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Finite-Sample Analysis of Deep CCA-Based
Unsupervised Post-Nonlinear Multimodal Learning

Qi Lyu and Xiao Fu

Abstract—Canonical correlation analysis (CCA) has been es-
sential in unsupervised multimodal/multiview latent represen-
tation leaning and data fusion. Classic CCA extracts shared
information from multiple modalities of data using linear trans-
formations. In recent years, deep neural networks-based nonlinear
feature extractors were combined with CCA to come up with
new variants, namely, the “DeepCCA” line of work. These
approaches were shown to have enhanced performance in many
applications. However, theoretical supports of DeepCCA are often
lacking. To address this challenge, the authors’ recent work in
[1] showed that, under a reasonable post-nonlinear generative
model, a carefully designed DeepCCA criterion provably removes
unknown distortions in data generation and identifies the shared
information across modalities. Nonetheless, a critical assumption
used in [1] for identifiability analysis was that unlimited data
is available—which is unrealistic. This brief paper puts forth a
finite-sample analysis of the DeepCCA method in [1]. The main
result is that the finite-sample version of the method can still
estimate the shared information with a guaranteed accuracy—
when the number of samples is sufficiently large. Our analytical
approach is a nontrivial integration of statistical learning, nu-
merical differentiation, and robust system identification—which
may be of interest beyond the scope of DeepCCA and benefit
other unsupervised learning paradigms.

Index Terms—Unsupervised multimodal analysis, post-
nonlinear mixture model, sample complexity, identifiability

I. INTRODUCTION

Data often comes with multiple modalities (e.g., audio and
video describing the same events). Canonical correlation anal-
ysis (CCA) [2], [3] has been one of the most prominent unsu-
pervised multimodal learning tools. CCA seeks linear transfor-
mations to “project” the high-dimensional multimodal data to
a low-dimensional space, so that the low-dimensional embed-
ding represents the shared information across the modalities.
Both empirical and theoretical evidence shows that CCA
admits a series of appealing features. In particular, CCA is
robust to strong unknown modality-specific interference and
admits identifiability of the shared latent components, under
reasonable linear mixture-type generative models [4], [5].

In recent years, nonlinear function approximators (e.g.,
kernel functions and deep neural networks) are combined
with CCA to come up with nonlinear variants. The deep
learning-based CCA (DeepCCA) learning paradigm is par-
ticularly attractive due to its balance between efficiency and
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effectiveness [6], [7]. However, despite of empirical successes,
understanding to DeepCCA has been largely elusive.

Recently, the authors made important advances towards
understanding DeepCCA under a reasonable multimodal post-
nonlinear mixture (PNM) model [1]. PNM models are widely
used in machine learning for modeling complex data generat-
ing processes where unknown nonlinear distortions arise; see
applications in source separation [8], brain signal embedding
[9], and causality discovery [10]. Under PNM, the work in [1]
showed that a carefully designed DeepCCA learning criterion
guarantees to extract modality-shared latent information, even
if strong private interferences and unknown nonlinearities are
present. To our best knowledge, this is the first identifiability
analysis of nonlinear multimodal models under DeepCCA
[1]. Nonetheless, a critical gap is yet to fill. Specifically, the
proof in [1] used a key assumption that unlimited data are
available—which is far from realistic. Extending the result to
the finite-sample regime is nontrivial, since the major analyt-
ical steps in [1] rely on differentiability of certain functions
that hinges on the unlimited data assumption.
Contributions. This brief paper offers a finite-sample analysis
of the DeepCCA method in [1] under the same multimodal
PNM model. We show that the finite-sample version of the
learning criterion in [1] still provably extracts the shared
information across modalities, given a sufficiently large sample
size. The idea is to convert the model identification problem to
a special regression problem, and use statistical error analysis
and numerical differentiation techniques to quantify the non-
linearity removal effectiveness. Then, the shared information
identification accuracy can be quantified by robustness analysis
of system identification. The main result presents finite-sample
guarantees under the settings of [1]. We should mention that
finite-sample analysis is rare in latent component analysis,
perhaps due to the challenging nature of the unsupervised
settings. Therefore, the analytical approach may be of interest
beyond DeepCCA and benefit other unsupervised learning
paradigms, e.g., nonlinear independent component analysis
(nICA)—whose analyses still largely rely on unlimited data
assumptions; see, e.g., [8], [11]–[14].

II. BACKGROUND

A. Generative Model, CCA, and Deep CCA

Consider two modalities/views of data, i.e., x(q)
ℓ ∈ RMq for

q = 1, 2. The first view x
(1)
ℓ (e.g., video) and second view

x
(2)
ℓ (e.g., audio) are both representations of the same entity

or event (e.g., ‘cat’ or a ‘car collision’). CCA extracts low-
dimensional representations from the two views by finding
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shared information in x
(q)
ℓ for q = 1, 2. This is often more

effective than single view methods, e.g., principal component
analysis (PCA) and nonnegative matrix factorization (NMF)
[15], [16], as noticed in [4], [5].

