
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 23, DECEMBER 1, 2015 6315

Joint Tensor Factorization and Outlying Slab
Suppression With Applications

Xiao Fu, Member, IEEE, Kejun Huang, Student Member, IEEE, Wing-Kin Ma, Senior Member, IEEE,
Nicholas D. Sidiropoulos, Fellow, IEEE, and Rasmus Bro

Abstract—We consider factoring low-rank tensors in the pres-
ence of outlying slabs. This problem is important in practice,
because data collected in many real-world applications, such
as speech, fluorescence, and some social network data, fit this
paradigm. Prior work tackles this problem by iteratively selecting
a fixed number of slabs and fitting, a procedure which may not
converge. We formulate this problem from a group-sparsity
promoting point of view, and propose an alternating optimiza-
tion framework to handle the corresponding
minimization-based low-rank tensor factorization problem. The
proposed algorithm features a similar per-iteration complexity
as the plain trilinear alternating least squares (TALS) algorithm.
Convergence of the proposed algorithm is also easy to analyze
under the framework of alternating optimization and its variants.
In addition, regularization and constraints can be easily incorpo-
rated to make use of a priori information on the latent loading
factors. Simulations and real data experiments on blind speech
separation, fluorescence data analysis, and social network mining
are used to showcase the effectiveness of the proposed algorithm.
Index Terms—Canonical polyadic decomposition, group spar-

sity, iteratively reweighted, outliers, PARAFAC, robustness, tensor
decomposition.

I. INTRODUCTION

F ACTORING a tensor (i.e., a data set indexed by three or
more indices) into rank-one components is a decomposi-

tion problem which is frequently referred to as parallel factor
analysis (PARAFAC) or canonical decomposition (CANDE-
COMP), or canonical polyadic decomposition (CPD). Unlike
two-way factor analysis (i.e., matrix factorizations), three- or
higher-way low-rank tensor factorization reveals essentially
unique factors under quite mild conditions, which is desirable
when dealing with latent parameter estimation problems. Since
the late 1990s, PARAFAC has been successfully applied to
wireless communications for blindly estimating the spatial
channels or the users’ code-division signatures [1], [2]; array
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processing for finding the directions-of-arrival of the emitters
[3], [4]; chemometrics for resolving the spectra of chemical
analytes [5]; blind speech and audio separation for estimating
the mixing system [6], [7]; and, more recently, power spectra
separation for cognitive radio [8], and big data mining for
social group clustering [9].
A high-order tensor can also be considered as a set of lower-

order tensors. For example, a data cube (i.e., a three-way tensor)
can be considered as a set of matrices (two-way tensors), ob-
tained by fixing one index to a particular value. Each such piece
of the original data, whose order has been reduced by one, will
be called a slab. Slabs are usually physically meaningful in var-
ious applications. For example, in blind speech and audio sep-
aration, the received signals’ short-term covariance matrix, as-
sumed constant within a short coherence interval and sometimes
referred to as local covariance [10], [11], can be considered as a
slab of a three-way tensor; in fluorescence data spectroscopy, a
measurement matrix that consists of emissions and excitations
of the stimulated analytes is a slab [5]; and in array processing,
the received raw signals at a subarray can be considered as a slab
[3]. Due to this physical correspondence, however, strong data
contamination or corruption frequently happens at the slab level
(rather than element-wise). A typical example is blind speech
separation—it has been observed that locally correlated speech
sources may create local covariances (slabs) that do not obey the
low-rank tensor model [11]. Also, in chemometrics, e.g. in fluo-
rescence spectroscopy, it is common that certain samples repre-
senting erratic measurements or samples of unusual constitution
end up influencing the fitted model badly [12]–[14].
Factoring a low-rank tensor in the presence of outlying slabs

has been considered before. In the literature, the most closely
related work may be [12]. There, an algorithm that iteratively
selects a fixed number of slabs to fit with a low-rank tensor
model was proposed. A main drawback with this algorithm is
that it may not converge. Also, it is not easy to determine how
many slabs should be selected to fit in advance. Similar insights
are also seen in the analytic chemistry context; see [13]–[15].
In [16], the authors considered a different yet related scenario.
There, a PARAFAC approach was proposed by changing the
least squares-based optimization criterion to the -norm based
fitting criterion, to make the low-rank decomposition robust
against outlying elements. The resulting algorithms are alter-
nating linear programming or alternating weighted median fil-
tering (WMF). The algorithms in [16] do not need to pre-define
the number of slabs to select for fitting, but they can be ineffi-
cient even when the problem size is medium. In addition, the
criterion is optimal in the maximum likelihood sense, when the

