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Abstract—This paper considers volume minimization (VolMin)-
based structured matrix factorization. VolMin is a factorization
criterion that decomposes a given data matrix into a basis matrix
times a structured coefficient matrix via finding the minimum-
volume simplex that encloses all the columns of the data matrix.
Recent work showed that VolMin guarantees the identifiability of
the factor matrices under mild conditions that are realistic in a wide
variety of applications. This paper focuses on both theoretical and
practical aspects of VolMin. On the theory side, exact equivalence
of two independently developed sufficient conditions for VolMin
identifiability is proven here, thereby providing a more compre-
hensive understanding of this aspect of VolMin. On the algorithm
side, computational complexity and sensitivity to outliers are two
key challenges associated with real-world applications of VolMin.
These are addressed here via a new VolMin algorithm that han-
dles volume regularization in a computationally simple way, and
automatically detects and iteratively downweights outliers, simul-
taneously. Simulations and real-data experiments using a remotely
sensed hyperspectral image and the Reuters document corpus are
employed to showcase the effectiveness of the proposed algorithm.

Index Terms—Document clustering, hyperspectral unmixing,
identifiability, matrix factorization, robustness against outliers,
simplex-volume minimization (VolMin).

I. INTRODUCTION

S TRUCTURED MATRIX FACTORIZATION (SMF) has
been a popular tool in signal processing and machine learn-

ing. For decades, factorization models such as the singular value
decomposition (SVD) and eigen-decomposition have been ap-
plied for dimensionality reduction (DR), subspace estimation,
noise suppression, feature extraction, etc. Motivated by the in-
fluential paper of Lee and Seung [2], new SMF models such
as nonnegative matrix factorization (NMF) have drawn much
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attention, since they are capable of not only reducing dimension-
ality of the collected data, but also retrieving loading factors that
have physically meaningful interpretations.

In addition to NMF, some related SMF models have attracted
considerable interest in recent years. The remote sensing com-
munity has spent much effort on a class of factorizations where
the columns of one factor matrix are constrained to lie in the
unit simplex [3]. The same SMF model has also been utilized for
document clustering [4], and, most recently, multi-sensor array
processing and blind separation of power spectra for dynamic
spectrum access [5], [6].

The first key question concerning SMF lies in identifiability–
when does a factorization model or criterion admit unique so-
lution in terms of its factors? Identifiability is important in
applications such as parameter estimation, feature extraction,
and signal separation. In recent years, identifiability conditions
have been investigated for the NMF model [7]–[9]. An unde-
sirable property of NMF highlighted in [9] is that identifiability
hinges on both loading factors containing a certain number of
zeros. In many applications, however, there is at least one factor
that is dense. In hyperspectral unmixing (HU), for example, the
basis factor (i.e., the spectral signature matrix) is always dense.
On the other hand, very recent work [5], [10] showed that the
SMF model with the coefficient matrix columns lying in the
unit simplex admits much more relaxed identifiability condi-
tions. Specifically, Fu et al. [5] and Lin et al. [10] proved that,
under some realistic conditions, unique loading factors (up to
column permutations) can be obtained by finding a minimum-
volume enclosing simplex of the data vectors. Notably, these
identifiability conditions of the so-called volume minimization
(VolMin) criterion allow working with dense basis matrix fac-
tors; in fact, the model does not impose any constraints on the
basis matrix except for having full-column rank. Since the NMF
model can be recast as (viewed as a special case of) the above
SMF model [11], such results suggest that VolMin is an attrac-
tive alternative to NMF for the wide range of applications of
NMF and beyond.

Compared to NMF, VolMin-based matrix factorization is
computationally more challenging. The notable prior works
in [12] and [13] formulated VolMin as a constrained (log-
)determinant minimization problem, and applied successive
convex optimization and alternating optimization to deal with
it, respectively. The major drawback of these pioneering works
is that the algorithms were developed under a noiseless setting,
and thus only work well for high signal-to-noise ratio (SNR)
cases. Also, these algorithms work in the dimension-reduced
domain, but the DR process may be sensitive to outliers and
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modeling errors. The work [14] took noise into consideration,
but the algorithm is computationally prohibitive and has no
guarantee of convergence. Some other algorithms [15], [16]
work in the original data domain, and deal with a volume-
regularized data fitting problem. Such a formulation can tol-
erate noise to a certain level, but is harder to tackle than
those in [12], [13], [16]–volume regularizers typically intro-
duce extra difficulty to an already very hard bilinear fitting
problem.

The second major challenge of implementing VolMin is that
the VolMin criterion is very sensitive to outliers: it has been
noted in the literature that even a single outlier can make the
VolMin criterion fail [3]. However, in real-world applications,
outlying measurements are commonly seen: in HU, pixels that
do not always obey the nominal model are frequently spotted
because of the complicated physical environment [17]; and in
document clustering, articles that are difficult to be classified to
any known category may also act like outliers. The algorithm in
[18] is the state-of-the-art VolMin algorithm that takes outliers
into consideration. It imposes a ‘soft penalty’ on outliers that lie
outside the simplex that is sought, thereby allowing the existence
of some outliers and achieving robustness. The algorithm works
fairly well when the data are not severely corrupted, but it works
in the reduced-dimension domain–and DR pre-processing can
fail due to outliers.

Contributions: In this work, we explore both theoretical and
practical aspects of VolMin. On the theory side, we show that
two existing sufficient conditions for VolMin identifiability are
in fact equivalent. The two identifiability results were developed
in parallel, rely on different mathematical tools, and offer seem-
ingly different characterizations of the sufficient conditions–so
their equivalence is not obvious. Our proof ‘cross-validates’ the
existing results, and thus leads to a deeper understanding of the
VolMin problem.

On the algorithm side, we propose a new algorithmic frame-
work for dealing with the VolMin criterion. The proposed frame-
work takes outliers into consideration, without requiring DR
pre-processing. Specifically, we impose an outlier-robust loss
function onto the data fitting part, and propose a modified log-
determinant loss function as the volume regularizer. By majoriz-
ing both functions, the fitting and the volume-regularization
terms can be taken care of in a refreshingly easy way, and a
simple inexact alternating optimization algorithm is derived. A
Nesterov-type first-order optimization technique is further em-
ployed within this framework to accelerate convergence. The
proposed algorithm is flexible–problem-specific prior informa-
tion on the factors and different volume regularizers can be
easily incorporated. Convergence of the proposed algorithm to
a stationary point is also shown.

Besides a judiciously designed set of simulations, we also
validate the proposed algorithm using real-life datasets. Specif-
ically, we use remotely sensed hyperspectral image data and
document data to showcase the effectiveness of the proposed
algorithm in hyperspectral unmixing and document clustering
applications, respectively. Notice that VolMin has never been
used for document clustering before, to the best of our knowl-
edge, and our work shows that VolMin is indeed very effective in
this context, outperforming the state-of-art in terms of clustering
accuracy.

A conference version of part of this work appears in [1].
Beyond [1], this journal version includes the equivalence
of the identifiability conditions, first-order optimization-based
updates, consideration of different types of regularization and
constraints, proof of convergence, extensive simulations, and
experiments using real data.

Notation: We largely follow common notational conventions
in signal processing. x ∈ Rn and X ∈ Rm×n denote a real-
valued n-dimensional vector and a real-valued m × n matrix,
respectively (resp.). x ≥ 0 (resp. X ≥ 0) means that x (resp.
X) is element-wise non-negative. x ∈ Rn

+ (resp. X ∈ Rm×n
+ )

also means that x (resp. X) is element-wise non-negative. X �
0 and X � 0 mean that X is positive definite and positive
semidefinite, resp. The superscripts “T ” and “−1” stand for the
transpose and inverse operations, resp. The �p norm of a vector
x ∈ Rn , p ≥ 1, is denoted by ‖x‖p = (

∑n
i=1 |xi |p)1/p . The �p

quasi-norm, 0 < p < 1, is denoted by the same notation. The
Frobenious norm and the matrix 2-norm are denoted by ‖X‖F

and ‖X‖2 , respectively. The all-one vector is denoted by 1.
In this paper, we also make extensive use of convex anal-

ysis. Let X = [x1 , . . . ,xm ]. The convex cone of x1 , . . . ,
xm is denoted by cone{x1 , . . . ,xm} = cone(X) = {y|y =
Xθ,θ ≥ 0}; the convex hull of x1 , . . . ,xm is de-
noted by conv{x1 , . . . ,xm} = conv(X) = {y|y = Xθ,θ ≥
0,1T θ = 1}; when {x1 , . . . ,xm} are linearly independent,
conv(X) is also called a simplex; the set of extreme rays of
cone(X) is denoted by ex{cone(X)}; and the dual cone of a
convex X is denoted by X∗ = {y|yT x ≥ 0,x ∈ X}; bdX de-
notes the set of the boundary points of the second order cone
X . We point the readers to [5], [9], [19] for detailed illustration
of the above concepts.

