR93]: (pn)°®*™) non-polynomial
> [AGKM12]: (pn)°?"), polynomial in p and n
> [Moil3]: (pn)o(’z), polynomial in p and n
— not really useful in practice ...

» Does not imply that rank; can be computed in polynomial
time for fixed rank, because there are no upper bound on
rank that depend on the rank.
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Complexity for other norms

i T, = o wih
pomin X —wh'||; = Z | X — wih;] . (¢1 norm)
’7./
If X is binary, X € {0,1}P*", any optimal solution (w*, h*) can be
assumed to be binary, that is, (w*, h*) € {0,1}? x {0,1}" [GV18].

- T2 T2 -
i IX=whT|j% = Z Pi(X—whT)Z, (weighted ¢, norm)
i
where P is a nonnegative weight matrix. This model can be used
when
» data is missing (Pjj = 0 for missing entries),
> entries have different variances (Pj = 1/0,-2j).

The ¢; and weighted rank-one approximation problems are NP-hard
[GV18, GGL11].



Nonnegative Matrix Factorization (NMF)

PART Il — Theoretical aspects : understanding NMF, and using
NMF meaningfully

» Sec. 1: Some theory of NMF

» Geometric intepretation
» Computational complexity
» Nonnegative rank

» Sec. 2: ldentifiability
When are the factors W and H unique, up to
permutations and scalings, in an exact NMF model
X = WH?



Identifiability of NMF



Why care about identifiability /uniqueness of the factor matrices?

» In general, X = WH is not unique.
> W=WQ>0and H= Q~1H > 0 give the same X = WH,
where Q is any nonsingular matrix.

» Many problems are latent factor identification problems.

- WH

Dictionary

Weigths to reconstruct
each text

Sets of words found simultaneously in different texts

» If an NMF algorithm outputs WQ), it is not meaningful.



|dentifiability

Definition of NMF Identifiability:
Consider a data matrix generated from the model
X = W,Hs.

Suppose that W, and Hj satisfy a certain condition. Let
(W, Hy) be obtained from an identification method. If

W, = W,IID, H,=IT"D'H,

where IT is a perm. matrix and D is a full-rank diagonal matrix,
then the NMF model is identifiable.

» scaling and permutation are intrinsic.



Geometric View Revisited

cone{W}

» The dots are x;'s, i.e., the columns of X.

» NMF identifiability = a geometric problem:

Given the dots, can we recover the extremes rays (vertices)
of the convex cone (convex hull) that enclose all the dots?

> Apparently no in general.



Separability-based NMF



A Key Assumption
» Separability [DS03]
For every k = 1, ..., r, there exists a row index £, such that

H(:,¢k) = hy, = ayey, where ay > 0 is a scalar and e is
the kth coordinate vector in R".

(There exists A such that H(:, A) = X' = Diag(cu, ..., ar).)

» Also means cone(H) = cone{ey, ..., e}




Separability-Based NMF
Under separability, the task of NMF is significantly simplified.

» Consider the case where 1TH =17,
> Note that if Xp, = WH(Z,gk) = Whgk = Wer = wy.

» Instead of estimating W and H from nowhere, we can simply
find x;'s that are vertices of the convex hull and let

W = [xe,,...,x,]



Separability-Based NMF

» Another view of separability.

X H

w

I,




A Gram-Schmidt-like Algorithm

» Assume 1"H =17 and H > 0. First vertex of conv (W) can
be found by

51 = argé_n}ax ||Xg||2, |7\\/1 = le

=1,...

Proof:

lIxell2 =

r r
> wikigl| <D Iwibigll,
i=1 2 i=1

r
=> higlwill, < max will,
= i=1,...,r

where the equalities hold if and only if h; = ¢; for some i.



> Assume that there are k (k < r) vertices have been found; we
now wish to find the next one.

» First form Wy, = [wy, ..., wy].

£k+1 = arg ‘max PA XgH
PO ¢} 1:k
Proof
H'DW XZH WI il <ZH'DA Wi IZ‘
1:k 1: 1:k
= h HP will < max ‘P£ W"
Z e Mo = imkt 1 1 Wik 2

» Called successive projection algorithm (SPA) [ASGa™01].
» Provably robust to bounded noise [GV14].



Other Separable NMF Methods

Other Separability-Based Approach (incomplete list)
» Sparse Optimization
min ||X — XC||% + ARowSparse(C)
CeRan
s.t. C>0;

see convex relaxation in [FM16, RRTB12, GL14].
C

X X
w

X=XC=WH




Other Separable NMF Methods

Other Separability-Based Approach (incomplete list)

» Simplex-volume Maximization [Win99, CMAC11].
» Minimum-volume Enclosing Ellipsoid [Miz14, GV15].