1053-587X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



6316 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 23, DECEMBER 1, 2015

noise follows the i.i.d. Laplacian distribution; but it is not spe-
cialized for (strong) slab-level outliers, as will be shown in the
simulations.
Contributions: In this work, we consider modeling and tack-

ling the low-rank tensor decomposition problem with outlying
slabs from a different perspective. Specifically, we formulate the
problem from a group-sparsity promoting viewpoint, and come
up with an fitting criterion. We propose to tackle
this hard optimization problem using an alternating optimiza-
tion strategy: by judiciously recasting the original problem into
a more convenient form, we show that it can be tackled using a
simple algorithm whose block updates admit closed-form so-
lutions. This algorithm tends to iteratively select some clean
slabs to fit with a PARAFAC model and downweight the out-
lying slabs at the same time. Reminiscent of classical robust fit-
ting, the proposed algorithm does not assume knowledge of the
number of clean slabs. Plus, drawing from existing theoretical
results on alternating optimization [17] and its variants such as
maximum block improvement (MBI) [18], convergence of the
proposed algorithm can be characterized. It is also worth noting
that the proposed algorithm has almost the same per-iteration
complexity as the trilinear alternating least squares (TALS) al-
gorithm [1]–[3], which is computationally much cheaper than
the algorithms in [16].
Extensions to regularized and constrained cases are also con-

sidered in this work, since incorporating a priori information
on the loading factors is important in applied data analysis. Fol-
lowing the same alternating optimization framework, we pro-
pose to handle the subproblems by employing an alternating
direction method of multipliers [19] (ADMM)-based algorithm,
which allows us to deal with different types of regularization
and constraints of interest, under a unified update strategy.
Besides simulations using synthetic data for verifying the

ideas, we use several simulations and experiments with real data
to showcase the effectiveness of the proposed approaches. First,
the basic robust algorithm is applied on blind speech separation
simulations, where real speech segments are mixed under real-
istic room acoustic impulse response scenarios. The separation
performance of the proposed algorithm is shown to be supe-
rior to the earlier state-of-the-art. Then, the proposed algorithm
is applied to a fluorescence data set; and finally to the ENRON
e-mail corpus. Interesting and nicely interpretable results are ob-
tained in both cases.
Notation: We largely follow standard signal processing (and

some Matlab) notational conventions, for convenience. Specif-
ically, denotes a three-way tensor, and
denotes the element that is indexed by ; ,

and denote the th horizontal slab, the th lateral
slab, and the th frontal slab, respectively; and
denotes the th row and the th column of the matrix ;
denotes the transpose operator; denotes the Moore-Penrose
pseudo-inverse operator; for
for ; for

; and denote the Kruskal rank and
the rank of , respectively; , , and denote the outer
product, the Hadmard product, the Kronecker product, and the
Khatri-Rao product, respectively; denotes a diagonal
matrix that holds the as the diagonal elements.

Fig. 1. Slabs of a three-way tensor.

II. PRELIMINARIES ON PARAFAC
A simple description of the PARAFAC model is as follows.

PARAFAC aims to represent a three-way tensor
using PARAFAC three latent factor matrices:

(1)

where , , , and is called
the rank of the PARAFAC model. Any tensor
can be exactly represented this way if a large-enough

is used; but we are usually interested in using
relatively small to capture the ‘principal components’ of .
Equivalently, each element of the tensor can be represented as

. A three-way tensor
is also a set of matrices, or, slabs, which are obtained by fixing
one index. There are three types of slabs of a three-way tensor,
namely, the horizontal slabs , the lateral slabs

, and the frontal slabs . If the
PARAFAC model in (1) holds exactly, each type of slab has a
compact representation, i.e.,

Lateral slabs

Frontal slabs

Horizontal slabs

where . Fig. 1 gives a visual illustration
of a three-way tensor and its slabs.
Unlike matrix factorizations, which are in general

non-unique, the PARAFAC decomposition has (essentially)
unique solution under quite mild conditions. For example,
Kruskal proved the following result for a real-valued low-rank
tensor [20]: If

(2)

then are unique up to a common column permuta-
tion and scaling, i.e.,

, ,
, where is a permutation matrix and , , ,

are full-rank diagonal matrices such that . If is
drawn from an absolutely continuous distribution over ,
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then with probability one. It fol-
lows that if are drawn this way, then the condition in
(2) can be simplified: if

(3)

then are unique up to a common column permutation
and scaling, with probability one. Notice that under the condi-
tion in (2) or (3), the loading matrices need not be tall.
This is advantageous in challenging application scenarios, e.g.,
mixing system identification when the system is under-deter-
mined [2], [10].
In practice, when modeling error and noise exist, it makes

more sense to seek the best rank- approximation of a tensor
rather than computing its exact rank factorization. To find
such an approximation, the least squares criterion is commonly
adopted:

(4)

The above problem is nonconvex, and thus could be very diffi-
cult to solve. In fact, recent research [21] showed that Problem
(4) may even be ‘ill-posed’, meaning that the best rank- ap-
proximation of a tensor may not even exist. In practice, nev-
ertheless, the formulation in (4) allows one to devise computa-
tionally affordable (albeit generally suboptimal) algorithms, and
some of these algorithms have proven successful in various ap-
plications. To deal with the optimization problem in (4), a pop-
ular way is to make use of the matrix unfoldings of the tensor.
Specifically, by vectorizing each type of slabs and treating them
as columns of a matrix, we obtain the three matrix unfoldings,
namely, , , and

, where we have used the vectorization
property of the Khatri-Rao product

. Using the unfoldings, Problem (4) can be tackled
by cyclically solving the following three least squares problems:

(5a)

(5b)

(5c)

The above updates yield the popular trilinear alternating least
squares (TALS) algorithm [1], [2].
Although quite a lot of different PARAFAC algorithms exist,

e.g., [10], [22]–[25], TALS (and its close relatives) has been
the workhorse of low-rank tensor decomposition for decades
for several reasons: First, TALS can be easily implemented,
since each iteration only involves relatively simple linear least
squares subproblems. Second, it features monotone conver-
gence of the cost function, without the need to tune (e.g.,
step-size) parameters to ensure this. Third, it has the flexibility
to incorporate constraints and regularization on the loading
factors under its alternating optimization framework, with a
reasonable complexity increase.

