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Fast Unit-Modulus Least Squares with Applications
in Beamforming
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Abstract—Unit-modulus least squares (ULS) problems arise
in many applications, including phase-only beamforming, sensor
network localization, synchronization, phase retrieval and radar
code design. ULS formulations can always be recast as unit-
modulus quadratic programs (UQPs), to which semi-definite
relaxation (SDR) can be applied, and is often the state-of-the-
art approach. However, SDR lifts the problem dimension (i.e.,
the number of variables) from N to N2, which drastically
increases the memory burden and computational cost when the
problem size is already large – e.g., when designing phase-
only beamformer weights for massive multiple-input-multiple-
output (MIMO) systems. This work focuses on scalable first-
order algorithms for the ULS problem and some of its variants.
It advocates using simple gradient projection (GP) as a starting
point for solving the ULS problem, establishes global convergence
of GP to a Karush-Kuhn-Tucker (KKT) point for this NP-hard
problem, and bounds its iteration complexity. Then it proposes
ULS extensions tailored to reflect practical beamformer design
objectives, bringing in and exploiting new degrees of freedom
to improve the beampattern designs. Simple variants of GP are
proposed to deal with these extended ULS problems. Simulations
are used to showcase the effectiveness of the proposed algorithms
in both the plain ULS problem and in the context of phase-only
beamforming.

Index Terms—Unit-modulus least squares, unit-modulus
quadratic programming, MaxCut, constant modulus beamform-
ing, per-antenna power constraint, massive MIMO.

I. INTRODUCTION

Unit-modulus least squares (ULS) optimization problems
have many contemporary engineering applications. Signal
processing applications of ULS include sensor network lo-
calization [2], phase retrieval [3, 4], and radar code design
[5–7]. Phase-only beamforming restrains the power of each
antenna to be a constant and uses the phases of the weights
associated with the antenna elements to form the desired
beampattern. Designing such beamformers can also be posed
as a ULS problem. Phase-only arrays have gained renewed
attention recently [8–11]; the driving force behind this resur-
gence is potential uses in massive multiple-input-multiple-
output (MIMO) systems, where it is costly and impractical to
employ a separate power amplifier for each antenna, and there
is a need to control the peak-to-average power ratio (PAPR)
as well.
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Although the ULS/UQP problem is non-convex and NP-
hard in its general form [12] due to the unit-modulus con-
straints, it is also a special case of non-convex quadrati-
cally constrained quadratic programming (QCQP), to which
a popular relaxation technique known as semi-definite (rank)
relaxation (SDR) [13] can be readily applied. When SDR
returns a rank-one solution, this is optimal for the original
problem as well. When SDR returns a higher-rank solution,
many approaches can be used to obtain a feasible solution to
the ULS problem, e.g., randomization [13].

Although SDR has been successively applied to a large
variety of applications, a major drawback is that it is not
well-suited for large-scale problems. If the original ULS/UQP
problem has N optimization variables, SDR requires lifting
the problem to N2 dimensions. As a result, the resulting
computational complexity is O(N7) flops if a general-purpose
interior-point solver is used. Additionally, this approach is
quite inefficient in terms of memory usage. Storage of N2

variables may be impractical and costly when N is large. On
the practitioner’s side, many modern applications of ULS/UQP
do have a large number of variables and require scalable
optimization methods in terms of both computational resources
and memory. For example, MIMO communication systems
have been of interest for over 15 years, due to the performance
improvements that they enable. Arrays with multiple antennas
enable higher data rates, as well as longer reach and improved
link reliability [14, 15]. At present, massive MIMO systems
promise to play a major role in the evolution toward fifth-
generation (5G) wireless technology. One of the emerging
5-G paradigms envisions equipping each base station with
many more antennas than the number of active users in its
service cell [16]. Applications such as radar code design may
likewise entail very high-dimensional optimization, especially
in high-resolution scenarios with many antennas. Because of
the high-dimensional nature of these problems, many of the
previously developed approximation methods like SDR be-
come impractical. Therefore, there is substantial motivation to
find more memory-efficient and computationally advantageous
alternatives for dealing with the ULS problem.