II. THE VOLMIN CRITERION AND IDENTIFIABILITY

In this section, we first give a brief introduction to the VolMin
criterion for SMF and a concise review of the existing identifia-
bility results. Then, we prove that the two independently devel-
oped identifiability results (using rather different mathematical
tools) are equivalent.

A. Background

Consider the following signal model:

x[�] = As[�] + v[�], � = 1, . . . , L, (1)

where x[�] ∈ RM is a measured data vector that is indexed by
�, A ∈ RM ×K is a basis which is assumed to have full column-
rank, s[�] ∈ RK is the coefficient vector representing x[�] in the
low dimensional subspace range(A), and v[�] ∈ RM denotes
noise. We assume that every s[�] satisfies

s[�] ≥ 0 and 1T s[�] = 1. (2)

The model can be compactly written as X = AS + V ,
where X = [x[1], . . . ,x[L]], S = [s[1], . . . , s[L]] and V =
[v[1], . . . ,v[L]].

The task of SMF is to factor X into A and S. The simple
model in (1) and (2) parsimoniously captures the essence of a
large variety of applications. For document clustering or topic
mining [4], estimating A and S can help recognize the most
popular topics/opinions in textual data (e.g., documents, web
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Fig. 1. Motivating examples: Hyperspectral unmixing and document
clustering.

Fig. 2. The intuition of VolMin.

content, or social network posts), and cluster the data according
to their weights on different topics/opinions. In hyperspectral
remote sensing [3], [20], x[�] represents a remotely sensed pixel
using sensors of high spectral resolution, a1 , . . . ,aK denote K
different spectral signatures of materials that comprise the pixel
x[�], and sk [�] denotes the proportion of material k contained in
pixel x[�]. Estimating A enables recognition of the underlying
materials in a hyperspectral image. See Fig. 1 for an illustration
of these motivating examples. Very recently, the same model
has been applied to power spectra separation [6] for dynamic
spectrum access and fast blind speech separation [5]. In addi-
tion, many applications of NMF can also be considered under
the model in (1) and (2), after suitable normalization [11].

Many algorithms have been developed for finding such a
factorization, and we refer the readers to [3], [4] for a survey.
Among these algorithms, we are particularly interested in the
so-called VolMin criterion, which is identifiable under certain
reasonable conditions. VolMin is motivated by the nice geo-
metrical interpretation of the constraints in (2): Under these
constraints, all the data points live in a convex hull spanned by
a1 , . . . ,aK (or, a simplex spanned by a1 , . . . ,aK when the ak ’s
are linearly independent); see Fig. 2. If the data points are suffi-
ciently spread in conv{a1 , . . . ,aK }, then the minimum-volume
enclosing convex hull coincides with conv{a1 , . . . ,aK }. For-
mally, the VolMin criterion can be formulated as

(A, {s[�]}) = arg min
B,{c[�]}

vol(B) (3a)

s.t. x[�] = Bc[�], (3b)

1T c[�] = 1, c[�] ≥ 0,∀�, (3c)

where vol(B) denotes a measure that is related or proportional
to the volume of the simplex conv{b1 , . . . , bK }, and (3b)–(3c)
mean that every x[�] is enclosed in conv{b1 , . . . , bK } (i.e.,
x[�] ∈ conv{b1 , . . . , bK }). In the literature, various functions
for vol(B) have been used [5], [12]–[16], [18]. One representa-
tive choice of vol(B) is

vol(B) = det(B̄T
B̄), B̄ = [b1 − bK , . . . , bK−1 − bK ], (4)

or its variants; see [13]–[15]. The reason of employing such a

function is that
√

det(B̄T
B̄)/((N − 1)!) is the volume of the

simplex conv{b1 , . . . , bK } by definition [21]. Another popular
choice of vol(B) is

vol(B) = det(BT B); (5)

see [5], [12], [16], [18]. Note that
√

det(BT B)/(N !) is the
volume of the simplex conv{0, b1 , . . . , bK }, which should scale
similarly with the volume of conv{b1 , . . . , bK }. The upshot of
(5) is that (5) has a simpler structure than (4).

B. Identifiability of VolMin

The most appealing aspect of VolMin is its identifiability of A
and S: Under mild and realistic conditions, the optimal solution
to Problem (3) is essentially the true (A,S). To be precise, let
us make the following definition.

Definition 1: (VolMin Identifiability) Consider the matrix
factorization model in (1), (2), and let (B� ,C�) be any opti-
mal solution to Problem (3). If every optimal (B� ,C�) satisfies
B� = AΠ and C� = ΠT S, where Π denotes a permutation
matrix, then we say that VolMin identifies the true matrix fac-
tors, or VolMin identifiability holds.

Fu et al. [5] have shown that.

Theorem 1: Let vol(B) be the function in (5). Define a
second order cone C = {x ∈ RN |1T x ≥ 1√

N −1
‖x‖2}. Then

VolMin identifiability holds if rank(A) = rank(S) = K and
i) C ⊆ cone(S); and

ii) cone(S) �⊆ cone(Q) where Q is any unitary matrix ex-
cept the permutation matrices.

In plain words, a sufficient condition under which VolMin
identifiability holds is when {s[�]}L

�=1 are sufficiently scattered
over the unit simplex, such that the second order cone C is a
subset of cone(S). By comparing Theorem 1 to the identifia-
bility conditions for NMF (see [7]–[9]), we see a remarkable
advantage–VolMin does not have any restriction on A except
being full-column rank. In fact, A can be dense, partially neg-
ative, or even complex-valued. This result allows us to apply
VolMin to a wider variety of applications than NMF.

In [10], another sufficient condition for VolMin identifiability
was proposed.

Theorem 2: Let vol(B) be the function in (4). Assume
rank(A) = rank(S) = K. Define R(r) = {s ∈ RN |{‖s‖2 ≤
r} ∩ conv{e1 , . . . ,eN }} and γ = sup{r|R(r)} ⊆ conv(S)}.
Then VolMin identifiability holds if γ > 1√

N −1
.

Theorem 2 does not characterize its identifiability condition
using convex cones like Theorem 1 did. Instead, it defines a
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Fig. 3. Visualization of the sufficient conditions on the hyperplane 1T x = 1.
The sufficient conditions in [5] and [10] both require that C (the inner circle) is
contained in cone(S).

‘diameter’ r of the convex hull spanned by the columns of S,
and then develops an identifiability condition based on it.

The sufficient conditions presented in the two theorems seem-
ingly have different flavors, but we notice that they are re-
lated in essence. To see the connections, we first note that
Theorem 1 still holds after replacing cone(S) and C with
convex hulls conv{s[1], . . . , s[L]} and C ∩ conv{e1 , . . . ,eN },
respectively–since the s[�]’s are all in conv{e1 , . . . ,eN }. In
fact, C ∩ conv{e1 , . . . ,eN } is exactly the set R(r) for r ≤
1/
√

N − 1. Geometrically, we illustrate the conditions in Fig. 3
using N = 3 for visualization. We see that, if we look at
the conditions in Theorem 1 at the 2-dimensional hyperplane
that contains 1T x = 1, the two conditions both mean that
the inner shaded region is contained in conv{s[1], . . . , s[L]}.
Motivated by this observation, in this paper, we rigorously
show that

Theorem 3: The sufficient conditions for VolMin identifia-
bility in Theorem 1 and Theorem 2 are equivalent.