III. A CLOSER LOOK AT MOTIVATING EXAMPLES

In many applications, some slabs of the collected tensor data
are highly corrupted, for various reasons. In this section, we take

a closer look at some pertinent examples that we have encoun-
tered in rather different fields. In all of them, corrupted slabs
can throw off the analysis, producing inconsistent and hard to
interpret PARAFAC models.

A. Blind Speech Separation
It has been shown that PARAFAC can be applied to blind

speech separation (BSS) to identify the mixing system [6], [7].
As a quick review, the BSS signal model is

(6)

where denotes the received
signals by the sensors at time , denotes the
mixing system, denotes the
speech sources (presumed to be uncorrelated), and

denotes zero-mean i.i.d. Gaussian
noise with variance . To connect this model to the PARAFAC
model, we calculate the local covariance of the received signals
within time frame by

where represents the estimated noise variance and denotes
the time frame length. By assuming that the sources are uncor-
related, we see that the local covariance of the sources in frame
, i.e., for ,

is a diagonal matrix. Hence, if we let
for , we see

that is a frontal slab of a three-way
tensor (with ), and thus PARAFAC can be applied to
to estimate the mixing system . Using the estimated , the
individual source signals can be estimated. In the presence of
reverberation, the mixing system model becomes convolutive
(i.e., frequency-selective) instead of instantaneous. This is a
more challenging scenario, which can again be tackled using
PARAFAC in the frequency domain, see [6], [7], [11] and
references therein.
A more subtle difficulty is that some speech sources exhibit

(strong) short-term cross correlations, even though they are ap-
proximately uncorrelated over the long run. Consequently, the
local covariances of the sources in some frames have significant
off-diagonal elements, and the corresponding slabs deviate from
the nominal model . In such cases, di-
rectly applying standard PARAFAC algorithms may not yield
satisfactory speech separation performance [11].

B. Fluorescence Spectroscopy
Fluorescence excitation-emission measurements (EEMs) are

used in many different fields such as skin analysis, fermentation
monitoring, environmental, food, and clinical analysis [14]. A
fluorescence sample is obtained by using a beam of light that
excites the electrons in molecules of certain compounds and
causes them to emit light; the emission spectra are then mea-
sured at several excitation wavelengths. A fluorescence EEM
sample can be represented by
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where for corresponds to the spectral
emission , denotes the corresponding excitation values,
and denotes the corresponding concentration (scaling) at
sample . By measuring multiple samples, a PARAFAC model
can be formed, and each sample is a slab.
Fluorescence data analysis has been recognized as a very

successful example of applying PARAFAC algorithms to
real-world data. At the same time, it has also been noticed
that anomalous EEM samples occur frequently due to various
reasons [12]–[15].

C. Social Network Mining
For some three-way social network data sets, every slab

is a connected graph measured within time period . For
example, in the ENRON e-mail data set [26], denotes
the ‘connection intensity’ of person and person at time period
(i.e., the number of e-mails sent by person to person within

month ). Another example is the Amazon purchase data. There,
represents the amount of product bought by person

in week . For such data, each rank-one component of the
PARAFAC model can be interpreted as the interaction pattern
of a social group over time [27]. To be specific, consider

Here, the nonzero elements in and create a clique
(a subgraph) , which can be interpreted as a so-
cial group, and corresponds to the number of social groups.
Taking the ENRON e-mail data as an example,
is a group, where the people corresponding to the non-zero el-
ements of have similar e-mail sending patterns to those
corresponding to the non-zero elements of . is
a time-varying parameter of this group, which means that the
e-mail sending pattern of this group is a rank-one matrix factor
whose intensity (e-mail volume) varies with time.
With this model, factoring the data box into its latent factors is

equivalent to mining the underlying social groups, which finds
applications in designing recommendation systems, analyzing
ethic and cultural groups, and even detecting criminal organiza-
tions. However, the social network data sets are in general not
following a generative signal model, which means that several
slabs may have large modeling errors. As we will see later, some
unexpected events (such as the ENRON crisis) might make the
group e-mail patterns quite irregular during some period. The
slabs measured in these irregular time intervals might need to
be identified and somehow down-weighted when the objective
is to analyze the normal interaction patterns, or to detect those
anomalies.

IV. PROBLEM FORMULATION

Motivated by the examples in the previous section, we will
focus onmodeling, formulating, and solving the low-rank tensor
decomposition problem in the presence of outlying slabs. Our
main goal is an easily implemented optimization framework;
practical considerations such as regularization, constraints, ini-
tialization and complexity will also be discussed. For presenta-
tion simplicity, we will assume that corruption happens in some
horizontal slabs throughout the development of the algorithm;
see Fig. 2. Algorithms dealing with corrupt lateral or frontal

Fig. 2. The corruption model: some horizontal slabs are outliers.

slabs can be obtained by simply permuting the modes of the
tensor, by virtue of symmetry.
To begin with, let us assume that some horizontal slabs have

been corrupted by gross errors; i.e., we have

,
, (7)

where is the index set of the outlying slabs and
. The gross error component could be

strong so that is far from the nominal ‘clean signal model’,
i.e., . Under the corruption model in (7),
our first observation here is that there may still be enough clean
data to enable us to recover and intact. Thus, our idea
begins with a formulation that guarantees the identifiability of
and under some conditions.
Wewish to fit the clean data slabs with a PARAFACmodel. In

practice, is usually unknown, but its cardinality may be small
relative to . Hence, we address this problem from a group-
sparsity promoting viewpoint. We formulate the problem as

(8)

where is defined as

.