To understand the effectiveness of the classic CCA, the work
in [4], [5] took an unsupervised generative model learning
viewpoint. For example, the recent work in [5] uses the
following model

x
(q)
ℓ = A(q)z

(q)
ℓ , z

(q)
ℓ = [s⊤ℓ, (c

(q)
ℓ )⊤]⊤, (1)

where q = 1, 2, sℓ ∈ S ⊆ RD is the shared latent component
across views and c

(q)
ℓ ∈ Cq ⊆ RDq is the private component

in view q (which could be interference), and range(A(q))
is where view q resides. The goal amounts to extracting
the shared information represented by sℓ from the data; see
similar modeling and estimation goals in [4], where the private
information was modeled as colored Gaussian noise.

The authors’ work in [1] extended the above perspective to
the nonlinear regime, i.e.,

x
(q)
ℓ = g(q)

(
A(q)z

(q)
ℓ

)
, (2)

where g(q)(·) = [g
(q)
1 (·), . . . , g(q)Mq

(·)] represent unknown non-
linear distortions in the data generating/acquisition process.
The model is reminiscent of the PNM model in nonlinear blind
source separation [8], [17]. PNM makes much sense in many
data acquisition processes, e.g., brain signal (EEG/MEG)
sensing [9], hyperspectral analysis [18], [19], and image data
generation [1]. It also finds applications in causality discovery
[10]. Given (2), the authors proposed a criterion to find
the shared information sℓ [1]—which can be recast as the
following nonlinear CCA formulation:

min
B(q), f(q)

E

[∥∥∥B(1)f (1)
(
x(1)

)
−B(2)f (2)

(
x(2)

)∥∥∥2
2

]
(3a)

s.t. E

[
B(q)f (q)

(
x(q)

)(
B(q)f (q)

(
x(q)

))⊤]
= I, (3b)

E
[
f (q)(x(q))

]
= 0, f (q) : invertible. (3c)

where the expectation is taken over (x(1),x(2)) ∼ D and D
has a positive probability density over X1 × X2 in which Xq

is the domain where x(q) is defined over. Note that f (q) =
[f

(q)
1 , . . . , f

(q)
Mq

] and f
(q)
m (·) : R → R is a scalar function. If

one uses a DNN to represent fm, then the above becomes a
DeepCCA formulation1. In practice, the invertibility and zero
mean constraint on f

(q)
m (xm) is to prevent f

(q)
m (xm) from

outputting trivial solutions, e.g., constants. The invertibility
can be promoted by using a data reconstruction regularization
[1] or using special function approximators, e.g., normalizing
flows [20].

The idea is to use f
(q)
m to cancel g

(q)
m and to make the

problem essentially a linear CCA problem. If f (q)’s and (3c)
are not used and E[x(q)] = 0, the formulation in (3) becomes
the classic linear CCA problem.

1A remark is that there are other DeepCCA formulations, e.g., those in
[6], [7], but not designed for the generative model in (2). These versions of
DeepCCA are out of the scope of this brief paper.

B. Identifiability Theory and Critical Gap

The takeaway in [5] is that classic CCA provably extracts
range(S⊤) where S = [s1, . . . , sN ]⊤, i.e., the subspace con-
tains shared components under (1). The authors showed that
similar results also hold under (2), if one use neural networks
(or other universal function learners) to replace the linear
projectors in CCA. To be precise, the authors had following
assumption and theorem in [1]:

Assumption 1 Under (2), assume that Mq ≥ D + Dq and
that the mixing matrices A(q) are drawn from any abso-
lutely continuous distributions. Assume that the components
in [sd,ℓ, (c

(1)
ℓ )⊤, (c

(2)
ℓ )⊤]⊤ are ubiquitously unanchored (see

definition in [1]) for any d, and also Dq(Dq+1)/2 ≥ Mq .

The ubiquitously unanchored (UU) condition means that
when fixing one variable, the others can still take any possible
values within a certain local region, which further implies that
for any x, y satisfy such condition, ∂x

∂y = 0 always holds.
In other words, it means that the ubiquitously unanchored
components are “locally free”. This is much less stringent
than some commonly used conditions in the nonlinear learning
literature, e.g., statistical independence. As shown in [1], two
UU variables can be strongly dependent. Under Assumption 1,
the authors showed that

Theorem 1 [1] Under Assumption 1, suppose that
(B(q),f (q)) for q = 1, 2 are solutions of (3) with ∥B(q)∥0 =

DMq and f
(q)
m being a universal function approximator. If (3)

is solved over the entire continuous domain X1×X2, then, the
composition f

(q)
i ◦ g(q)i (x) for all i, q are affine functions with

probability one. In addition, B(q)f (q)(x(q)) = Θs for any
x(q) ∈ Xq , where Θ ∈ RD×D is any nonsingular matrix.

Theorem 1 asserts that in the population case, the DeepCCA
criterion extracts the shared information up to a nonsingular
linear transformation. Notably, the criterion achieves provable
shared information extraction even if the private compo-
nents/interference c

(q)
ℓ have overwhelming energy over the

shared components. This property is inherited from classic
CCA [5]. However, single modal tools such as PCA always
extracts high energy components first. This articulates the
advantages of using multiple modalities.