Our work is motivated by the problem of phase-only beam-
former design for massive MIMO systems, where computa-
tionally heavy algorithms like SDR are no longer practical
due to their high computational and memory costs. A de-
sired spatial beampattern is typically synthesized by appro-
priately picking the modulus and phase of each element of
the complex-valued beamforming vector. This corresponds to
using a separate phase shifter and power amplifier for each
antenna, which is costly. In many applications, especially
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those involving ‘massive’ antenna arrays and/or small form-
factor / low power mobile devices, it is preferable to use
a single power amplifier for all antennas, and rely on per-
antenna phase shifters to steer the beam in the direction(s) of
interest. This gives rise to a constant-modulus constraint on
the beamforming vector. Several algorithms have been pro-
posed for phase-only beamforming, such as phase perturbation
methods [17, 18]. Thompson [5] utilized a gradient-search
method (with an explicit angle parametrization of the unit-
modulus constraint) for adaptively adjusting the phase shifters.
Smith [19] proposed a combination of conjugate gradient and
Newton algorithms for phase-only adaptive nulling, where op-
timization is performed over the N -dimensional unit-modulus
torus (with an angle paramaterization of the unit-modulus
constraint). The conjugate gradient algorithm is employed
to first approach the solution, followed by multiple Newton
refinements. The algorithm requires calculation and inversion
of the Hessian matrix at every iteration, and thus is not ideal
for large-scale problems. Choi and Sarkar [20] devised a direct
data domain least squares algorithm, which adaptively adjusts
the phase weights from snapshots of complex voltages at each
antenna element via a conjugate gradient algorithm (also with
an angle parametrization).

A common denominator of early approaches is that they
employ an explicit angle parametrization of the unit-modulus
constraint that enables classic unconstrained optimization
methods such as gradient descent to be applied to this non-
convex and (NP-)hard problem. SDR [13] is a much more
advanced approach for this type of problem, and often exhibits
superior performance in practice. A closely related phase-only
beamforming formulation employing a linearly constrained
minimum variance (LCMV) criterion has been considered in
Lu et al. [6], who proposed to apply SDR as its approximation.

Motivated by applications in unit-modulus (constant-
envelope) radar code design, Soltanalian and Stoica [7]
proposed a monotonically error-bound improving technique
(MERIT), as well as a power method-like iteration for UQP
optimization problems. MERIT is comparatively complex, but
it provides a sub-optimality guarantee that is sometimes tighter
than that provided by SDR. The power-like iteration in [7]
can be used to improve any initial estimate at a relatively low
(second-order) cost, but the ultimate result depends a lot on
initialization.
Contributions: In this paper, we propose several low-
complexity first-order algorithms for ULS/UQP and certain
extended ULS/UQP problems that arise in beamforming. We
begin with the classical ULS problem and propose to employ
a simple gradient projection (GP) algorithm to handle it when
the problem size is large. The motivation is twofold:
• First-order methods are well-suited for large-scale prob-

lems since they avoid computing the Hessian and its
inverse in each iteration, and thus have much lower per-
iteration complexity relative to interior-point methods.
They also do not lift the problem dimension as SDR does,
and thus a lot of memory and computational resources can
be saved. Gradient-based methods can also exploit signal
and data sparsity, which is critical when dealing with big
problems.

• Projection to the unit-modulus manifold is easy – this
operation can be expressed in closed form and requires
almost negligible computational cost.

On the other hand, applying GP to nonconvex constraints
may seem naive – there is no guarantee of decreasing the
cost, and one may even risk divergence. Despite these ap-
parent difficulties, using some nice properties of the ULS
cost function such as Lipschitz continuity of its gradient, we
show that the solution sequence of the proposed algorithm
globally converges to a Karush-Kuhn-Tucker (KKT) point of
the original NP-hard problem. Here, global convergence refers
to convergence of the whole solution sequence produced by an
iterative algorithm, as opposed to convergence of subsequences
of the solution iterates. Subsequence convergence results (e.g.,
every limit point is a KKT point) are more often encountered
in the literature, however these are weaker compared to global
converegence. In addition, we carefully analyze the iteration
complexity of getting to a KKT point using the proposed GP
algorithm. Our analysis shows that a metric that measures the
optimality gap between the current iterate and a KKT point
shrinks to at most O(1/T ) after T iterations.