The criterion tends to make
for as many ’s as possible. Intuitively, if there are enough clean
slabs to identify the underlying nominal PARAFAC model,
solving the above optimization problem should identify and
. The following result confirms this intuition.
Claim 1: Assume that the elements of are drawn from an

absolutely continuous distribution over , and likewise
and are drawn from absolutely continuous distributions over

and , respectively. Define

and suppose that , and

(9)

Then, with probability one, the optimal , , and
that solve Problem (8) are , , and with a common
column permutation and scaling; i.e.,

, , , where is a permutation
matrix and , , , are full-rank diagonal matrices such
that .
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The proof of Claim 1 can be found in Appendix A. Claim 1
helps us understand the fundamental limitation of the proposed
criterion in (8): Under the signal model in (7), if about one half
of the horizontal slabs follow the clean signal model, we can
still correctly identify the two loading factors and (and
at least part of ). Solving Problem (8) is very challenging
though—both PARAFAC decomposition and group-spar-
sity maximization (cardinality minimization) are nonconvex
problems on their own, so (8) is compounding two already
challenging problems. In the next section, a more practical op-
timization surrogate will be employed to approximate Problem
(8), and a simple alternating optimization algorithm will be
presented to tackle this surrogate optimization problem.

V. BASIC ALGORITHMIC FRAMEWORK

To approximate Problem (8), we propose to employ the
smoothed quasi-norm as our working objective; i.e., by
replacing by , we deal with the
following surrogate:

(10)
where and . The idea comes from compressive
sensing, where the quasi norm is often approximated by the
quasi norm or norm, since the latter two are computation-
ally tractable and often yield practically good results [28]–[31].
Here, is a small smoothing parameter to keep the cost function
in its continuously differentiable domain.
The cost function in (10) can be manipulated according to the

following lemma:
Lemma 1: Assume , , and

. Then, we have

and the unique minimizer is
(11)

Proof: First, it can be seen that is strictly convex on
its domain (i.e., the interior of ), since its second order
derivative is positive when is positive, i.e.,

Therefore,

(12)

admits a unique optimal solution ,
which can be obtained by simply checking the first order opti-
mality condition. Substituting back into the cost of (12),
the minimum cost is .
By Lemma 1, Problem (10) can be re-expressed as the fol-

lowing problem:

(13)

The structure of Problem (13) is nice: it allows us to optimize
its cost with respect to (w.r.t.) the four blocks , and

in an alternating optimization fashion, fixing three
blocks and updating one each time.1 As we will show next, each
conditional optimization problem has a closed-form solution.
First, the problem w.r.t. is separable w.r.t. . For each , the

problem w.r.t. is a simple least squares problem. Hence,
the subproblem w.r.t. admits the following closed-form so-
lution:

which is the same as that in the plain TALS [1], [2]. Notice that
in practice, we compute by the following expression:

In practice, the matrix inversion part and should
be computed separately. The reasons are as follows. First, the
inversion part, i.e., , is usually the inverse
of a small ( -by- ) matrix. Second, the multiplication of a
Khatri-Rao structured matrix and an unfolded tensor is a com-
putationally expensive operation if are large (specifi-
cally, this single step costs flops), but fast algorithms
are available when is sparse [9], [34]–[37].
To update , we consider using the lateral slabs

. From Problem (13), it can be readily seen
that the th column of is scaled by . Thus,
the subproblem w.r.t. can be written as

where , or, in the following more
compact form,

The above is still a least squares problem. Therefore, the solu-
tion is simply

In practice, the above solution can be written as follows:

(14a)

(14b)
(14c)

where we have used the property

to obtain (14b), and

1A similar auxiliary variable-based technique for splitting convex norms
has appeared in [32], [33]. Lemma 1 can be considered as a

nonconvex extension of the prior works in [32], [33].
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to reach (14c). Putting in the form of (14c) is important. The
reason is twofold: First, one does not have to actually compute
and save since saving elements after each
iteration is cumbersome when are large (e.g., for

, a million variables have to be saved in each iter-
ation). Second, the efficient solvers for computing the product
of a Khatri-Rao structured matrix and an unfolded tensor can be
directly applied to .
To update , the rationale follows that of updating . Specif-

ically, as the th row of each frontal slab is scaled by , we
have can express the conditional problem w.r.t. as

and the solution is also in closed form:

Similar to the case, we can express as

and thus and can be
computed separately, if necessary in practice.
The update w.r.t. follows Lemma 1, i.e.,