One critical gap left unfilled in [1] is as follows. The main
identifiability theorem for using neural CCA under (2) is
derived under the premises that unlimited data is available
and that the function approximator is universal. In particular,
unlimited/infinite sample may never be available in practice—
but the method in [19] works well with the finite sample
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version of (3), i.e.,

min
B(q), f(q)

1

N

N∑
ℓ=1

∥∥∥B(1)f (1)
(
x
(1)
ℓ

)
−B(2)f (2)

(
x
(2)
ℓ

)∥∥∥2
2

(4a)

s.t.
1

N

N∑
ℓ=1

B(q)f (q)
(
x
(q)
ℓ

)(
B(q)f (q)

(
x
(q)
ℓ

))⊤
= I, (4b)

1

N

N∑
ℓ=1

f (q)(x
(q)
ℓ ) = 0, f (q) : invertible. (4c)

Characterizing the performance of (4) gives rise to an
important and challenging research question. Note that since
the problem is unsupervised, sample complexity analysis tools
developed for supervised learning, e.g., [21], are not directly
applicable. More importantly, since the success of unsuper-
vised learning is not by measuring the cost function value
as in supervised learning, the performance metric design and
its analytical underpinning are challenging questions. In this
work, we provide an answer to this inquiry, which is an
integration of three major analytical steps. First, we analyze
the statistical error of the fitting problem. This analysis is
reminiscent of generalization analysis in supervised learning.
Second, we use numerical differentiation techniques to char-
acterize the nonlinearity removal performance over unseen
samples, which is reminiscent of the authors’ recent work in
[19] that shows finite sample identifiability of a special single
view model. Third, we leverage the first step to recast the
DeepCCA formulation as a noisy least squares problem, and
characterize its solution—which serves as our problem success
metric.

III. MAIN RESULT

Our main result in this work is as follows. For notational
simplicity we assume that M = M1 = M2 and D1 = D2.
First, we have the following assumptions:

Assumption 2 In the generative model, g(q)m ∈ G, where the
function class G is 4th-order differentiable and bounded. In
addition, c(q)j ∈ [−Cp, Cp] with 0 < Cp < ∞ for j ∈ [Dq].

Assumption 3 The learning function fm is taken from F ,
where the function class F is 4th-order differentiable and
bounded. In addition, the function class F has bounded
Rademacher complexity RN under N samples from D. Be-
sides, assume that

∣∣∣B(q)
i,j

∣∣∣ ≤ Cb.

Assumption 4 Assume that there exists B(q),f (q) such that
1
N

N∑
ℓ=1

∥∥∥B(1)f (1)(x
(1)
ℓ )−B(2)f (2)(x

(2)
ℓ )
∥∥∥2
2
≤ ν under f (q)

m ∈
F for all m.

Assumption 5 The absolute value of 4th-order derivative of(
b
(1)
d

)⊤
f (1)

(
x
(1)
ℓ

)
−
(
b
(2)
d

)⊤
f (2)

(
x
(2)
ℓ

)
is bounded by Cϕ for d ∈ [D], where (f (q),B(q)) is any
solution of (4) and (b

(q)
d )⊤ is the dth row of B(q).

Note that Assumption 4 can always be fulfilled using
powerful function approximators, e.g., deep neural networks.
The boundedness assumptions hold if the learned functions are
bounded, which is easy to check or regularize. Under these
assumptions, we show that:

Theorem 2 Under (2), the assumptions in Theorem 1,
and Assumptions 2-5 (see in the next section), assume
that (x

(1)
ℓ ,x

(2)
ℓ ) for ℓ = 1, . . . , N are i.i.d. samples of

(x(1),x(2)) ∼ D. Denote (f (q),Bq)) as any optimal solution
of (4) and RN the Rademacher complexity of F . Then, the
following holds with probability of at least 1− α− δ:

B(q)
[
f (q)(x

(q)
1 ), · · · ,f (q)(x

(q)
N )
]
= (Θ(q))⊤S + (Ω(q))⊤C(q),

where S = [s1, . . . , sN ] and C(q) = [c
(q)
1 , . . . , c

(q)
N ], and∥∥∥Ω(q)

∥∥∥
F
= O

(
D(D +D1)

α

(
MRN +

√
log(1/δ)/N

)1/4
+

√
ν

)
,

if −Cp + κi ≤ c
(q)
i ≤ Cp − κi for all i ∈ [Dq], where κi =

Ω(
(
MCbRN+

√
log(1/δ)/N

)1/8

/C1/4
ϕ ).

Theorem 2 means that if N is sufficiently large, then the
solution (B(q), f (q)) approximately extracts the subspace
of S, i.e., range(S⊤). The Rademacher complexity RN is
determined by the selected function class F and the sample
size N . For instance, if F is modeled with one-hidden-layer
neural network with R neurons and ReLU activation, then
RN = O(

√
R/N). In practice, one may use an expressive

network (e.g., by increasing R) in order to reduce ν. But under
a fixed N , one may also hope to avoid using an overly large R
that makes RN dominant—which may hurt the performance.

IV. PROOF OF MAIN THEOREM

We start with the following lemma:

Lemma 1 Consider the function class

H =
{
l
(
x
(1)
ℓ ,x

(2)
ℓ

) ∣∣∣l (x(1)
ℓ ,x

(2)
ℓ

)
=
∥∥∥B(1)f (1)

(
x
(1)
ℓ

)
−B(2)f (2)

(
x
(2)
ℓ

)∥∥∥2
2

}
,

where each f
(q)
m (·) : R → R ∈ F as defined in Assumption 3.

Assume that (x(1)
ℓ ,x

(2)
ℓ ) for ℓ ∈ [N ] are i.i.d. samples drawn

from D. Then, the Rademacher complexity of class H is
bounded by

RN (H) ≤ 8DMCbRN ,

where RN and Cb are defined in Assumption 3.