Our second contribution lies in algorithms that are tailored
for phase-only array beamforming for massive MIMO sys-
tems. We consider a scenario where a unit-modulus complex
weight vector should be designed for a large number of
antennas such that a pre-specified transmit beampattern (e.g.,
“pencil” beams or sector beams) is synthesized. The weights
are constrained to have the same modulus since a common
power amplifier is used to drive all transmit antennas, and
one relies only on antenna phase shifters to realize the desired
spatial beampattern. Rather than sticking to plain ULS, more
appropriate application-specific formulations are introduced
that take into account additional degrees of freedom in global
scaling and the spatial phase response, which yield enhanced
performance in terms of beampattern synthesis accuracy. Fol-
lowing the insight of GP for ULS, alternating optimization
algorithms that iterate between updating the antenna weights
and the scaling and phase response factors are proposed. The
update of the weight vector is a simple GP step, as for
plain ULS; the subproblem with respect to the other variables
can be solved to optimality. Convergence properties of these
algorithms are also discussed. We exemplify the comparative
advantages of these first-order methods (both in terms of
cost minimization and runtime complexity) relative to existing
popular approaches such as SDR and MERIT.

An earlier conference version of part of this work appears in
[1]. Relative to [1], this journal version includes more mature
convergence analysis (global convergence, iteration complex-
ity) that is also more broadly applicable; proofs (which were
entirely missing from [1]); and a comprehensive suite of
experiments.
Notation We use X, x and x to denote a matrix, a vector,
and a scalar, respectively; H , ∗ and T are used to denote
Hermitian, conjugate and transpose operators, respectively;
λmax(X) denotes the largest eigenvalue of X; −1 and †

denotes the inverse and pseudo-inverse operator, respectively;
x ~ y is the element-wise (Hadamard) product of x and y;
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Diag(x) is a diagonal matrix that holds the elements of x to
be the diagonal elements.

II. MOTIVATION, PROBLEM STATEMENT AND PRIOR ART

A. Motivation and Problem Formulation

In receive beamforming, complex-valued weights are ap-
plied to the signals coming from the different antennas before
combining them, to create a desired spatial beampattern that
enhances signals from specified directions of interest and
attenuates those from other directions. In transmit beamform-
ing, a common information-bearing signal is fed to multiple
antennas, using a different complex weight (corresponding
to separate power amplification and carrier phase shift) per
antenna. Transmit beamforming can be unicast (pointing to a
single receiver of interest) or multicast (pointing to multiple
receivers, interested in a common information stream). In both
cases, the objective is to steer power in the direction(s) of
interest while mitigating interference to other users within
transmission range. Although many classical beamforming
scenarios apply both magnitude and phase weighting to the
antenna elements, there are many advantages to phase-only
beamforming [6, 21, 22], especially for massive MIMO sys-
tems where phase-only beamforming is important from a
hardware complexity, cost, and form factor (size/weight) point
of view, as it does not require a separate power amplifier
for each up/down conversion chain, it can alleviate peak-to-
average power ratio (PAPR) problems, and improve energy-
efficiency [8–11].

For simplicity, let us consider a uniform linear array (ULA)
comprising N antennas with equidistant spacing (λ/2, where
λ is the wavelength of the carrier frequency) (our formulation
can handle any beamforming scenario with a known array
manifold). Let θ denote an M × 1 vector representing a
discretization of the angle space, i.e.,

θ =

[
0,

2π

M
,

4π

M
, . . . ,

2(M − 1)π

M

]
. (1)

In a ULA scenario, the N × 1 steering vectors have Vander-
monde structure a(θi) = [1, e−jθi , e−j2θi , . . . , e−j(N−1)θi ]T .
We can then construct our design matrix A =
[a(θ1), . . . ,a(θM )]H , and formulate the following ULS
optimization problem

min
w∈CN

‖y −Aw‖22 (2)

subject to |wi|2 = 1, i = 1, . . . , N,

where wi is the i-th element of the beamforming weight vector
w, and y denotes our desired target response (see section III-B
for details regarding the choice of y). Figures 1 and 2 illustrate
an example multicast beampattern aimed towards two users in
the directions {−20o,+20o}; note that the geometry of the
ULA scenario will result in symmetry about the axis defined
by the ULA.