Given these conditional updates, a simple strategy is to
cyclically update , , and . The algorithm
is summarized in Algorithm 1; we will henceforth refer to it
as Iteratively Reweighted Alternating Least Squares (IRALS),
since can be interpreted as weights applied to the
frontal slabs. From an algorithmic structure viewpoint, IRALS
can be considered as an extension of the iteratively reweighted
least squares (IRLS) algorithm [30] to tensor factorization.
Since each partial minimization does not increase the value of
the cost function and the function is lower bounded by zero,
IRALS guarantees the convergence of the cost function of
Problem (13).
Remark 1: One may notice that we have not characterized

the convergence of the solution sequence produced by IRALS
yet. By some existing theories of alternating optimization, a sta-
tionary point for TALS and IRALS may be attained if the con-
ditional objective function of every block is strictly convex and
is continuously differentiable on the interior of the feasible set
throughout all iterations [17, Proposition 2.7.1]. In our context,
this requires
throughout all iterations, which is hard to check [38]. Never-

theless, convergence to a stationary point of Problem (10) can be
shown by employing some variants of alternating optimization,
e.g., maximum block improvement (MBI) [18]. In this work, we
adopt cyclic alternating optimization instead of MBI, for imple-
mentation simplicity and speed. Also, in practice, we are often
interested in PARAFAC with regularization on the loading fac-
tors; in such cases, convergence to a stationary point of alter-
nating optimization is usually not a problem anymore [38]—see
the next section for details.
Remark 2: Until now, we have been dealing with the problem

of interest (i.e., Problem (10)) indirectly. It is interesting to

consider the relationship between the solutions of our working
problem, i.e., Problem (13), and Problem (10). It can be shown
that
Claim 2: Assume that is a stationary

point of Problem (13). Then, is also a stationary
point of Problem (10).
The proof of Claim 2 can be found in Appendix B. The key

step is to invoke the uniqueness of the subproblem w.r.t.
following Lemma 1 and marginalize it. By this claim, we see
that dealing with Problem (13) can yield a stationary point of
Problem (10), whenever a limit point is reached.

VI. EXTENSION: CONSTRAINED AND REGULARIZED ROBUST
TENSOR FACTORIZATION

In this section, we consider practical extensions of IRALS,
namely, constrained and regularized optimization.

A. Adding Constraints and Regularization

In data analytics, constrained and regularized low-rank tensor
factorization often makes a lot of sense, since combining dif-
ferent types of a priori information may help find interpretable
factors when modeling error and noise exist. Hence, there are
many cases in which we are interested in solving the following
problem:

(15)

where , and are nonnegative regularization parame-
ters, , and are appropriate regularization func-
tions, and , and represent (hard) constraints on the loading
factors.
In many cases, the constraints of interest include nonnega-

tivity of the loadings, stemming from physical, chemical, or
modeling considerations—e.g., concentrations, spectra, and
e-mail counts are all nonnegative, and nonnegativity of the
latent factors is important in social network mining [27] and in
fluorescence spectroscopy [14]. More general ‘box’ constraints
of type may also be appropriate, e.g.,
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when we also have prior knowledge on the maximum possible
concentration.
Soft constraints may also be of interest, and these can be rep-

resented using appropriate regularization terms. If we know that
the columns of should be smooth, for example, we can em-
ploy the regularization , where [39]

...
...

...
...

...
...

...
(16)

If we know that the loading factors are sparse, we can use
or any other sparsity-promoting function for regularization.
As alluded to in Remark 1, adding regularization often brings
side-benefits in terms of accelerating convergence, avoiding
swamps, and attaining a stationary point [38], [40]. For ex-
ample, by adding the minimum-norm regularization ,

, and , it can be easily seen that each block always
has a unique solution, and thus a stationary point of Problem
(15) can be attained by alternating optimization, whenever
a limit point exists. Given the overall objective (15), and by
Lemma 1, we may consider the equivalent reformulation

The subproblem w.r.t. admits the same solution as before.
In addition, the subproblems w.r.t. the loading factors are con-
strained and regularized least squares problems. To describe our
treatment, we begin with the subproblem w.r.t. :

To handle this problem, we propose the following alternating
direction method of multipliers (ADMM) [19] based approach.
We first rewrite the problem as

(17)

where is 0 for and otherwise. ADMM solves
the following augmented Lagrangian dual of Problem (17) [19,
Chapter 3]:

(18)

where and are the dual variables, and is the
stepsize parameter that is pre-specified. The standard ADMM
updates for Problem (18) are as follows [19, Chapter 3]:

(19a)

(19b)

(19c)

(19d)
(19e)

The proposed variable-splitting strategy brings several ad-
vantages. First, the problem w.r.t. (i.e., Problem (19a)) is
a least squares problem, whose solution is

where . We see that the structure of
has been preserved, and thus efficient

solvers for this matrix multiplication problem can be ap-
plied when the tensor is large and sparse [9], [34]–[37].
Second, the update is a proximal operator, which can be
put in simple closed-form for many ’s. Let us consider

as an example, which is often used for
promoting smooth . The update is then simply

Note that when , this further reduces to
—which is useful to control the scaling of . Also, if one

wants to promote sparsity in , several convex and nonconvex
’s that enable closed-form solution of Problem (19b) can be

employed; see [41]. Third, the update (Problem (19c)) also
has a simple form:

where is a projector to the set . For many constraints ,
this projection step is fairly simple. For example, if ,
the projection is

where is an element-wise operator such that
; see many other efficient projections in [19].

The ADMM updates w.r.t. and are similar; they are rel-
egated to Appendix C. Overall, we solve the subproblems w.r.t.
, , and cyclically as in the last section except that

the former three are solved by ADMM.We should mention that
the convergence properties of the described algorithm depend
on the type of regularization and the constraints that are added.
The reason is twofold. First, as previously mentioned, to ensure
that every limit point of the solution sequence
is a stationary point of Problem (15), each subproblem w.r.t. ,
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and needs to be a convex problem admitting a unique so-
lution, which depends on the type of regularization and the con-
straints. In addition, the convexity of a subproblem also affects
the solution of ADMM—it guarantees that ADMM can attain
the optimal solution of that subproblem.