Proof: Note that the cost function can be rewritten as

D∑
d=1

 M∑
i=1

B
(1)
d,i f

(1)
i

(
x
(1)
i

)
−

M∑
j=1

B
(2)
d,jf

(2)
j

(
x
(2)
j

)2

.

Then according to the property of Rademacher complexity, the
complexity of function class of

∑M
m=1 B

(q)
d,mf

(q)
m (·) is upper

bounded by MCbRN .



4

Since we have orthogonality constraint on B(q)f (q)(x
(q)
ℓ ),

which indicates that |
∑M

m=1 B
(q)
d,mf

(q)
m (·)| ≤ 1. Therefore,

the function |
∑M

i=1 B
(1)
d,i f

(1)
i (x

(1)
i ) −

∑M
j=1 B

(2)
d,jf

(2)
j (x

(2)
j )|

is bounded within [0, 2], with its Rademacher complexity
bounded by 2MCbRN . By the composition property of
Rademacher complexity, we have

RN (H) ≤ 8DMCbRN ,

which completes the proof.
By applying Lemma 1 and [21, Theorem 26.5], we have the

following hold with probability at least 1− δ:

v∞(f ,B) ≤ vN (f ,B) + 2RN (H) + 16D

√
2 log(4/δ)

N
,

where we use vN (f ,B) and v∞(f ,B) to denote the
cost values of (4) and (3), respectively, under the so-
lution f = (f (1),f (2)) and B = (B(1),B(2)).
Therefore, we have v∞(f ,B) ≤ ε, where ε :=
ν + 16DMCbRN + 16D

√
2 log(4/δ)/N. Let us denote

∥B(1)f (1)(x
(1)
ℓ ) −B(2)f (2)(x

(2)
ℓ )∥22 = εℓ, where E[εℓ] ≤ ε.

Next, define

εℓ,d :=

((
b
(1)
d

)⊤
f (1)

(
x
(1)
ℓ

)
−
(
b
(2)
d

)⊤
f (2)

(
x
(2)
ℓ

))2

,

for d = 1, · · · , D with εℓ =
∑D

d=1 εℓ,d. Obviously, E[εℓ,d] ≤
ε/D. Also denote

ϕ
(
sℓ, c

(1)
ℓ , c

(2)
ℓ

)
=
(
b
(1)
d

)⊤
h(1)

(
A(1)

[
sℓ

c
(1)
ℓ

])
−
(
b
(2)
d

)⊤
h(2)

(
A(2)

[
sℓ

c
(2)
ℓ

])
= ±√

εℓ,d.

Next, we will estimate the second-order (cross-)derivatives
of ϕ. We consider q = 1 here, and the same proof applies
to q = 2. Here, we consider ϕ(sℓ, c

(1)
ℓ , c

(2)
ℓ ) as a function of

c
(1)
ℓ with fixed sℓ and c

(2)
ℓ , thus we denote it as ϕ(c

(1)
ℓ ) for

conciseness.

A. Estimating ∂2ϕ
(
c
(1)
ℓ

)
/∂

(
[c

(1)
ℓ ]i

)2

For any continuous function ω(z) that admits non-vanishing
4th order derivatives, the second order derivative at z can be
estimated as follows:

ω′′(z) =
ω(z +∆z)− 2ω(z) + ω(z −∆z)

∆z2
− ∆z2

12
ω(4)(ξ),

(5)

where ξ ∈ (z −∆z, z +∆z).
Let ∆c

(1)
i = [0, . . . ,∆, . . . , 0]⊤ with ∆ at position i, and

define another two points as(
b
(1)
d

)⊤
h(1)

(
A(1)

[
sℓ

c
(1)
ℓ +∆c

(1)
i

])
−
(
b
(2)
d

)⊤
h(2)

(
A(2)

[
sℓ

c
(2)
ℓ

])
= ±√εℓ̃,d,(

b
(1)
d

)⊤
h(1)

(
A(1)

[
sℓ

c
(1)
ℓ −∆c

(1)
i

])
−
(
b
(2)
d

)⊤
h(2)

(
A(2)

[
sℓ

c
(2)
ℓ

])
= ±√εℓ̂,d.

Since si, c(1) and c(2) satisfy the ubiquitously unanchored
condition [1], the point z(q)

ℓ +∆c
(q)
i exists if |∆| is sufficiently

small. We also denote εℓ̃ =
∑D

d=1 εℓ̃,d and εℓ̂ =
∑D

d=1 εℓ̂,d.
By (5), we have

∂2ϕ
(
c
(1)
ℓ

)
∂
(
[c

(1)
ℓ ]i

)2 =
±√εℓ̃,d ∓ 2

√
εℓ,d ±

√
εℓ̂,d

∆2
− ∆2

12
ϕ(4)(ξi),

where ξi ∈
(
c
(1)
ℓ −∆c

(1)
i , c

(1)
ℓ +∆c

(1)
i

)
, i.e.,∣∣∣∣∣

M∑
m=1

(a
(1)
m,D+i)

2(h(1)
m )′′

(
A(1)[s⊤ℓ , (c

(1)
ℓ )⊤]⊤

)∣∣∣∣∣
=

∣∣∣∣∣±
√

εℓ̃,d ∓ 2
√
εℓ,d ±

√
εℓ̂,d

∆2
− ∆2

12
ϕ(4)(ξi)

∣∣∣∣∣
≤
√
εℓ̃,d + 2

√
εℓ,d +

√
εℓ̂,d

∆2
+

∆2

12

∣∣∣ϕ(4)(ξi)
∣∣∣ .