In this work, we begin by considering Problem (2), moti-
vated by phase-only beamformer design for arrays comprising
many antennas. Problem (2) has numerous other applica-
tions, so our results are of broader interest; but phase-only
beamforming is fertile ground for pertinent extensions as
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Fig. 1: Polar beam pattern example, M = 360, N = 16 for
angles {−20o,+20o}
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Fig. 2: |aH(θi)w|2 for M = 360, N = 16 for angles
{−20o,+20o}

well. We propose two custom formulations that take into
account additional degrees of freedom in global scaling and
the spatial phase response, resulting in better beampattern
synthesis accuracy.

B. Prior Art: Semidefinite Relaxation and Others

It is well-known that the ULS problem in (2) can be
transformed to the following UQP [13]

min
w̄∈CN+1

w̄HRw̄ (3)

subject to |w̄i|2 = 1, i = 1, . . . , N + 1,

where

R :=

[
AHA −AHy
−yHA yHy

]
, w̄ :=

[
w
t

]
. (4)

Conversely, UQP can likewise be expressed as ULS if R is
positive semidefinite. To see this, consider the square root de-
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composition of a positive semidefinite matrix R = RH/2R1/2

and the following partitioning:

R1/2 = [A,−y].

Consequently, we have

w̄HRw̄ =
[
wHe−jθ e−jθ

] [ AHA −AHy
−yHA ‖y‖22

] [
wejθ

ejθ

]
=wHAHAw − yHAw −wHAHy + ‖y‖22. (5)

Even if R is not positive semidefinite, it is easy to see that,
owing to the unit-modulus constraint, one can add diagonal
loading to make it positive semidefinite, without changing the
problem.

To deal with UQP, the most popular approach is arguably
semidefinite relaxation (SDR) [13]. Consider the UQP problem

min
w∈CN

wHRw (6)

subject to |wi|2 = 1, i = 1, . . . , N.

Writing wHRw = Trace(wHRw) = Trace(RwwH), we
can define a matrix W := wwH and equivalently write (6)
as

min
W

Trace(RW) (7)

subject to Wii = 1, i = 1, . . . , N

W = wwH .

The constraint W = wwH is equivalent to W � 0 (positive
semi-definite) and rank(W) = 1. The rank(W) = 1 constraint
is non-convex; dropping it yields a relaxation form that is
convex. However, the optimal Wo of the relaxed problem will
(in general) not be rank one. To extract a feasible solution of
(6) from Wo, one can follow the randomization procedure in
[23].

SDR has been very successful in dealing with nonconvex
QCQP problems including UQP. However, in the era of mas-
sive antenna arrays, implementing SDR is challenging. First,
SDR lifts the problem dimension to N2, which means that
a general-purpose interior point method needs O(N7) flops
and O(N2) memory to solve the corresponding SDP. These
demands make SDR unappealing for applications like massive
MIMO systems – although there are faster solvers for special
SDP problems like (7) [24], their flop count is still heavy, and
the memory cost cannot be reduced. In the following sections,
we will propose algorithms that do not lift the problem
dimension and only use first-order information for handling
the ULS/UQP problem. Consequently, the computational and
memory burdens are substantially alleviated.

Before moving on, we note that earlier work on phase-
only beamforming [5, 19] considered an explicit wi = ejθi

parametrization of the unit modulus constraint, and proposed
using unconstrained derivative-based methods, such as gra-
dient descent and Newton’s method to address the resulting
optimization problem. Algorithms in this genre are generally
simpler than SDR. However, such explicit parametrization
changes the cost function from a nice convex quadratic to
a non-convex one, and does not seem to work well in our
experience.

III. PROPOSED ALGORITHMS

A. Gradient Projection (GP)

Different from earlier attempts, we propose keeping the
unit-modulus constraint and using projected gradient descent
(or, gradient projection (GP)) instead of unconstrained gradient
descent. The details are provided in Algorithm 1.