The proof of Theorem 3 can be found in Appendix A. Al-
though the geometrical connection may seem clear on hindsight,
rigorous proof is highly nontrivial. We first show that the con-
dition in Theorem 1 is equivalent to another condition, and then
establish equivalence between the ‘intermediate’ condition and
the condition in Theorem 2.

Remark 1: The equivalence between the sufficient condi-
tions in Theorem 1 and Theorem 2 is interesting and surprising–
although the corresponding theoretical developments started
from very different points of view, they converged to equiva-
lent conditions. Their equivalence brings us deeper understand-
ing of the VolMin criterion. The proof itself clarifies the role
of regularity condition ii) in Theorem 1, which was originally
difficult to describe geometrically–and now we understand that
condition ii) is there to ensure γ > 1√

N −1
, i.e., the existence of a

convex cone that is ‘sandwiched’ by cone(S) and C. In addition,
the equivalence also suggests that the different cost functions
in (4) and (5) ensure identifiability of A and S under the same
sufficient conditions, and thus they are expected to perform sim-
ilarly in practice. On the other hand, since the function in (5)
is easier to handle, using it in practice is more appealing. As a
by-product, since we have proved that condition ii) is equivalent
to a condition that was used for NMF identifiability in [9] (cf.

Lemma 3), our result here also helps better understand the suffi-
cient condition for NMF identifibility in [9] in a more intuitively
pleasing way.

III. ROBUST VOLMIN VIA INEXACT BCD

In this section, we turn our attention to designing algorithms
for dealing with the VolMin criterion. Optimizing the VolMin
criterion is challenging. In early works such as [12], [18], linear
DR with X is assumed such that the basis after DR is a square
matrix. This subsequently enables one to write the DR-domain
VolMin problem as

min
B̃∈RK×K ,C∈RK×L

log |det(B̃)|

s.t. x̃[�] = B̃c[�]

1T c[�] = 1, c[�] ≥ 0, (6)

where x̃[�] ∈ RK is the dimension-reduced data vector corre-
sponding to x[�], and B̃ ∈ RK×K is a dimension-reduced basis.
Note that minimizing log |det(B̃)| is the same as minimizing

det(B̃
T
B̃). Problem (6) can be efficiently tackled via either

alternating optimization [13] or successive convex optimization
[12], [18]. The drawback with these existing algorithms is that
noise was not taken into consideration. Also, these approaches
require DR to make the effective A square–but DR may not be
reliable in the presence of outliers or modeling errors. Another
major class of algorithms such as those in [15], [16] considers

min
B∈RM ×K ,C∈RK×L

‖X − BC‖2
F + λ · vol(B)

s.t. C ≥ 0,1T C = 1T , (7)

where λ > 0 is a parameter that balances data fidelity versus
VolMin. The formulation in (7) avoids DR and takes noise into
consideration. However, our experience is that volume regular-
izers, such as vol(B) = det(BT B), are numerically harder to
cope with, which will be explained in detail later. We should
also compare Problem (7) with the VolMin formulation in (3).
Problem (3) enforces a hard constraint X = BC, and thus en-
sures that every feasible B and C have full rank in the noiseless
case. On the other hand, Problem (7) employs a fitting-based
criterion, and an overly large λ could result in rank-deficient
factors even in the noiseless case. Hence, λ should be chosen
with caution.

Another notable difficulty is that outliers are very damag-
ing to the VolMin criterion. In many cases, a single outlier can
make the minimum-volume enclosing convex hull very different
from the desired one; see Fig. 4 for an illustration. The state-of-
the-art algorithm that considers outliers for the VolMin-based
factorization is simplex identification via split augmented La-
grangian (SISAL) [18], but it takes care of outliers in the
dimension-reduced domain. As already mentioned, the DR pro-
cess itself may be impaired by outliers, and thus dealing with
outliers in the original data domain is more appealing. Directly
factoring X in the original data domain also has the advantage
of allowing us to incorporate any a priori information on A and
S, such as nonnegativity, smoothness, and sparsity.
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Fig. 4. The impact of outliers to VolMin. The dots are x[�]’s; the shaded area
is conv{a1 , . . . , aN }, the triangles with dashed lines are data-enclosing convex
hulls, and the one with solid lines is the minimum-volume enclosing convex
hull. Left: the case where no outliers exist. Right: the case where a single outlier
exists.

A. Proposed Robust VolMin Algorithm

We are interested in the VolMin-regularized matrix factor-
ization, but we take the outlier problem into consideration.
Specifically, we propose to employ the following optimization
surrogate of the VolMin criterion:

min
B,C

L∑

�=1

1
2

(
‖x[�] − Bc[�]‖2

2 + ε
) p

2
+

λ

2
log det(BT B + τI)

s.t. 1T c[�] = 1, c[�] ≥ 0,∀�, (8)

where p ∈ (0, 2], λ > 0, ε > 0, and τ > 0. Here, ε > 0 is a small
regularization parameter, which keeps the first term inside its
smooth region for computational convenience when p < 1; if
p ∈ (1, 2], we can simply let ε = 0. The parameter τ > 0 is also
a small positive number, which is used to ensure that the cost
function is bounded from below for any B.

The motivation of using log det(BT B + τI) instead of the
commonly used volume regularizers such as det(BT B) is com-
putational simplicity: Although both functions are non-convex
and conceptually equally hard to deal with, the former features
a much simpler update rule because it admits a tight upper
bound while the latter does not–this point will become clearer
shortly. Interestingly, log det(BT B + τI) has been used in
the context of low-rank matrix recovery [22], [23], but here
we instead apply it for simplex-VolMin. The �2/�p -(quasi-)
norm data fitting part is employed to downweight the impact
of the outliers–when 0 < p < 2, such a fitting criterion is less
sensitive to large fitting errors and thus is robust against out-
liers. Other robust fitting criteria can also be considered–e.g.,
the �p norm-based criterion ‖X − BC‖p

p for 0 < p < 2 where
‖Y ‖p

p =
∑m

i=1
∑m

j=1 |Yi,j |p is known to be robust to entry-
level outliers [24]–[26]. Nevertheless, the type of outliers that
matters in VolMin is column outliers (or gross outliers) which
represents a point lying outside the ground-truth convex hull,
and the proposed criterion is natural for fending against such
outliers. In addition, computationally, the �2/�p mixed-norm
criterion can be handled efficiently, as we will see.

Our primary objective is to handle Problem (8) efficiently.
Nonetheless, we will also show that the proposed algorithmic
framework can easily incorporate different volume-associated
regularizers in the literature, such as the previously mentioned
vol(B) = det(BT B), and

vol(B) =
K−1∑

i=1

K∑

j=i+1

‖bi − bj‖2
2 ; (9)

see [27]. Notice that (9) is a coarse approximation of the volume
of conv{b1 , . . . , bK }, which measures the volume by simply
adding up the squared distances between the vertices.

B. Update of C

Our idea is to update B and C alternately, i.e., using block
coordinate descent (BCD). Unlike classic BCD [28], we solve
the partial optimization problems in an inexact fashion for effi-
ciency. We first consider updating C. The problem w.r.t. C is
separable w.r.t. � and convex. Therefore, after t iterations with
the current solution (Bt ,Ct), we consider:

ct+1[�] := arg min
c[�]

1
2

∥
∥x[�] − Btc[�]

∥
∥2

2

s.t. 1T c[�] = 1, c[�] ≥ 0, (10)

for � = 1, . . . , L. Since Problem (10) is convex, one can update
C by solving Problem (10) to optimality. An alternating direc-
tion method of multipliers (ADMM)-based algorithm was pro-
vided in the conference version of this work for this purpose; see
the detailed implementation in [1]. Nevertheless, exactly solv-
ing Problem (10) at each iteration is computationally costly,
especially when the problem size is large. Here, we propose to
deal with Problem (10) using local approximation. Specifically,
let

f(c[�];Bt) =
1
2
‖x[�] − Btc[�]‖2

2 .