By taking expectations, the following holds with probability
of at least 1− δ:

E

[∣∣∣∣∣
M∑

m=1

(a
(1)
m,D+i)

2(h(1)
m )′′

(
A(1)[s⊤ℓ , (c

(1)
ℓ )⊤]⊤

)∣∣∣∣∣
]

≤
E
[√

εℓ̃,d

]
+ 2E

[√
εℓ,d
]
+ E

[√
εℓ̂,d

]
∆2

+
∆2

12

∣∣∣ϕ(4)(ξi)
∣∣∣

≤
4
√
ε/D

∆2
+

∆2

12

∣∣∣ϕ(4)(ξi)
∣∣∣ ,

where the second inequality is by the Jensen’s inequality

E[
√
εℓ,d] ≤

√
E[εℓ,d] ≤

√
ε/D,

which holds by the concavity of
√
x.

We are interested in finding the minimum upper bound of

inf
0<∆<min

{
Cp+c

(1)
ℓ,i ,Cp−c

(1)
ℓ,i

} 4
√

ε/D

∆2
+

∆2

12

∣∣∣ϕ(4)(ξi)
∣∣∣ . (6)

Note that the function in (6) is convex in ∆ and is smooth.
The minimizer is as follows:

∆∗ ∈
{(

48
√

ε/D/|ϕ(4)(ξi)|
)1/4

,min
{
Cp + c

(1)
ℓ,i , Cp − c

(1)
ℓ,i

}}
,

which gives us the minimum upper bound

inf
∆

4
√
ε/D

∆2
+

∆2

12

∣∣∣ϕ(4)(ξi)
∣∣∣

≤ min

2
√

3
∣∣ϕ(4)(ξi)

∣∣(ε/D)1/4

3
,
4
√

ε/D

κ2
i

+

∣∣ϕ(4)(ξi)
∣∣

12
κ2
i

 ,

where κi = min{Cp + c
(1)
ℓ,i , Cp − c

(1)
ℓ,i }.

If κi ≥ (48
√

ε/D/|ϕ(4)(ξi)|)1/4, then we can bound

E

[∣∣∣∣∣
M∑

m=1

(a
(1)
m,D+i)

2(h(1)
m )′′

(
A(1)[s⊤ℓ , (c

(1)
ℓ )⊤]⊤

)∣∣∣∣∣
]

≤ 2
√
3
∣∣ϕ(4)(ξi)

∣∣(ε/D)1/4/3.
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With fixed N and ε = ν + 16DMCbRN +
16D

√
2 log(4/δ)/N , which gives the following bound

E

[∣∣∣∣∣
M∑

m=1

(a
(1)
m,D+i)

2(h(1)
m )′′

(
A(1)[s⊤ℓ , (c

(1)
ℓ )⊤]⊤

)∣∣∣∣∣
]

≤
4
√

3Cϕ

3

(
ν +MCbRN +

√
2 log(4/δ)/N

)1/4
, (7)

if κi ≥ 2 4√12
(
ν+MCbRN+

√
2 log(4/δ)/N

)1/8

/C1/4
ϕ .

B. Estimating 2nd-Order Cross-Derivatives

By using similar techniques, we can estimate the cross-
derivatives ∂2ϕ

(
c
(1)
ℓ

)
/∂

(
[cℓ]

(1)
i

)
∂
(
[cℓ]

(1)
j

)
. As a result, the fol-

lowing holds with probability at least 1− δ

E

[∣∣∣∣∣
M∑

m=1

a
(1)
m,D+ia

(1)
m,D+j(h

(1)
m )′′

(
A(1)[s⊤ℓ , (c

(1)
ℓ )⊤]⊤

)∣∣∣∣∣
]

≤
√
3Cϕ

6

(
ν +MCbRN +

√
2 log(4/δ)/N

)1/4
(8)

if κ ≥
(

3
Cϕ

)1/4 (
ν + 16MCbRN + 16

√
2 log(4/δ)/N

)1/8
,

where κ = min{Cp + c
(1)
ℓ,i , Cp − c

(1)
ℓ,i , Cp + c

(1)
ℓ,j , Cp − c

(1)
ℓ,j }.

C. Bounding (h
(q)
m )′′

By aggregating results (7) and (8), we have the following
bound since ∥ · ∥2 is upper bounded by ∥ · ∥1:

E

[∥∥∥G(1)(h(1))′′
(
A(1)z

(1)
ℓ

)∥∥∥2
2

]
= O

(
Cϕ

(
ν +MCbRN +

√
2 log(4/δ)/N

)1/2)
,

where G(1) ∈ R
D1(D1+1)

2 ×M is defined as follows

G(1) :=



(
a
(1)
D+1 ⊛ a

(1)
D+1

)⊤
...(

a
(1)
D+D1

⊛ a
(1)
D+D1

)⊤(
a
(1)
D+1 ⊛ a

(1)
D+2

)⊤
...(

a
(1)
D+D1−1 ⊛ a

(1)
D+D1

)⊤


,

and ⊛ denotes Hadamard product. Then, one can express

E

[∥∥∥(h(1))′′
(
A(1)z

(1)
ℓ

)∥∥∥2
2

]
= O

(
Cϕ

σ2
min(G

(1))