Algorithm 1 Gradient Projection

1: Initialization: Set k = 0, α = β
λmax(AHA)

, β ∈ (0, 1),

w(0) = ej∠(A†y)

2: Repeat
3: ζ(r+1) = w(r) + αAH

(
y −Aw(r)

)
; (Gradient)

4: w(r+1) = ej∠(ζ(r+1)); (Projection)
5: r = r + 1;
6: until convergence

Algorithm 1 is nothing but a GP algorithm – what is
special is that the projection step involves a non-convex set
– the element-wise unit modulus constraint, in particular. In
Algorithm 1, α is the step size along the opposite direction of
the gradient. The motivation of Algorithm 1 is simple: gradient
descent has the advantage of scalability, and is able to exploit
data (i.e., A and y) sparsity. In addition, it is much more
memory-efficient relative to SDR. These traits are well-suited
for large-scale problems. In addition, projection onto a unit
modulus constraint admits a closed-form solution (cf. line 4 in
Algorithm 1), and the entire procedure can be carried out very
efficiently. On the other hand, the concern is that projection
onto a non-convex set may in fact increase the cost value, and
thus tends to be problematic in terms of optimization.

We wish to show that the solution sequence of w(r) con-
verges to a KKT point. To that end, let us consider a real-
valued parametrization of the ULS problem [13], i.e.,

ỹ =

[
Re{y}
Im{y}

]
, w̃ =

[
Re{w}
Im{w}

]
, Ã =

[
Re{A} −Im{A}
Im{A} Re{A}

]
,

leading to

min
w̃∈R2N

(1/2)
∥∥∥ỹ − Ãw̃

∥∥∥2

2

subject to w̃2
n + w̃2

N+n = 1, n = 1, . . . , N.

(8)

Note that Problems (2) and (8) are equivalent, and applying
GP to Problem (8) results in exactly the same algorithm as
in Algorithm 1. Therefore, in the following, we will analyze
convergence of GP applied to Problem (8) for notational
simplicity. The KKT conditions of Problem (2) are

ÃT Ãw̃ − ÃT ỹ + 2λ~ w̃ = 0, (9a)

w̃2
n + w̃2

N+n = 1, n = 1, . . . , N, (9b)

where λ ∈ R2N is a Lagrangian multiplier. Let us define

Q(w̃(r+1), w̃(r),λ(r+1)) =‖ÃT Ãw̃(r) − Ãy

+ 2λ(r+1) ~ w̃(r+1)‖22.

We first show that
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Lemma 1: Assume that A and y are bounded. Then,
Q(w̃(r+1), w̃(r),λ(r+1)) → 0 implies that w̃(r) approaches
a KKT point of Problem (8).
The proof can be found in Appendix A. According to
Lemma 1, the speed of Q(w̃(r+1), w̃(r),λ(r+1)) approaching
zero can be used as a measure of the iteration complexity.
Based on this observation, we provide the following theorem:

Theorem 1: Assume that α < 1/L, where L =
λmax(ÃT Ã). Then, Algorithm 1 has the following conver-
gence properties:

a) (Global Convergence) The whole solution sequence
{w̃(r)} converges to a set K which consists of all the
KKT points of Problem (8).

b) (Iteration Complexity) Assume that ε > 0 is some small
number, and T is the number of iterations that are needed
for Q(w̃(r+1), w̃(r),λ(r+1)) ≤ ε to hold for the first time.
Then, there exists a constant v such that

ε ≤ v

T − 1
;

that is, the algorithm converges to a KKT point at least
sublinearly.