Then, f(c[�];Bt) can be locally approximated at ct [�] by the
following:

u(c[�];Bt) = f(ct [�];Bt) +
(
∇f(ct [�];Bt)

)T (c[�] − ct [�])

+
Lt

2
‖c[�] − ct [�]‖2

2 ,

where Lt ≥ 0. On the right hand side (RHS) of the above,
the first two terms constitute a first-order approximation of
f(c[�];Bt) at ct [�], and the second term restrains ct+1[�] to be
close to ct [�] in terms of Euclidean distance. It is well-known
that when Lt ≥ ‖(Bt)T Bt‖2 ,

u(c[�];Bt) ≥ f(c[�];Bt),∀c[�] ∈ RK

holds for all c[�] and the equality holds if and only if c[�] =
ct [�] [29]. In other words, when Lt ≥ ‖(Bt)T Bt‖2 , u(c[�]) is
a ‘majorizing’ function of f(c[�];Bt). Given this majorizing
function, we update c[�] by the following simple rule:

ct+1[�] = arg min
1T c[�]=1,c[�]≥0

u(c[�];Bt). (11)

By re-arranging the terms and discarding constants, Prob-
lem (11) is equivalent to the following

min
1T c[�]=1,c[�]≥0

∥
∥
∥
∥c[�] −

(

ct [�] − 1
Lt

∇f(ct [�];Bt)
)∥

∥
∥
∥

2

2
.

The RHS of the above can be considered as a gradient pro-
jection step with step size 1/Lt . Letting PLt (ct [�]) denote the
optimal solution of the above, we simplify the notation of up-
dating c[�] as

ct+1[�] = PLt (ct [�]). (12)
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Problem (12) is a simple projection that can be solved with
worst-case complexity of O(K log K) flops; see [30] for a de-
tailed implementation.

The described update of C has light per-iteration complexity,
but it could result in slow convergence of the overall alternat-
ing optimization algorithm; see Fig. 6 in the simulations. To
improve the convergence speed in practice, and inspired by the
success of Nesterov’s optimal first-order algorithm and its re-
lated algorithms [31], [32], we propose the following update
of C:

ct+1[�] = PLt (yt [�]) (13a)

qt+1 =
1 +

√
1 + 4(qt)2

2
(13b)

yt [�] = ct [�] +
(

qt − 1
qt+1

)
(
ct [�] − ct−1 [�]

)
, (13c)

where {qt}∞t=1 is a sequence with q1 = 1. Simply speaking, in-
stead of locally approximating f(c[�];Bt) at ct [�], we approx-
imate it at an ‘extrapolated point’ yt [�]. Without the alternating
optimization procedure, using extrapolation is provably much
faster than using the plain gradient-based methods [31], [32].
Embedding extrapolation into alternating optimization was first
considered in [33] in the context of tensor factorization, where
acceleration of convergence was observed. In our case, the ex-
trapolation procedure also substantially reduces the number of
iterations for achieving convergence, as will be shown in the
simulations.

C. Update of B

The update of B relies on the following two lemmas.

Lemma 1: [34] Assume 0 < p ≤ 2, ε > 0, and let
φp(w) := 2−p

2 ( 2
p w)

p
p −2 + εw. Then, we have (x2 + ε)p/2 =

minw≥0 wx2 + φp(w). Also, the minimizer is unique and given
by wopt = p

2 (x2 + ε)
p −2

2 .

Lemma 2: [35] Let E ∈ RK×K be any matrix such that
E � 0. Consider the function f(F ) = Tr(FE) − log det F −
K. Then, log det E = minF�0 f(F ), and the minimizer is
uniquely given by F opt = E−1 .

The lemmas provide two functions that majorize the data
fitting part and the volume-regularization part in (8), respec-
tively. Specifically, at iteration t and after updating C, we have

(B̂
t
, {ct+1[�]}L

�=1). Then, the following holds:

log det(BT B + εI) ≤ Tr(F tBT B) − log det F t − K,
(14)

where F t = ((Bt)T Bt + εI)−1 and the equality holds when
B = Bt . Similarly, we have

L∑

�=1

1
2

(∥
∥x[�] − Bct+1[�]

∥
∥2

2 + ε
) p

2

≤
L∑

�=1

wt
�

2

∥
∥x[�] − Bct+1[�]

∥
∥2

2 +
L∑

�=1

φp(wt
�), (15)

where wt
� = p

2 (‖x − Btct+1[�]‖2
2 + ε)

p −2
2 and the equality

holds when B = Bt . Putting (14), (15) together and dropping

the irrelevant terms, we find Bt+1 by solving the following:

Bt+1 := arg min
B

L∑

�=1

w�

2

∥
∥x[�] − Bct+1[�]

∥
∥2

2

+
λ

2
Tr(F t(BT B)). (16)

Problem (16) is a convex quadratic program that admits the
following closed-form solution:

Bt+1 := XW t(Ct+1)T
(
Ct+1W (Ct+1)T + λF t

)−1
,

(17)

where W t = Diag(wt
1 , . . . , w

t
L ).

Remark 2: The expression in (16) reveals why the proposed
criterion and algorithm can automatically downweight the effect
brought by the outliers. Suppose that (Bt ,Ct+1) is a “good
enough” solution which is close to the ground truth. Then, wt

� is
small when x[�] is an outlier since the fitting error term ‖x[�] −
Btct+1[�]‖2

2 is large. Hence, for the next iteration, Bt+1 is
estimated with the importance of the outlier x[�] downweighted.

Remark 3: In practice, adding constraints on B by letting
B ∈ B is sometimes instrumental, since a lot of applications do
have prior information that can be used to enhance performance.
For example, in image processing, a nonnegative B is often
sought, and thus one can set B = RM ×N

+ . When B is convex,
the problem in (16) can usually be solved in an efficient man-
ner; e.g., one can call general-purpose solvers such as interior-
point methods. However, using general-purpose solvers here
may lose efficiency since solving constrained least squares to a
certain accuracy per se may require a lot of iterations. To sim-
plify the update, we update Bt following the same spirit of up-
dating C: Let g(B;Ct+1) =

∑L
�=1

w�

2 ‖x[�] − Bct+1[�]‖2
2 +

λ
2 Tr(F t(BT B)) + const, where const =

∑L
�=1 φp(wt

�) − K.
We solve a local approximation of g(B;Ct+1):

Bt+1 := arg min
B∈B

g(Bt ;Ct+1) + ∇g(Bt ;Ct+1)T (B − Bt)

+
μt

2
‖B − Bt‖2

F

:= ProjB
(
Bt − μt∇g(Bt ;Ct+1)

)
, (18)

where μt ≥ 0 and

∇g(Bt ;Ct+1) = Bt
(
Ct+1W t(Ct+1)T + λF t

)

− XW t(Ct+1)T ,

is the partial derivative of the cost function in (16) w.r.t. B at
Bt , and ProjB(Z) denotes the Euclidean projection of Z on
B. For some B’s, the projection is easy to compute; e.g., when
B = RM

+ , we have ProjB(Z) = max{Z,0}; see other easily
implementable projections in [36]. Notice that the update in
(18) can also easily incorporate extrapolation.

The robust volume minimization (RVolMin) algorithm is
summarized in Algorithm 1. Its convergence properties are
stated in Proposition 1, whose proof is relegated to Appendix B.

Proposition 1: Assume that Lt and μt are chosen such that
Lt ≥ ‖(Bt)T Bt‖2 and μt ≥ ‖(F t)T F t‖2 , respectively. Also,
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assume that B is a convex closed set. Then, if the initial objec-
tive value is finite, the whole solution sequence generated by
Algorithm 1 converges to the set S that consists of all the sta-
tionary points of Problem (8), i.e.,

lim
t→∞

d(t) ((
Bt ,Ct

)
,S

)
= 0,

where d(t)((Bt ,Ct),S) = minY ∈S ‖Y − (Bt ,Ct)‖2
F .