(
ν +MCbRN +

√
2 log(4/δ)/N

)1/2)
,

where the above is because G(1) is not a function of data.
By Chebyshev’s inequality, we have the following

Pr
[∣∣∣∥∥∥(h(1))′′

∥∥∥
2
− E

[∥∥∥(h(1))′′
∥∥∥
2

]∣∣∣ < σ

α

]
≥ 1− α

which means with probability of at least 1− α− δ∥∥∥(h(1))′′
∥∥∥
2
< E

[∥∥∥(h(1))′′
∥∥∥
2

]
+

σ

α
≤ E

[∥∥∥(h(1))′′
∥∥∥
1

]
+O

(
1

ασmin(G(1))

(
ν +MCbRN +

√
2 log(4/δ)/N

)1/4)
,

(9)

where the second inequality is because ℓ1 norm is an upper
bound for ℓ2 norm and by definition of standard deviation

σ2 = E

[∥∥∥(h(1))′′
∥∥∥2
2

]
− E

[∥∥∥(h(1))′′
∥∥∥
2

]2
≤ E

[∥∥∥(h(1))′′
∥∥∥2
2

]
= O

(
1

σ2
min(G

(1))

(
ν +MCbRN +

√
2 log(4/δ)/N

)1/2)
.

D. Final Bound

By denoting h̄
(q)
m = h

(q)
m

(
(a

(q)
m )⊤0

)
= h

(q)
m (0) for short

and with Taylor expansion at point z(q) = 0 with the Lagrange
remainder form, we have the following[
f (q)(x

(q)
ℓ )
]
m

= h(q)
m

(
(a(q)

m )⊤z
(q)
ℓ

)
= h̄(q)

m + (h̄(q)
m )′t

(q)
m,ℓ + (h(q)

m )′′(ω
(q)
m,ℓ)

(
t
(q)
m,ℓ

)2
,

where ω
(q)
m,ℓ ∈

(
−|t(q)m,ℓ|, |t

(q)
m,ℓ|

)
, t(q)m,ℓ =

∑D+Dq

j=1 a
(q)
m,j [z

(q)
ℓ ]j .

Since (f ,B) is an optimal solution, we must have

1/
√
NB(1)E(1) = 1/

√
NB(2)E(2) +Q

where Q ∈ RD×N is an error term with ∥Q∥2F ≤ ν (by
Assumption 4), and E

(q)
i,j = h̄

(q)
i + (h̄

(q)
i )′t

(q)
i,j + (h

(q)
i )′′(t

(q)
i,j )

2

(with (h
(q)
m )′′ = (h

(q)
m )′′(ω

(q)
m,ℓ) for short). The constant terms

h̄
(q)
m ’s should be 0, since we have zero-mean constraint on

seen samples B(q)f (q)(x
(q)
ℓ ) and each dimension of z

(q)
ℓ is

also zero-mean. By rearranging terms, we have

1√
N

(
B(1)F (1) −B(2)F (2)

)
=

1√
N

(
B(2)Ξ(2) −B(1)Ξ(1)

)
+Q,

where F (q) ∈ RMq×N , Ξ(q) ∈ RMq×N , F
(q)
ij = (h̄

(q)
i )′t

(q)
i,j

and Ξ
(q)
ij = (h

(q)
i )′′

(
t
(q)
i,j

)2
, which leads to

1√
N

(B(1) D
(1)
1 A(1)︸ ︷︷ ︸
Â(1)

Z(1) −B(2) D
(2)
1 A(2)︸ ︷︷ ︸
Â(2)

Z(2)) =
1√
N

Γ+Q,

(10)

where we define

Γ = B(2)D
(2)
2 ⊛

(
A(2)Z(2)

)⊛2

−B(1)D
(1)
2 ⊛

(
A(1)Z(1)

)⊛2

,

with X⊛2 denoting element-wise squaring.
Its transposed version is

(Z̃(1))⊤(Â(1))⊤(B(1))⊤ − (Z̃(2))⊤(Â(2))⊤(B(2))⊤ = Γ̃⊤ +Q⊤,

where Z̃(q), Γ̃ are the variables scaled by 1√
N

.
Without loss of generality, we may set (B(q))⊤ =

Â(q)
(
(Â(q))⊤Â(q)

)−1

R(q) where R(q) ∈ R(D+Dq)×D. This
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is because (B(q))⊤ can always be decomposed into a compo-
nent in the subspace spanned by Â(q) and one is orthogonal
and the latter is always canceled by multiplying with (Â(q))⊤.

Then, we have the following

TR = Γ̃⊤ +Q⊤,

where we define

T =
1√
N

[S⊤, (C(1))⊤, (C(2))⊤] ∈ RN×(D+D1+D2)

R =

R(1)(1 : D, :)−R(2)(1 : D, :)
R(1)(D + 1 : end, :)
−R(2)(D + 1 : end, :)

 ∈ R(D+D1+D2)×D

where R(q)(1 : D, :) denotes rows 1 to D of R(q).
If matrix T is full column rank, then we have R = T †(Γ̃⊤+

Q⊤). Thus the ℓ2-norm of R is bounded as

∥R∥2 ≤ ∥T †∥2(∥Γ̃⊤∥2 + ∥Q⊤∥2)

≤ ∥T †∥2

(
2∑

q=1

∥∥∥∥D(q)
2 ⊛

(
A(q)Z̃(q)

)⊛2
∥∥∥∥
2

∥∥∥B(q)
∥∥∥
2
+ ∥Q∥2

)
.