B. Initialization Approaches

IRALS requires initial guesses of , and . In practice,
several initialization approaches can be considered:
• First, random initialization is viable. Since the considered

problem is nonconvex, using random initialization may require
restarting the algorithm several times from random initial points
to attain a good solution, but it also helps the algorithm to avoid
‘bad’ local minima.
• Second, the loading factors estimated by algorithms that

deal with the -norm fitting-based PARAFAC problem in (4)
(or PARAFAC for simplicity), e.g., TALS, can be used as
starting points. Algorithms tackling the variants of Problem (4)
with constraints and regularization on the loading factors can
also be employed. This approach is effective when those algo-
rithms are not totally thrown off by the outlying slabs.
• Third, when is larger than , one can first estimate an

orthogonal basis such that ,
and then apply a Khatri-Rao subspace-based PARAFAC algo-
rithm, such as those in [10], [22], [42], [43], on the extracted

to get an initial guess of . Khatri-Rao subspace-based
initialization is effective with large since the procedure can
‘compress’ the original tensor substantially,2 and PARAFAC al-
gorithms empirically work better when the data size is smaller.
When there is no outlying slab, and when both and
have full-column rank, a basis of can be obtained by
applying singular value decomposition (SVD) on . Here,
since there are outlying columns of , we can estimate
using robust SVD, which has been intensively studied in the re-
cent literature; see, e.g., [44], [45].

VII. NUMERICAL RESULTS

In this section, we first use synthetic data to verify our ideas.
Then, real-data experiments will be presented to show the ef-
fectiveness of the proposed algorithmic framework in practice.
The algorithms presented in this section are all implemented in
Matlab, and all simulations and experiments were carried out on
a desktop computer with an i7 3.4 GHz quad-core CPU and 8
GB RAM.

A. Synthetic Data Simulations

In this subsection, we generate the non-negative loading fac-
tors of three-way tensors following the exponential distribution
with . The outlier elements are uniformly distributed
within zero and one, and then are scaled to satisfy the specified
simulation conditions (see below). To quantify the corruption
level, we define the signal-to-outlier ratio (SOR) as

2To be specific, , for some , can be considered
as a compressed tensor which has only slabs, whereas the original tensor has
slabs. If , the compressed tensor has many fewer slabs.

TABLE I
THE AVERAGE MSES OF THE ESTIMATED AND BY THE ALGORITHMS

UNDER VARIOUS SORS; ;

To benchmark our algorithm, we employ TALS for
PARAFAC fitting (i.e., Problem (4)) and the -norm fitting
based PARAFAC ( PARAFAC) [16] with the alternating
weighted median filtering realization. We fix
throughout this section; our experience is that that the results
obtained for different are qualitatively similar
to those obtained for . IRALS is stopped when the
absolute change of the objective value is less than or the
number of iterations reaches 1000. For IRALS with constraints,
we stop the ADMM algorithms for the subproblems when

following the guidelines
in [19]. IRALS and IRALS with constraints are initialized by
plain TALS in this subsection.
Table I shows the averagemean-squared-errors (MSEs) of the

estimated and by the algorithms under various SORs; the
runtime performance is also presented in this table. The MSE of
the estimated is defined as

where is the set of all permutations of , and
and are the ground truth of the th column of

and the corresponding estimate, respectively; the same def-
inition of MSE holds for . We see that for , IRALS
and IRALSwith non-negativity constraints (denoted by ‘IRALS
w./nn’) both exhibit much lower MSEs compared to TALS and
PARAFAC. When , IRALS with non-negativity con-

straints gives the best MSE performance in general. In terms
of runtime, the unconstrained IRALS and the IRALS with non-
negativity constraints are both faster than PARAFAC. No-
tably, unconstrained IRALS is more than 50 times faster than
PARAFAC in the presented simulations in this table.
Table II shows the MSEs and runtimes versus the number of

outlying slabs. In many cases of this simulation, PARAFAC
could not yield a reasonable result, and thus it was removed
from the comparison. For the other three algorithms, we see
that IRALS and IRALS with non-negativity constraints can
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TABLE II
THE AVERAGE MSES OF THE ESTIMATED AND BY THE ALGORITHMS
VERSUS THE NUMBER OF OUTLYING SLABS; ;

;

Fig. 3. The convergence curves of the objective value when applying IRALS
with different initializations and constraints.

yield reasonable estimation of the loading factors even when
the number of outlying slabs exceeds a half of the total number
of slabs, but TALS gives very poor estimation in this case.
Fig. 3 presents the objective values of (13) against the iter-

ations when applying IRALS and IRALS with nonnegativity
constraints with different initializations. This simulation is
under the settings , , and .
Each curve is averaged from 100 trials. We see that, when
using random initialization, the cost function of IRALS with
nonnegativity constraints on the loading factors converges
much faster than that of IRALS with no constraints. In addition,
using the output of TALS helps the cost functions of both
algorithms converge faster. Specifically, under such an initial-
ization scheme, the objective values given by the algorithms
both converge within 100 iterations.