Remark 4: As mentioned before, we may also use different
volume regularizers. Let us consider the volume regularizer in
(9) first. It was shown in [27] that this regularizer can also be
expressed as vol(B) = Tr(GBT B), where G = KI − 11T .
Therefore, by letting F t = G in Algorithm 1, the updates can
be directly applied to handle the regularizer in (9). Dealing with
(5) is more difficult. One possible way is to make use of (18)
since det(BT B) is differentiable. The difficulty is that a global
upper bound of the subproblem w.r.t. B may not exist. Under
such circumstances, sufficient decrease at each iteration needs
to be guaranteed for establishing convergence to a stationary
point [37]. In practice, the Armijo rule is usually invoked to
achieve this goal, which in general is computationally more
costly compared to the cases where μt can be determined in
closed form.

Remark 5: Problem (8) is a nonconvex optimization prob-
lem. Hence, a good starting point of RVolMin can help reach
meaningful solutions quickly. In practice, different initializa-
tions can be considered:
• Existing VolMin algorithms. Many VolMin algorithms, such
as the ones working in the reduced-dimension domain (e.g., the
algorithms in [13], [18]), exhibit good efficiency. The difficulty
is that these algorithms are usually sensitive to the DR process
in the presence of outliers. Nevertheless, one can employ robust
DR algorithms together with the algorithms in [13], [18] as an
initialization approach. Nuclear norm-based algorithms [38] are
viable options for robust DR, but are not suitable for large-scale
problems because of the computational complexity. Under such
circumstances, one may adopt simple alternatives such as that
proposed in [39].
• Nonnegative matrix factorization. If A is known to be non-
negative, any NMF algorithm can be employed as initialization.
In practice, dealing with NMF is arguably simpler relative to
VolMin, and many efficient solvers for NMF exist–see [40] for
a survey. Although NMF usually does not provide a satisfac-
tory result on its own in cases where it cannot guarantee the
identifiability of its factors, using the NMF-estimated factors to

initialize the algorithms that provide identifiability guarantees
can sometimes enhance the performance of the latter.

IV. SIMULATIONS

In this section, we provide simulations to showcase the ef-
fectiveness of the proposed algorithm. We generate the ele-
ments of A ∈ RM ×K from the uniform distribution between
zero and one. We generate s[�] on the unit simplex and
with maxi si [�] ≤ γ, where 1

K ≤ γ ≤ 1 is given. We choose
γ = 0.85, which results in a so-called ‘no-pure-pixel case’ in
the context of remote sensing and is known to be challenging
to handle; see [3], [4] for details. Zero-mean white Gaussian
noise is added to the generated data. To model outliers, we de-
fine the outlier at data point � as o[�] and let A ⊆ {1, . . . , L} be
the index set of outliers. We assume that o[�] = 0 if � /∈ A and
x[�] = o[�] otherwise. We denote No = |A| as the total num-
ber of outliers. Those active outliers are generated following the
uniform distribution between zero and one, and are scaled to sat-
isfy problem specifications. For the proposed algorithm, we fix
p = 0.5, ε = 10−12 , and τ = 10−8 unless otherwise specified.
We stop the proposed algorithm when the absolute change of
the cost function is smaller than 10−5 or the number of iterations
reaches 1000.

We define the signal-to-noise ratio (SNR) as SNR =
10 log10(

E{‖As[�]‖2
2 }

E{‖v[�]‖2
2 }

). Also, to quantify the corruption caused
by the outliers, we define the signal-to-outlier ratio (SOR) as

SOR = 10 log10(
E{‖As[�]‖2

2 }
E{‖o[�]‖2

2 }
). We use the mean-squared-error

(MSE) of A as a measure of factorization performance, defined
as

MSE = min
π∈Π

1
K

K∑

k=1

∥
∥
∥
∥

ak

‖ak‖2
− âπk

‖âπk
‖2

∥
∥
∥
∥

2

2
,

where Π is the set of all permutations of {1, 2, . . . ,K}; and âk

is the estimate of ak .
In this section, we use the SISAL algorithm proposed in [18]

as a baseline. SISAL is a state-of-art robust VolMin algorithm
that takes outliers into account by solving

min
B̃,1T C=1T ,{x̃[�]=B̃c[�]}

log det(B̃) + η‖C‖h ,

where ‖ · ‖h =
∑L

�=1
∑K

k=1 max(−ck [�], 0) is an element-wise
hinge function. The intuition behind SISAL is to penalize the
outliers whose c[�] has negative elements, but still allowing
them to exist, thereby having some robustness to outliers. The
tuning parameter η > 0 in SISAL controls the amount of outliers
that are “allowed,” and we test multiple η’s for SISAL in the
simulations. We run the original SISAL that uses SVD-based
dimension reduction and the modified SISAL which uses the
robust dimension reduction (RDR) algorithm in [39]. The latter
is also used to initialize the proposed algorithm.

We first use an illustrative example to show the effective-
ness of the proposed algorithm in the presence of outliers. In
this example, we set SNR = 18 dB, SOR = −10 dB, No =
20, (M,K) = (50, 3), and L = 1000. The results are pro-
jected onto the affine set that contains conv{a1 ,a2 ,a3}, i.e., a
two-dimensional hyperplane. In Fig. 5, we see that SISAL with
different η’s cannot yield reasonable estimates of A since the
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Fig. 5. The Â’s estimated by various algorithms. Blue points are x[�]’s.

Fig. 6. Objective value vs. iterations, using different update strategies for C.

DR stage threw the data to a badly estimated subspace. Using
RDR, SISAL performs better, but is still not satisfactory. In this
case, the proposed algorithm yields the most accurate estimate
of A.

In Fig. 6, we show the convergence curves of the algorithm
under different update rules of C, i.e., ADMM in [1], the pro-
posed local approximation, and local approximation with ex-
trapolation. We show the results averaged from 10 trials, where
SNR = 18 dB and SOR =−5 dB. We see that using ADMM, the
objective value converges within 400 iterations. Local approx-
imation with extrapolation uses around 800 iterations to attain
convergence of the objective value, but the objective value can-
not converge within 3000 iterations without extrapolation. In
terms of runtimes, the local approximation methods uses 0.003
second per iteration (a complete update of both C and B),
while ADMM costs 0.05 second per iteration. Obviously, local
approximation with extrapolation is the most favorable update
scheme: its number of iterations for achieving convergence is
around twice of that of ADMM, but it is 15 times faster relative
to ADMM for completing an update of C. Specifically, in the
case under test, the average time for the algorithm using ADMM
to update C to achieve the pointed objective value in Fig. 6 is

Fig. 7. MSE of Â obtained by different algorithms vs. SNR. (M, K ) =
(50, 5); No = 20; SOR = −5 dB.

Fig. 8. MSE of proposed algorithm vs. λ. (M, K ) = (50, 5); No = 20;
L = 1000; SOR = −5 dB.

20.5 seconds, while using local approximation with extrapola-
tion costs 2.58 seconds to reach the same objective level. In the
upcoming simulations, all the results of the proposed algorithms
are obtained with the extrapolation strategy.

In Fig. 7, we show the MSE performance of the proposed
algorithm versus SNR. We fix SOR = −5 dB, and let No = 20,
(M,K) = (50, 5), and L = 1000. In Fig. 7, we see that the
original SISAL fails for different η’s. Using RDR, SISAL with
η = 0.1 yields reasonable results for all the tested SNRs. The
proposed algorithm with λ = 1 and λ = 0.5 gives the lowest
MSEs. The MSEs given by RVolMin with λ = 1 are the lowest
when SNR ≤ 20 dB, and RVolMin with λ = 0.5 exhibits the
best MSE performance when SNR ≥ 25 dB. The results are
consistent with the intuition behind selecting λ: when the SNR
is low, a relatively large λ is needed to enhance the effect of the
VolMin regularization.

To understand the effect of selecting λ, we plot the MSEs
of the proposed algorithm versus λ in Fig. 8. We see that there
exists an (SNR-dependent) optimal choice of λ for achieving
the lowest MSE, but also note that any λ in the range considered
yields satisfactory results in both cases.
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Fig. 9. MSE of Â versus K . M = 50; No = 20; L = 1000; SOR = −5 dB.

Fig. 10. MSE of Â versus SOR. (M, K ) = (50, 5); No = 20; L = 1000;
SNR = 20 dB.