Note that for Hadamard product, we have the following

∥A⊛B∥F =

√∑
i,j

a2ijb
2
ij ≤ max

i,j
(|aij |)

√∑
i,j

b2ij = ∥A∥max∥B∥F .

Thus, by defining Ψ(q) =
(
A(q)Z̃(q)

)⊛2

we have

∥R∥2 ≤ ∥T †∥2

(
2∑

q=1

∥∥∥D(q)
2

∥∥∥
max

∥∥∥Ψ(q)
∥∥∥
F

∥∥∥B(q)
∥∥∥
2
+ ∥Q∥2

)

≤ ∥T †∥2

(
2∑

q=1

∥∥∥D(q)
2

∥∥∥
max

∥A(q)Z(q)∥max(D +Dq)

∥A(q)∥2∥Z̃(q)∥2
∥∥∥B(q)

∥∥∥
2
+ ∥Q∥2

)
,

where ∥∥∥Ψ(q)
∥∥∥
F
≤ ∥A(q)Z̃(q)∥max∥A(q)∥F ∥Z̃(q)∥F ,

∥A(q)∥F ≤
√
D +Dq∥A(q)∥2,

∥Z̃(q)∥F ≤
√
D +Dq∥Z̃(q)∥2,

∥Q∥2 ≤ ∥Q∥F ≤
√
ν,

with the rank of A(q) and Z(q) assumed D + Dq and we
assume ∥T †∥2 ≤ CT , ∥Z̃(q)∥2 ≤ CZ since S, Cq are bounded
sets, ∥A(q)∥2 ≤ CA since A(q) is fixed and ∥B(q)∥2 ≤ CB

because we have orthogonality constraint (3b).
Combining with (9), we have the following bound with

probability at least 1− α− δ:

∥R∥2 ≤ O

(
D +D1

α

(
ν +MRN +

√
2 log(4/δ)/N

)1/4
+
√
ν

)
,

which implies that if N is sufficiently large and ν is small,
then R is close to 0. If we define

R(q)(1 : D, :) = Θ(q), R(q)(D + 1 : end, :) = Ω(q),

the above means∥∥∥∥∥∥
Θ(1) −Θ(2)

Ω(1)

−Ω(2)

∥∥∥∥∥∥
F

= O

(
D(D +D1)

α(
ν +MRN +

√
2 log(4/δ)/N

)1/4
+
√
ν

)
,

when the rank of R is D. Then we have the following for
q = 1, 2∥∥∥Ω(q)

∥∥∥
F
= O

(
D(D +D1)

α

(
MRN +

√
2 log(4/δ)/N

)1/4
+
√
ν

)
,

which completes the proof.

V. EXPERIMENTAL RESULTS

In this section, we present both synthetic and real data
experiments. We should mention that the work [1] has ex-
tensive simulations and real data experiments to showcase
the effectiveness of the learning criterion of interest—and the
readers are referred to [1] for details. We will only focus
on validating the insights revealed by Theorem 2. We use
the optimization algorithm for tackling (4) from [1], which
is available on the authors’ websites.

By Theorem 2, the composition f̂
(q)
m ◦g(q)m should be approx-

imately affine for all m and q, if the neural network structure
is appropriately chosen under a fixed N . To be more precise,
if the neural networks representing the learning functions have
one hidden layer, then the number of neurons R has to strike
a fine balance. Specifically, when N is fixed, increasing R
will help reduce the representation error ν, which improves
the performance. However, increasing R also enlarges the
Rademacher complexity RN = O(

√
R/N), which may make

the performance worse. Hence, under a finite N , one hopes
to use expressive enough neural networks with a sufficiently
large R, but not an overly complex neural network with an
exceedingly large R. In this section, we will validate this
claim.

A. Synthetic Data

In this subsection, we validate the theorem using synthetic
data.

1) Data Generation: We use a similar data generation
model as in [1]. Specifically, we set the shared components
to be S = [s1, . . . , sN ] ∈ R2×N are sampled from a parabola
[i.e., s2,ℓ = (s1,ℓ)

2, where s1,ℓ ∈ (−1, 1)]. The view-specific
components c

(q)
ℓ ∈ R3 for q = 1, 2 are set to be i.i.d.

Gaussian components with mean= −0.5/variance= 1 and
mean=0.8/variance=1.52, respectively. We set M1 = M2 = 5.
The mixing matrices A(1),A(2) ∈ R5×5 follow the zero-
mean unit-variance i.i.d. Gaussian distribution. The nonlinear
generative functions are listed in Tab. I.

2) Performance Metric: By Theorem 2, the nonlinear mul-
tiview analysis method recovers the range space of S⊤ plus
an additional noise term determined by Ω(q) and C(q). To
quantitatively evaluate the performance of recovery of the
shared components, we employ the subspace distance measure
as in [1]:

dist(S, Ŝ) = ∥P⊥
s Q⊤

ŝ∥2
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TABLE I
GENERATIVE FUNCTIONS USED FOR THE SYNTHETIC DATA SIMULATION.