B. Blind Speech Separation

In this subsection, we revisit the blind speech separation
problem that has been mentioned in Section III. We first show a
simulation using instantaneously mixed speech sources, where
the mixtures follow the signal model in (6). The sources are
randomly picked from a database that consists of 23 speech
segments; each source has a length of 3 second, and is sampled
at a rate of 16 KHz. We use sensors and sources,
which poses a challenging under-determined blind separation
problem. Each time frame consists of 200 samples—this results
in time frames (slabs). Spatially and temporally
white Gaussian noise is added to the received signals. Each
local covariance of the received signals (i.e., each slab of the

Fig. 4. The MSEs of the estimated mixing systems obtained by SOBIUM and
the proposed algorithm under various SNRs.

PARAFAC model) is calculated using the local sample mean
of , and the noise variance is estimated by

where denotes the smallest eigenvalue of . The es-
timated noise variance is then removed from the data; see [10],
[11] for details. The mixing system estimation problem can be
formulated as

and we apply IRALS to the above by treating as
. In this subsection, we use the Khatri-Rao sub-

space-based initialization as mentioned in Section VI-B, since
the number of slabs ( in this case) is large.
Fig. 4 shows the average MSEs of the estimated mixing

system obtained by several algorithms; the result is averaged
from 100 independent trials. The benchmarked PARAFAC
algorithm is SOBIUM [22], which is known as a state-of-the-art
blind source separation algorithm for the under-determined case
(i.e., ). We see that the proposed algorithm consistently
yields around 15 dB lower MSE than that of SOBIUM, which
is a significant performance boost. This phenomenon verifies
the existence of (significant) modeling error at some slabs, and
also shows the effectiveness of our proposed algorithm.
We also consider the convolutive mixture case, in which the

signal model can be represented as

where and are defined as before, and denotes
the mixing system impulse response at time lag . The con-
volutive mixture model is more realistic, since it captures the
multi-path reverberation characteristics of real acoustic envi-
ronments; but is also far more challenging to deal with, com-
pared to the instantaneous mixture case. We build up the con-
volutive mixtures by setting up a simulated room with mul-
tiple paths between the speakers and receivers following the
image method [46]. To separate the sources, we follow the fre-
quency-domain approach [6], [7]—the basic idea is to trans-
form the mixtures to the frequency domain, where the per-fre-
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Fig. 5. The SIRs obtained by applying SOBIUM and the proposed algorithm
to convolutive mixtures under various ’s.

quency (bin) mixtures follow an approximately instantaneous
mixing model. Thus, PARAFAC algorithms can be applied at
each frequency to obtain the source components at that fre-
quency, and the time-domain sources can be obtained subse-
quently using certain post-processing steps, the most critical
of which are permutation and scaling alignment across the dif-
ferent frequency bins. We measure the quality of the unmixed
speech signals using the signal-to-interference ratio (SIR) cri-
terion as in [6], [7]; higher SIR means better separation per-
formance. Fig. 5 shows the results of using sensors to
separate sources; the result is also averaged from 100
trials with randomly picked sources. We see that, under dif-
ferent reverberation conditions for the simulated room (a larger

means a more severe multipath effect, thereby a more chal-
lenging environment for speech separation), the proposed algo-
rithm consistently outperforms SOBIUM by around 2 dB.
C. Fluorescence Data Analysis
In this subsection, we deal with a real fluorescence EEM

data set—the Dorrit data that is available online at http://www.
models.life.ku.dk/dorrit. Our working data set has 116 spectral
emissions, 18 excitations, and 27 samples, which is a tensor with

, and . The Dorrit data set is known for
containing some badly contaminated slabs, even after pre-pro-
cessed by some automatic scattering removal algorithm [47],
and there are also some relatively clean samples in this data set;
see Fig. 6. We formulate the problem of estimating the spectral
emissions and excitations as

where is defined in (16) with appropriate dimensions. We
add smoothness regularization on and since we know that
the emission and the excitation spectra are smooth in practice;
also, non-negativity constraints are added to all three loading
factors. We should point out that adding is important;
otherwise, the scaling of and can be ‘absorbed’ by , and
the smoothness regularization (or, any other scaling-sensitive
regularization) may not work.

Fig. 6. An outlying slab (left) and a relatively clean slab (right) of the Dorrit
data.

Fig. 7. The estimated emission and excitation curves obtained using the pro-
posed algorithm, as well as nonnegativity-constrained and PARAFAC fit-
ting.

In this experiment, we set and and
. Here, we use the and PARAFAC algorithms with

nonnegativity constraints as benchmarks, which are both im-
plemented in the -way toolbox [48] (available at http://www.
models.life.ku.dk/source/nwaytoolbox/). The result of the non-
negativity-constrained PARAFAC algorithm is used to ini-
tialize the proposed algorithm. The estimated and by the
algorithms are shown in Fig. 7. We also provide the emission
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Fig. 8. The normalized weights of the samples obtained via IRALS.

and excitation spectra obtained from certain ‘pure samples’ con-
taining only a single compound. These pure samples are known
from prior studies with this particular dataset, and thus the re-
covered spectra are believed to be close to the ground truth—see
the row tagged as ‘from pure samples’ in Fig. 7. We see that
the spectra estimated by the proposed algorithm are visually
very similar to those measured from the pure samples. However,
both of the nonnegativity-constrained and PARAFAC al-
gorithms yield clearly worse results—for both of them, an esti-
mated emission spectrum and an estimated excitation spectrum
are highly inconsistent with the results measured from the pure
samples. It is also interesting to observe the weights of the slabs
given by the proposed algorithm in Fig. 8. One can see that
the algorithm automatically fully downweights slab 5, which
is consistent with our observation (consistent with domain ex-
pert knowledge) that slab 5 is an extreme outlying sample (cf.
Fig. 6). This verifies the effectiveness of our algorithm for joint
slab selection and model fitting.