Fig. 9 shows the MSE performance of the algorithms versus
K. We fix SNR = 20 dB and the other settings are the same
as in the previous simulation. The results of SISAL and SISAL
with RDR are also used as baselines. We run several η’s for
SISAL and present the results of the one with the lowest MSEs.
As expected, all the algorithms work better when the rank of
the factorization model is lower–which is consistent with past
experience on different matrix factorization algorithms, such
as [40]. SISAL and SISAL with RDR work reasonably when
K = 3, but deteriorate when K ≥ 6. On the other hand, even
when K = 15, the proposed algorithm still works well, giving
the lowest MSE.

Fig. 10 shows the MSEs of the algorithms versus SORs. One
can see that when some data are badly corrupted, i.e., when
SOR ≤ −10 dB, the proposed algorithm yields significantly
lower MSEs than SISAL and SISAL with RDR. When SOR ≥
0 dB, all three algorithms provide comparable performance.

We also test the algorithms versus the number of outliers.
In Fig. 11, one can see that the proposed algorithm is not very
sensitive to the change of No : the MSE curve of the proposed al-
gorithm is quite flat for different No ’s in this simulation. SISAL

Fig. 11. MSE of Â versus No . (M, K ) = (50, 5); L = 1000; SOR =
−5 dB; SNR = 20 dB.

TABLE I
THE MSES OF THE ALGORITHMS UNDER ILL-CONDITIONED A.

(M, K ) = (50, 5); L = 1000; No = 20; SOR = −5 DB.

TABLE II
THE MSES OF THE PROPOSED ALGORITHM WITH DIFFERENT VOL(B)’S.

(M, K ) = (50, 5); L = 1000; No = 20; SNR = 20 DB.

with RDR yields reasonable MSEs when No ≤ 40, but its per-
formance deteriorates when No is larger.

Table I presents the MSEs of the estimated Â under well- and
ill-conditioned A’s, respectively. To generate an ill-conditioned
A, we use a way that is similar to the method suggested
in [11]: in each trial, we first generate Ã whose columns
are uniformly distributed between zero and one, and such
Ã’s are relatively well-conditioned. Then, we apply singular
value decomposition to obtain Ã = UΣV T . Finally, we re-
place Σ by Σ̃ = Diag([1, 0.1, 0.01, 0.005, 0.001]) and obtain
A = UΣ̃V T . This way, the condition number of the generated
A is 103 . The other settings are the same as those in Fig. 7.
One can see from Table I that using such ill-conditioned A, all
the algorithms perform worse compared to the scenario where
A has uniformly distributed columns (cf. the first and second
columns in Table I). Nevertheless, the proposed algorithm still
gives the lowest MSEs.

In Table II, we present the MSE performance of the proposed
algorithm using different volume regularizers. We see that us-
ing vol(B) = Tr(GBBT ) has the shortest runtime since the
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TABLE III
THE MSES OF THE PROPOSED ALGORITHM WITH AND WITHOUT

NONNEGATIVITY CONSTRAINT ON B UNDER VARIOUS SNRS.
(M, K ) = (50, 5); L = 1000; No = 20; SOR = 5 DB.

Fig. 12. MSE of the proposed algorithm with different p’s under various
SORs. (M, K ) = (50, 5); L = 1000; No = 20; SNR = 20 dB.

subproblem w.r.t. B is convex and can be solved in closed form.
When vol(B) = det(BT B), the algorithm requires much more
time compared to that of the other two regularizers. This is be-
cause the Armijo rule has to be implemented at each iteration.
In terms of accuracy, using the log det(BT B) regularizer gives
the lowest MSEs when SOR ≤ −5 dB. Using det(BT B) also
exhibits good MSE performance when SOR ≥ 0 dB. Using
Tr(GBBT ) performs slightly worse in terms of MSE, since it
is a coarse approximation to simplex volume. Interestingly, al-
though our proposed log-determinant regularizer is not an exact
measure of simplex volume as the determinant regularizer, it
yields lower MSEs relative to the latter. Our understanding is
that the performance gain results from the ease of computation.

Table III presents the MSE of the proposed algorithm with
and without nonnegativity constraint on B, respectively. We
see that the MSEs are similar, with those of the nonnegativity-
constrained algorithm being slightly lower. This result validates
the soundness of our update rule for the constrained case, i.e.,
(18). In terms of speed, the unconstrained algorithm requires
less time. We note that the nonnegativity constraint seems to
only bring marginal performance gain in this simulation. This
might be because the data are generated following the model
in (1) and (2), and under this model VolMin identifiability does
not depend on the nonnegativity of B. However, when we are
dealing with real data, adding nonnegativity constraints makes
much sense, as will be shown in the next section.

Fig. 12 shows the effect of changing p. When SOR =−10 dB,
we see that using p ∈ [0.25, 0.75] gives relatively low MSEs.
This is because using a small p is more effective in fending
against outliers that largely deviate from the nominal model.

Fig. 13. The considered subimage of the Moffet data set.

It is interesting to note that using p = 0.1 gives slightly worse
result compared to using p ∈ [0.25, 0.75]. Our understanding
is that using a very small p may lead to numerical problems,
since the weights {w�}L

�=1 can be scaled in a very unbalanced
way in such cases, resulting in ill-conditioned optimization sub-
problems. For the cases where SOR = −5 dB and 5 dB, a
similar effect can be seen. In addition, a larger range of p, i.e.,
p ∈ [0.25, 1.5], can result in good performance when SOR =
5 dB. The results suggest a strategy of choosing p: When the
data is believed to be badly corrupt, using p around 0.5 is a good
choice; and when the data is only moderately corrupted, using
p ∈ [1, 1.5] is preferable, since such a p gives good performance
and can better avoid numerical problems.

V. REAL DATA VALIDATION

In this section, we validate the proposed algorithm using two
real data sets, i.e., a hyperspectral image dataset with known
outliers and a document dataset.

A. Hyperspectral Unmixing

Hyperspectral unmixing (HU) is the application where
VolMin-based factorization is most frequently applied; see [3].
As introduced before, HU aims at estimating A, i.e., the spectral
signatures of the materials that are contained in a hyperspectral
image, and also their proportions s[�] in each pixel. It is well-
known that there are outliers in hyperspectral images, due to the
complicated reflection environment, spectral band contamina-
tion, and many other reasons [17]. In this experiment, we apply
the proposed algorithm to a subimage of the real hyperspectral
image that was captured over the Moffett Field in 1997 by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)1; see
Fig. 13. We remove the water absorption bands from the original
224 spectral bands, resulting in M = 200 bands for each pixel
x[�]. In this subimage with 50 × 50 pixels, there are three types
of materials–water, soil, and vegetation. In the areas where dif-
ferent materials intersect, e.g., the lake shore, there are many
outliers as identified by domain study. Our goal here is to test

1Online available http://aviris.jpl.nasa.gov/data/image_cube.html.

http://aviris.jpl.nasa.gov/data/image_cube.html
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Fig. 14. The spectra of the manually selected pure pixels and the estimated
spectra by the algorithms.

Fig. 15. The abundance maps of the materials and the distribution of the
outliers obtained by the proposed algorithm.

whether our algorithm can identify the three materials and the
outliers simultaneously.

We apply SISAL, SISAL with RDR, and the proposed algo-
rithm to estimate A. We set λ = 1 for our algorithm and tune η
for SISAL carefully. Notice that we let B = RM×K

+ in this case,
since the spectral signatures are known to be nonnegative. The
estimated spectral signatures are shown in Fig. 14. As a bench-
mark, we also present the spectra of some manually selected
pixels, which are considered purely contributed by only one
material, and thus can approximately serve as the ground truth.
We see that both SISAL and SISAL with RDR does not yield
accurate estimates of A. Particularly, the spectrum of water is
badly estimated by both of these algorithms–one can see that
there are many negative values of the spectra of water given by
SISAL and SISAL with RDR. On the other hand, the proposed
algorithm with nonnegativity constraint on B gives spectra that
are very similar to those of the pure pixels.