Separability and Applications

In HU, separability = pure pixels [BDPD*12, MBDC*14].

L
N
<~
S

r
=

x
I
wavelengths
14

Abundances of constitutive

materials in each pixel

pixels
Pure pixel of material 1

Spectral signatures of each consitutive material



Separability and Applications
The remote sensing community started using “pure pixels” earlier

(see [ASGa™t01]) than “separability” formally defined by Donoho
and Stodden in 2004 [DS03].

pure pixel of soil

pure pixel of water

88/128



Separability and Applications

In topic modeling, separability = anchor words
[AGM12, AGH*13, RRTB12]
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In topic modeling, separability = anchor words
[AGM12, AGH*13, RRTB12]

/ football

Panenka

I
Dictionary
1%

VW = topics



Separability and Applications

In topic modeling, separability = anchor words
[AGM12, AGHT 13, RRTB12]

numerical linear algebra
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Separability and Applications

In topic modeling, separability = anchor words
[AGM12, AGH*13, RRTB12]
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VW = topics




Separability and Applications

In image rep. learning, separability = local dominance

Belgium
;. | |
e * H
X = g ~ B Brussels
2
A
A | |

) AN

VW = topics




Separability and Applications

In image rep. learning, separability = local dominance

P

1

_ AN

Weights to reconstruct
each face.

i
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Separability and Applications

In image rep. learning, separability = local dominance

o

| Weights to reconstruct
each face.




Separability and Applications

More in the literature ...

>

>

| 4

In speech separation, separability could be induced by pauses
between utterances [FMHS15].

In crowdsourcing, separability = existence of class specialists
[[FKH19].

In community detection, separability = existence of anchor
nodes [MSC17, PSU17].

In spectrum sensing (comm.), separability = existence of
designated carrier freq. [FMS16].



Separability and H's Size

In the crowdsourcing example, we mentioned that we hope H to be
“fat” to attain separability.

» Assume H(:,¢) € R" for ¢ =1,...,n are drawn from the prob.
simplex uniformly at random.

Proposition [IFKH19] Let p > 0, > 0. If

—2(r—1)
n:Q(E Iog<r>),
r p

then, with prob. of at least 1 — p, there exist H(:, £)’s such that

|H(lk,:) —elll2<e, k=1,...,r.



Separability-free NMF



Plain Vanilla Fitting

» Most popular criterion:
in || X — WH|?3
min | s
st. W>0, H>0.

» The above was the original formulation used in Lee and
Seung's Nature article.

» If one finds the optimal solution (W,, H,), do we have
W, = WD, H,=N"D"'H,

hold for all possible optimal solutions?



Beyond Separability

» Sufficiently Scattered Condition (SSC)

A nonnegative matrix H € R¥*" is said to be sufficiently
scattered if the following two conditions are satisfied:

1. the column of H are spread enough so that
C C cone(H)

where C is a second-order cone defined as
C={xeRK|x"1>Vk—1|x|2}.

2. cone{H} C cone{Q} does not hold for any orthonormal
Q@ except the permutation matrices.



A Closer Look at C

conv{e;, ey, ez}

102/128



Fitting-Based NMF

» [HSS14] proved the following theorem

If both WhT and Hy are sufficiently scattered, then the optimal
solutions of the fitting criterion are W, = WLIID and H, =
DYIITH,, where I and D are defined as before.

» Notable: the generative model does not need to satisfy the
separability condition.
» Remarks:

» unlike separability-based methods that come with tractable
algorithms, the identifiability result of fitting-based NMF does
not tell us how to really solve the fitting problem.

» the fitting problem is in fact NP-hard.

» necessary condition for identifiabity of fitting based NMF: both
W; and H, have some zeros.



Sufficiently Scattered Condition

Proposition [HSS14]

If H is sufficiently scattered, each row of H contains at least
k — 1 zeros.

Random W and H with m = 200, n = 250, and k = 30.

Algorithm: AO-ADMM [HSL16]

density | max [|[W — W|[r  max ||H — H||¢
05 | 0.0070x10°/ 0.0083 x 105
06 | 0.0030x10~7  0.0067 x 105
07 | 0.0184x1077 0.0302x 1075
08 | 0.1154x 1077  0.1991 x 1075
0.9 0.4 78.2

Casual Claim
NMF X = WH is unique if both W and H are sparse.



Sufficiently scattered on one of the factors

Theorem [FHS18]

Suppose H, is sufficiently scattered, and rank(W,) = k.
Denote (W,, H,) as an optimal solution of

minimize det(W T W)
W, H
subjectto X = WH,H>0,Hl1 =1

Then there exists a permutation matrix IT and a diagonal
matrix D such that W, = W, IID and H, = D1ITTH,.