D. ENRON E-mail Data Mining
In this subsection, we apply the proposed algorithm on the

celebrated ENRON E-mail corpus. This data set contains the
e-mail communications between 184 persons within 44 months.
Specifically, denotes the number of e-mails sent by
person to person within month . Many studies have been
done for mining the social groups out of this data set [26], [27],
[49]. In particular, [27] applied a sparsity-regularized and non-
negativity-constrained PARAFAC algorithm on this data set,
and some interesting (and interpretable) results have been ob-
tained. In particular, the significant non-zero elements of
usually correspond to persons with similar ‘social’ positions
such as lawyers or executives.
Here, we also aim at mining the social groups out of the

ENRON data, while taking data for ‘outlying months’ into con-
sideration. It is well known that the ENRON company went
through a criminal investigation and finally filed for bankruptcy.
Hence, one may conjecture that the e-mail interaction patterns
between the social groupsmight be irregular during the outbreak
of the crisis. We fit the data using the following formulation:

where is a function that promotes sparsity following
the insight in [27]; and are added to avoid
scaling/counter-scaling issues, as in the previous example.
Notice that here we use an aggressive sparsity promoting

function from [41], which itself cannot be put in closed
form—notwithstanding, the proximal operator of can
be written in closed-form, and thus is easy to incorporate into
our ADMM framework. We fit the ENRON data with
as in [27], and set , . The
same pre-processing as in [27], [49] is applied to the non-zero
data to compress the dynamic range; i.e., all the non-zero raw
data elements are transformed by an element-wise mapping

. As in the last subsection, the proposed
algorithm is initialized by the nonnegativity-constrained
PARAFAC algorithm.
Table III shows the five social groups mined from the data,

corresponding to the non-zero elements in the five columns of
. We see that these five groups are quite clean, covering 73

(‘important’) persons out of 184 in total. More interestingly, the
algorithm automatically downweights the slabs corresponding
to the period when the company was having a crisis—see Fig. 9.
This verifies our guess: The interaction pattern during this par-
ticular period is not regular, and downweighting these slabs can
give us more clean social groups.

VIII. CONCLUSION
In this work, we considered the problem of low-rank tensor

decomposition in the presence of outlying slabs. Several prac-
tical motivating applications have been introduced. A conju-
gate augmented optimization framework has been proposed to
deal with the formulated minimization-based factorization
problem. The proposed algorithm features similar complexity as
the classic TALS algorithm that is not robust to outlying slabs.
Regularized and constrained optimization has also been con-
sidered by employing an ADMM update scheme. Simulations
using synthetic data and experiments using real data have shown
that the proposed approach is promising in different pertinent
applications such as blind speech separation, fluorescence data
spectroscopy, and social network mining.

APPENDIX

A. Proof of Claim 1
Consider a feasible solution , where

, , and . Consequently, it
can be seen that for all we have

Hence, the optimal value of the cost function satisfies

Now, we show that there is no other solution that leads to a
smaller objective value. Suppose that there exists an index set

such that (some of) the slabs indexed by con-
stitute a PARAFAC model whose loading matrices do not con-
tain or . We show that . In fact, if ,
then, with probability one, the slabs that belong to can only
be decomposed using , and with a common column
permutation and scaling. The reason is as follows. By the as-
sumption that is drawn from some absolutely continuous dis-
tribution, we see that
holds with probability one, and thus

holds almost surely. Hence, by the
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TABLE III
MINING THE ENRON E-MAIL CORPUS USING THE PROPOSED ALGORITHM

Fig. 9. The normalized weights obtained by the proposed algorithm when ap-
plied on the ENRON e-mail data.

uniqueness condition mentioned in (3), the PARAFAC decom-
position of is essentially unique with probability one.
Thus, it can be seen that if the solution to Problem (8) does not
satisfy , and , we must have

where we have used the fact that .
It remains to show that . In fact,

given that the optimal solution satisfies , and
, the optimal should be able to make

(20)

for as many as possible ’s. For , we conclude
. The reason, again, lies in the uniqueness

result in (3): Since , we have
with probability one, since is drawn from an absolutely

continuous distribution over . Hence,
holds with probability one. Consequently, the

PARAFAC decomposition of is essentially unique.
This implies .

B. Proof of Claim 2

To relate the stationary points of Problem (13) to the sta-
tionary points of Problem (10), let us denote the cost func-
tions of Problem (10) and Problem (13) as and

, respectively. We see that

Let us consider as a stationary point of
Problem (13). Following Lemma 1, a direct observation is that

(21)

since has a unique stationary point w.r.t.
on the interior of the nonnegative orthant, which is

the optimal solution w.r.t. . Hence, one can see that
is also a stationary point of . In fact,

taking as an example, we see that, following (21),

which implies that is also a stationary point of Problem (10).
The same proof applies to and .

C. ADMM Updates w.r.t. and

Now, let us consider the update of :

(22)
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By applying the same structure of ADMM, we come up with

(23a)

(23b)

(23c)

(23d)
(23e)

The update w.r.t. is even simpler:

(24a)

(24b)

(24c)

(24d)
(24e)
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