Fig. 15 shows the spatial distributions of the materials (i.e.,
the abundance maps {sk [�]}L

�=1 for k = 1, . . . ,K) that are es-
timated by the proposed algorithm in the first three subimages.
We see that the three materials are well separated, and their
abundance maps are consistent with previous domain studies

TABLE IV
THE CLUSTERING ACCURACY ON REUTERS 21578 CORPUS

[41], [42]. In the last subimage of Fig. 15, we plot 1/w� for
� = 1, . . . , L. Notice that the weight w� corresponds to the ‘im-
portance’ of the data x[�]. The algorithm is designed to auto-
matically give small w� to outlying pixels. We see that there are
a lot of pixels on the lake shore that have very small weights,
indicating that they are outliers. Physically, these outliers corre-
spond to those areas where the solar light reflects several times
between water and soil, resulting in nonlinearly mixed spectral
signatures [41], [42]. The locations of the outlying pixels iden-
tified by our algorithm are also consistent with domain study
[41], [42].

B. Document Clustering

We also present experimental results using the Reuters21578
document corpus2. We use the subset of the full corpus provided
by [43], which contains 8213 single-labeled documents from 41
clusters. In our experiment, we test our algorithm under different
K (number of clusters), from 3 to 10. Following standard pre-
processing, each document is represented as a term-frequency-
inverse-document-frequency (tf-idf) vector, and normalized cut
weighting is applied; see [43]–[45] for details. We apply our
VolMin algorithm to factor the document data X to ‘topics’ A
and a ‘weight matrix’ S (cf. Fig. 1), and use S to indicate the
cluster labels of the documents. A regularized NMF-based ap-
proach, namely, locally consistent concept factorization (LCCF)
[43] is employed as the baseline, which is considered a state-
of-the-art algorithm for clustering the Reuters21578 corpus.
For each K, we perform 100 Monte-Carlo trials by randomly
selecting K clusters out of the total 41 clusters and 100 docu-
ments from each cluster. We report the performance by compar-
ing the results with the ground truth. Performance is measured
by a commonly used metric called clustering accuracy, whose
detailed definition can be found in [43]–the clustering accu-
racy ranges from 0 to 1, and higher accuracies indicate better
performances.

Table IV presents the results averaged from the 100 trials.
For the proposed algorithm, we set λ = 30 and p = 1.5; we
also present the result of p = 2 in this experiment, which we
also use to initialize the p < 2 case. Note that here we use a
larger λ relative to what was used in the simulations. The rea-
son is that the document corpus contains considerable modeling
errors and the fitting residue is relatively large. The rule of thumb
for selecting λ is to set it at a similar level as the fitting error
part; i.e., we let λ = O(δ), where δ = ‖X − ÂŜ‖2

F and can

2Online available: http://www.daviddlewis.com/resources/testcollections/
reuters21578/

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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be coarsely estimated using plain NMF. This way, λ can bal-
ance the fitting part and the volume regularizer. From Table IV,
we see that VolMin with p = 2 already yields comparable clus-
tering accuracy with LCCF. This indicates that, even without
outlier-robustness, modeling the document clustering problem
using VolMin-based SMF is effective. Better accuracies can be
seen by using p = 1.5, where we see that for most K, the pro-
posed RVolMin algorithm gives the best accuracy. In particular,
for K = 6, 7, more than 4% accuracy improvement can be seen,
which is considered significant in the context of document clus-
tering. Interestingly, further decreasing p does not yield better
performance. This implies that the modeling error is not very
severe, but outliers do exist, since using p < 2 gives better clus-
tering result than using p = 2 which is not robust to modeling
errors.

VI. CONCLUSION

In this work, we looked into theoretical and practical aspects
of the VolMin criterion for matrix factorization. On the theory
side, we showed that two independently developed sufficient
conditions for VolMin identifiability are in fact equivalent. On
the practical side, we proposed an outlier-robust optimization
surrogate of the VolMin criterion, and devised an inexact BCD
algorithm to deal with it. Extensive simulations showed that
the proposed algorithm outperforms a state-of-the-art robust
VolMin algorithm, i.e., SISAL. The proposed algorithm was
also validated using real-world hyperspectral image data and
document data, where interesting and favorable results were
observed.

APPENDIX A

A. Proof of Theorem 3

To show Theorem 3, several properties of convex cones will
be constantly used. They are:

Property 1: Let K1 and K2 be convex cones. Then, K1 ⊆
K2 ⇒ K∗

2 ⊆ K∗
1 .

Property 2: Let K1 and K2 be convex cones. Then, (K1 ∩
K2)∗ = conv{K∗

1 ∪ K∗
2}.

Property 3: If Q is a unitary matrix. Then, cone(Q)∗ =
cone(Q).

We show Theorem 3 step by step. First, we show the following
lemma:

Lemma 3: Assume that C ⊆ cone(S) and Q is any uni-
tary matrix except the permutation matrices. Then, we
have cone(S)∗ ∩ bdC∗ = {λiei |i = 1, . . . , N} ⇔ cone(S) �⊆
cone(Q).

Proof: We first show the “⇒” part. Given a unitary Q, sup-
pose that

cone(S) ⊆ cone(Q).

By the basic properties of convex cones, we see that
cone(Q)∗ ⊆ cone(S)∗, and cone(Q)∗ = cone(Q). Combining,
we see

cone(Q) ⊆ cone(S)∗. (19)

Also, we have

C ⊆ cone(S) ⇒ cone(S)∗ ⊆ C∗ ⇒ cone(Q) ⊆ C∗. (20)

Combining Eqs. (19) and (20), we have

cone(Q) ⊆ C∗ ∩ cone(S)∗. (21)

We also know that the extreme rays of cone(Q) lie in the
boundary of C∗, i.e., ex{cone(Q)} ⊆ bdC∗ [9, Lemma 1]. Thus,
we have

ex{cone(Q)} ⊆ bdC∗ ∩ cone(S)∗. (22)

Since we assumed cone(S)∗ ∩ bdC∗ = {λiei |i = 1, . . . , N},
we have

ex{cone(Q)} ⊆ {e1 , . . . ,eN }. (23)

Therefore, Q can only be a permutation matrix.
We now show the “⇐” part. Following (22), and knowing

that cone(S) is a subset of the convex cone of some permutation
matrix, we see that

{e1 , . . . ,eN } ⊆ cone(S)∗ ∩ bdC∗. (24)

Now, suppose that there are a set of vectors {r1 , . . . , rp} that
does not include any unit vectors such that

cone(S)∗ ∩ bdC∗ = {e1 , . . . ,eN , r1 , . . . , rp}.

Then, we see that we can represent cone(S)∗ = conv{RN
+ ∪

cone{r1 , . . . , rp}}. By Property 2, we see that

cone(S) = conv{RN
+ ∪ cone{r1 , . . . , rp}}∗

= RN
+ ∩ cone{r1 , . . . , rp}∗. (25)

Since RN
+ ∩ cone{r1 , . . . , rp}∗ = cone(S) ⊆ RN

+ , (25)
leads to

cone{r1 , . . . , rp}∗ ⊆ RN
+ .

By Property 1, we see that

(RN
+ )∗ = RN

+ ⊆ cone{r1 , . . . , rp}.

This is a contradiction to the assumption that {r1 , . . . , rp}
does not include the unit vectors. �

Now we are ready to prove Theorem 3. We first notice
that C ⊆ cone(S) is equivalent to γ ≥ 1

N −1 . In fact, we see
that C ∩ S = R( 1√

N −1
), where S = {s|1T s = 1, s ∈ RN },

and thus the claim holds. Thus, our remaining work is to show
that condition (ii) in Theorem 1 is equivalent to restricting γ
such that γ > 1√

N −1
Step 1: Let us consider a conic representation of Theorem 2.

Specifically, the corresponding convex cone of R(r) = {s ∈
RN |‖{s‖2 ≤ r} ∩ conv{e1 , . . . ,eN }} is R̃(r) = C(r) ∩RN

+ ,
where

C(r) = {s ∈ RN | ‖s‖2 ≤ r1T s},

and γ = sup{r|C(r) ⊆ cone(S)} under this definition. It is also
noticed that C(r) can be re-expressed as

C(r) =
{

s
∣
∣
∣
∣

1T s
‖1‖2‖s‖2

≥ 1
r
√

N

}

.