» NMF is identifiable if only one of the factor is “sparse”
» W does not even have to be > 0
> |dentifiability can be enforced by a det criterion

» A slight variation resolves the long-standing Craig’s conjecture
in remote sensing



Geometric Interpretation

k
X,':Wh,':Zthj,' h; € A
j=1

» X is a convex combination of wq, ..., wy
> x; belongs to the convex hull of wy, ..., wy
» There are infinitely many enclosing simplexes

v Intuition: Find the one with minimum volume

1
ml%l’l"}llze m‘ det |: Wy — Wy e Wg_1 — Wk ] ‘

)

subjectto X =WH, H>0, 1TH=1.



Algorithm

minimize det(W T W)
W,H

subjectto X =WH,H>0,H1 =1

» assume W is invertible (apply PCA first)
change of variable M = W1

» eliminate H

v

4

maximize |det M|
M

subject to MX >0, MX1=1

» convex (linear) constraints, disjoint on each row

» nonconvex objective



Cyclic Row Update

» let m; denote the ith row of M
» Laplace's formula: det M = f T m; where

f = (—1)" det(M;), M; is M without its ith row and jth col.

v

in fact f = (det M)M~Le; per Cramer's rule
» cyclic row update [HF19a]

1. repeat

2 fori=1,...,kdo

3 f Mfle;

4: z<—argmzaxsz st.z'X>0z"X1=1
5 replace ith row of M with z

6 end for

7: until convergence

» monotonically increases the objective

P converges to a stationary point



Synthetic Experiment

> H, € R?0%1000 is 50% sparse (w.h.p. sufficiently scattered)
> W, € R?9*20 s i.i.d. normal
» X = W,H, is fed into the algorithm

> we know the optimal value is (| det W;|)~*
and the solution is unique (up to permutation)

» 50 random trials, optimality gap goes to zero in all cases
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Application: Topic Modeling

Mining topics from a corpus [BNJO3]

Non-convex
Optimization

Tensor Factorization

Putting Nonnegative
Matrix Factorization
to the Test

Phase Retrival




5 topics in TDT2

Latent Dirichlet Allocation [BNJO03]

lewinsky spkr school clinton jordan
starr news gm president time
president people workers house game
white monica arkansas white bulls
house story people clintons night
ms voice children public team
grand reporter students | allegations left
lawyers | washington strike presidents i'm
jury dont jonesboro | political | chicago
jones media flint bill jazz




5 topics in TDT2

AnchorFree [HFS16]

lewinsky gm shuttle bulls | jonesboro
monica motors space jazz arkansas
starr plants columbia nba school
grand flint astronauts | chicago | shooting
white workers nasa game boys
jury michigan crew utah teacher
house auto experiments | finals students
clinton plant rats jordan | westside
counsel strikes mission malone middle
intern gms nervous michael 1lyear




Application: Community Detection

Detecting communities from a social network [ABFX08]

» 518 x 518 co-authorship network [HSS14]
courtesy: A. Swami @ARL

G. B. Giannakis Lang Tong Mariusz A. Fecko
Shengli Zhou Ananthram Swami Sunil Samtani
Xiaoli Ma Qing Zhao M. Umit Uyar
Pengfei Xia Brian M. Sadler Ibrahim Hokelek
Xiaodong Cai Yunxia Chen Jianping Zou
Tairan Wang Min Dong Jianliang Zheng
Qingwen Liu Youngchul Sung Myung Jong Lee
Xing Wang Ting He Tarek N. Saadawi
Zhengdao Wang G. B. Giannakis Ulas C. Kozat
Alfonso Cano P. Venkitasubramaniam | Phillip T. Conrad




Community Detection from Co-authorship Networks

CD-MVSI [HF19a]

N CD-MvS| [ GeoNMF [T SPOC [N tensor CPD

MAG1 MAG2 DBLP | DBLP, DBLP DBLP , DBLP

MAG1 MAG2 DBLP , DBLP, DBLP , DBLP , DBLP ¢
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Concluding Remarks

1. NMF is a useful and widely used linear model in data analysis
and machine learning.

2. NMF is difficult (NP-hard) and non-unique (identifiability
issue).

3. However, there are several venues to circumvent these issues:
» Separable NMF, which relies on a rather strong assumption,
makes NMF identifiable and solvable in polynomial time, even
in the presence of noise.

> but, as opposed
to separability, no polynomial-time algorithm yet. This is an
important direction of research, along with their robustness to
noise.
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