Generative function

First view

g
(1)
1 (x) = 3sigmoid(x) + 0.1x

g
(1)
2 (x) = 5sigmoid(x) + 0.2x

g
(1)
3 (x) = 0.2 exp(x)

g
(1)
4 (x) = −4sigmoid(x)− 0.3x

g
(1)
5 (x) = −3sigmoid(x)− 0.2x

Second view

g
(2)
1 (x) = 5tanh(x) + 0.2x

g
(2)
2 (x) = 2tanh(x) + 0.1x

g
(2)
3 (x) = 0.1x3 + x

g
(2)
4 (x) = −5tanh(x)− 0.4x

g
(2)
5 (x) = −6tanh(x)− 0.3x

as the performance metric, where S = range(S⊤) and Ŝ =
range(Ŝ⊤), P⊥

s is defined as P⊥
s = I − S⊤(SS⊤)−1S, and

Qŝ is the orthogonal basis of Ŝ. This metric is in between 0
and 1. Ideally, if the energy of Ω(q) in Theorem 2 is small
enough, then the noise term is negligible, which means that the
subspace of S⊤ is well recovered. We should see dist(S, Ŝ) ≈
0 in this case. This provides a measure of the “size” of the
residual Ω(q).

3) Results: Fig. 1 shows the learned composition functions
f̂
(q)
m ◦ g

(q)
m . Here, we use a one-hidden-layer neural network

with R neurons to model each f
(q)
m . We first observe how the

performance changes when the neural network’s complexity
changes by fixing the sample size to be N = 2, 000 and
varying R ∈ {8, 16, 32, 64, 128, 1024}. One can see that the
composition function f̂

(1)
1 ◦ g(1)1 becomes increasingly closer

to an affine function from R = 8 to R = 128, with R = 128
giving the best result. However, the result of R = 1024
is obviously worse than that of R = 128. This validates
Theorem 2: although increasing the complexity of the function
class will decrease the realization gap ν, a too large R will
lead to performance degradation under fixed sample size due
to the increase of RN .

Fig. 2 gets a closer look at the relationship between R
and the nonlinearity removal performance under different N ’s.
Specifically, using the learned functions under the settings
of the previous simulations, we plot the subspace distance
computed over a test set of 1,000 samples. The results are
averaged over 10 different random trials. It is clear that the
subspace distance measure decreases when N gets larger
over all different R. More importantly, given any fixed N ,
the performance is a trade-off between ν and R. When R
is too small, the function is not powerful enough to model
the nonlinear transformation, which leads to a large ν in
Theorem 2. Thus, the performance is far from satisfactory.
Increasing the hidden size R improves the performance. For
example, when N = 1, 000, the subspace distance is 0.23
when R = 16. It is reduced to 0.04 when R = 256. However,
after a certain point, the performance starts to deteriorate
again. This is because that the complexity of the function
class, i.e., RN = O(

√
R/N), becomes dominant in this case.

Hence, an appropriate function class should be expressive
enough but not overly complex. This observation is consistent
with what we proved in Theorem 2.
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Fig. 1. Learned composition functions by method in [1] with varying R and
fixed N = 2000.
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Fig. 2. Subspace distances under different network structures and various
sample size for method proposed in [1]

B. Real Data

Following the real data experiment in [1], we use the
Multiview Digit Dataset [22] which consists of low-level
features of handwritten digits 0 to 9. The three views include
76 Fourier coefficients of the character shapes, 64 Karhunen-
Loève coefficients, and 47 Zernike moments, respectively.
The formulation proposed in [1] is able to handle multiple
modalities of inputs, sames as those in [23]–[25], by introduc-
ing a slack variable. We split the dataset into 1,200/400/400
for training/validation/testing, respectively. To measure the
performance, we use spectral clustering [26] to perform a
downstream clustering task. In particular, after learning the
f (q) for each view, we do clustering on f (q)(x

(q)
ℓ ) for all

q ∈ {1, 2, 3} and ℓ over all the data samples and then report
the accuracy on the test set. The results are averaged over 5
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Fig. 3. Clustering accuracy for each view on the Multiview Digit Dataset
[22], with different hidden size R by method in [1] and on the raw data.

random trials. The parameter settings follow that in [1].
The clustering accuracy results on the testing set are plotted

in Fig. 3. Note that by clustering on the raw features, the per-
formance is around 50%. By applying the multiview approach
in [1], the accuracy increases substantially. Nonetheless, we
also observe similar trade-offs as in the simulations. In partic-
ular, the accuracy is highest when R = 256. In comparison,
when R = 64 and R = 512 the accuracy both decrease to
certain extents (except for view 3, which essentially outputs
the same accuracy under R = 128 and R = 512). This is
probably because that R = 64 is not powerful enough while
R = 512 starts to be overly complex. This again corroborates
our claim in Theorem 2.

VI. CONCLUSIONS

In this work, we presented finite-sample analysis of a
DeepCCA formulation for identifying the post-nonlinear mul-
timodal model. Our result filled a critical gap between the
previous model identification theorem that relies on unlimited
data and the practical cases where only finite samples are
available. Our analytical approach is an integration of sta-
tistical learning, numerical differentiation, and robust system
identification. This framework is bound to finding applications
in a wider spectrum of sample complexity problems associated
with nonlinear unsupervised learning. The synthetic and real
data experiment results corroborate our finite-sample analysis.
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