In words, the vectors whose angles between 1 are less than
or equal to arccos 1

r
√

N
comprises C(r). Therefore, by the def-

inition of dual cone, i.e., C(r)∗ = {s|sT y ≥ 0,y ∈ C}, C(r)∗
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contains all the vectors that have the angle with 1 less than or
equal to arccos r√

r 2 N −1
, which leads to

C(r)∗ = C
(

r√
r2N − 1

)

. (26)

Step 2: Now, we consider the dual cone representation of
Theorem 2. Let us define

T (r) = conv(C(r) ∪RN
+ ).

Then, following Property 2 and (26), we have

R̃(r)∗ = (C(r) ∩RN
+ )∗ (27a)

= conv

(

C
(

r√
r2N − 1

)

∪RN
+

)

, (27b)

= T
(

r√
r2N − 1

)

, (27c)

where we have used (RN
+ )∗ = RN

+ , i.e., Property 3. According
to Property 1, we see that

R̃(r) ⊆ cone(S) ⇔ cone(S)∗ ⊆ T
(

r√
r2N − 1

)

. (28)

If we define κ = inf{r|cone(S)∗ ⊆ T (r)}, we see from (28)
and the definition of γ that

γ >
1√

N − 1
⇔ κ < 1. (29)

Step 3: To show the equivalence between the sufficient condi-
tions, let us begin from Theorem 1. The condition C ⊆ cone(S)
means that C∗ ⊆ cone(S)∗ by Property (1), and it further im-
plies that {e1 , . . . ,eN } ⊆ ex{cone(S)∗} [9]. Suppose the rest
of cone(S)∗’s extreme rays are r1 , . . . , rp , and t is defined as
t = inf{r|cone{r1 , . . . , rp} ⊆ C(r)}. Then, we have

cone(S)∗ = cone{r1 , . . . , rp ,e1 , . . . ,eN }

⊆ conv{C(t) ∪RN
+ } = T (t).

Hence, by the definitions of t and κ, we have t = κ.
Given the above analysis, we first show that Theorem 1 im-

plies Theorem 2. Now, assume that Condition (ii) in Theo-
rem 1 is satisfied. We see that cone(S)∗ ∩ bdC∗ = {λiei |i =
1, . . . , N} by Lemma 3. Then, r1 , . . . , rp are in the interior of
C∗ = C(1). Therefore, we have t < 1, and subsequently κ < 1
and γ > 1√

N −1
strictly.

Now we show the converse by contradiction. Assume that
γ > 1√

N −1
holds (the condition in Theorem 2 is satisfied). If at

least one point in r1 , . . . , rp touches the boundary of C∗ (con-
dition (ii) in Theorem 1 is not satisfied), then t = 1, and we
cannot decrease it further while still contain cone(S)∗ in T (t)∗.
This means that κ = 1, or, equivalently, γ = 1√

N −1
, which con-

tradicts our first assumption that γ > 1√
N −1

.

B. Proof of Proposition 1

In the following, we prove the proposition under the algo-
rithmic structure without extrapolation. For the case where we
update C using (13), it is easy to see that yt [�] → ct [�] given

t → ∞ by (13c). Hence, if the proposition holds for the algo-
rithm without extrapolation, it also holds for the extrapolated
version asymptotically.

First, let us cast the proposed algorithm into the framework
of block successive upper bound minimization (BSUM) [29],
[37]. Unlike the classic block coordinate descent algorithm that
solves every block subproblem exactly [28], BSUM cyclically
solves the upper-bound problems of every block subproblems.
We consider the updates using (12) and (16) as an example. The
proof of using other updates will follow. Our update rule in (12)
and (16) can be equivalently written as

Ct+1 = arg min
1T C=1T ,C≥0

uC (C;Bt) (30a)

Bt+1 = arg min
B

uB (B;Ct+1). (30b)

where uC (C;Bt) =
∑L

�=1
1
2 (2u(c[�];Bt) + ε)p/2+λ

2 log det
((Bt)T Bt + τI), u(c[�];Bt) is defined as before, and

uB (B;Ct+1) =
L∑

�=1

w�

2

∥
∥x[�] − Bct+1[�]

∥
∥2

2

+
λ

2
Tr(F t(BT B)) + const,

in which const =
∑L

�=1 φp(wt
�) − K. Note that solving (30a) is

equivalent to solving (12) over different �’s since the problems
w.r.t. � = 1, . . . , L are not coupled. Also denote v(B,C) as the
objective value of Problem (8). When Lt ≥ ‖(Bt)T Bt‖2 , we
have

v(Bt ,C) ≤ uC (C;Bt), ∀C (31a)

v(B,Ct+1) ≤ uB (B;Ct+1), ∀B, (31b)

where (31a) holds because under Lt ≥ ‖(Bt)T Bt‖2 we have

f(c[�];Bt) =
1
2
‖x[�] − Btc[�]‖2

2 ≤ u(c[�];Bt),∀c[�],

and thus

v(Bt ,C) =
L∑

�=1

1
2

(
2f(c[�];Bt) + ε

) p
2

+
λ

2
log det((Bt)T Bt + τI)

≤
L∑

�=1

1
2
(2u(c[�];Bt) + ε)

p
2

+
λ

2
log det((Bt)T Bt + τI)

= uC (C;Bt);

Eq. (31b) holds because of Lemmas 1 and 2; also note that the
equalities hold when C = Ct and B = Bt , respectively. Since
all the functions above are continuously differentiable, we also
have

∇Cv(Bt ,Ct) = ∇CuC (Ct ;Bt) (32a)

∇Bv(Bt ,Ct+1) = ∇BuB (Bt ;Ct+1). (32b)

Note that if we update C using ADMM, we have v(Bt ,C) =
uC (C;Bt) for all C–Eqs. (31a) and (32a) still hold. Also, if
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we update B by (18), the conditions in (31b) and (32b) are also
satisfied when μt ≥ ‖(F t)T F t‖2 since we now we have

uB (B;Ct+1) = g(Bt ;Ct+1) + ∇g(Bt ;Ct+1)T (B − Bt)

+
μt

2
‖B − Bt‖2

F ,

and it can be shown that v(B,Ct+1) ≤ g(B;Ct+1) ≤
uB (B;Ct+1) and

∇Bv(Bt ,Ct+1) = ∇Bg(Bt ;Ct+1) = ∇BuB (Bt ;Ct+1),

and the equalities hold simultaneously at B = Bt . Eqs. (31),
(32) satisfy the sufficient conditions for a generic BSUM algo-
rithm to converge (cf. Assumption 2 in [37]). In addition, by
[37, Theorem 2 (b)], if we can show that (Bt ,Ct) lives in a
compact set for all t, we can prove Proposition 1.

Next, we show that in every iteration, Bt and Ct are bounded.
The boundness of Ct is evident because we enforce feasibility
at each iteration. To show that Bt is bounded, we first note that

v(Bt ,Ct) ≥ v(Bt+1 ,Ct+1),

where the inequality holds since the non-increasing property of
the BSUM framework [37]. By the assumption that v(B0 ,C0)
is bounded, i.e.,

v(B0 ,C0) ≤ V,

where V < ∞, we have
L∑

�=1

1
2

(
‖x[�] − Bc[�]‖2

2 + ε
) p

2
+

λ

2
log det(BT B + τI) ≤ V

holds for every (B,C) ∈ {Bt ,Ct}t=1,..., that is generated by
the algorithm. Since the first term on the left hand side of the
above inequality is nonnegative, we have

log det(BT B + τI) ≤ V ⇔ log

(
N∏

i=1

(σ2
i + τ)

)

≤ V

⇒ log(σ2
i + τ) ≤ V − (N − 1) log τ,∀i (33a)

⇒ σ2
i ≤ exp (V − (N − 1) log τ) − τ,∀i, (33b)

where σ1 , . . . , σN denote the singular values of B, and (33a)
holds since log(σ2

i + τ) ≥ log τ for all i. The right hand side
of (33b) is bounded, which implies that every singular value of
Bt for t = 1, 2, . . . is bounded. Since B is a closed convex set,
we conclude that the sequence {Bt ,Ct}t lies in a compact set.
Now, invoking [37, Theorem 2 (b)], the proof is completed.
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