The proof can be found in Appendix B. Theorem 1 assures
that the solution sequence converges to a meaningful point.
In the proof, one can see that when α < 1/L, GP in fact
reduces the objective at each iteration, which is another desired
property in practice. More interestingly, the b) part gives a
time complexity bound for GP to shrink the gap between
the current iterate to a KKT point – it shows that for a
certain measurement of the gap (i.e., the Q-function in Lemma
1) to reach ε, the number of iterations needed is at most
O(1/ε). We should mention that this bound is based on worst-
case analysis and the algorithm may perform much faster
in practice. We also note that the convergence of GP-like
methods for manifold-constrained QP was also considered in
[25–27], where specific QP problems, e.g., sparse principal
component analysis, were considered. The insights of the
convergence proofs in [25–27] can be modified to show part
a) of Theorem 1. Our new proof of part a), however, takes a
successive upper bound minimization viewpoint, and thus can
potentially cover many more applications and more general
majorization minimization algorithms than GP.

B. Auto-scaling formulation
Algorithm 1 is simple and effective in addressing general

ULS/UQP problems, as we will show in Sec. IV. However,
in the beamformer design problem, there is a subtle factor
that greatly affects the performance, namely, the scaling of y.
Consider the following choice of y for receive beamformer
design:

yi =

{
1 if i ∈ J ,
0 otherwise,

(10)

where J denotes the set containing the indices i corresponding
to the direction(s) of interest in θ. The y in (10) specifies the
beampattern that we want to produce. However, note that

|aH(θi)w| = |
N∑
j=1

a∗j (θi)wj | ≤
N∑
j=1

|a∗j (θi)wj | = N, (11)

and, from the Cauchy-Schwarz inequality, the maximum is
achieved if and only if w = ejεa(θi). Thus there is an upper
bound on the array gain in any direction, and if we ask for
the highest possible gain in one direction we completely lose
all degrees of freedom to shape the beampattern in other
directions. In practice, it is more common that multiple angles
are of interest, and the ‘optimal scaling’ of y is unclear under
such circumstances. In general, what we often desire is a good
relative beampattern that concentrates power in the directions
of interest; to that end, we can introduce an additional scaling
variable s ∈ C to obtain

min
w∈CN ,s∈C

‖y − sAw‖22 (12)

subject to |wi|2 = 1, i = 1, . . . , N.

Variable s can be regarded as an ‘automatic normalization’
factor, which addresses the aforementioned scaling issue. Note
that, by separability, we may compute and substitute the
optimal s as a function of w:

sopt =
wHAHy

‖Aw‖2
, (13)

Using (13), we can ‘embed’ the tuning of s in each
iteration of Algorithm 1, leading to Algorithm 2. This modified
algorithm is an instance of alternating optimization (AO) with
respect to (w.r.t.) w and s. For the subproblem w.r.t. w, we
solve it inexactly by taking a projected gradient step. Since
s can be easily computed, Algorithm 2 has only a marginal
complexity increase relative to Algorithm 1, but can better
address the scaling issue in beampattern design.

Algorithm 2

1: Initialization: Set k = 0, β ∈ (0, 1), w(0) = ej∠(A†y)

2: Repeat
3: s(r+1) = (w(r))HAHy/‖Aw(r)‖22
4: α(r+1) = β/λmax(|s(r+1)|2AHA)
5: ζ(r+1) = w(r) +α(r+1)(s(r+1))∗AH(y−s(r+1)Aw(r));
6: w(r+1) = ej∠(ζ(r+1));
7: k = k + 1
8: until convergence

It is interesting to investigate the convergence properties of
Algorithm 2. This algorithm can be considered as an inexact
alternating optimization approach; i.e., we alternate between
solving subproblems with respect to s and w, while fixing
the other variable. During the updates, the subproblem with
respect to s is optimally solved, while the subproblem with
respect to w is not solved to optimality at each iteration
– we only update w using a single iteration of gradient
projection, for efficiency. Fortunately, this type of two-block
inexact alternating optimization can be shown to converge to
a KKT point. Specifically, we show that

Proposition 1: (Global Convergence) Assume that α(r) <
1/λmax(|s(r)|2AHA) for all r. Then, the whole solution
sequence produced by Algorithm 2 converges to a set K which
consists of all the KKT points of Problem (12).
The proof of Proposition 1 is relegated to Appendix C. The
insight of the proof is to treat the optimization procedure as
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alternating upper bound minimization, and use the continuity
of the cost functions to establish asymptotic convergence.

C. Additional degrees of freedom in transmit beamforming

At this point it is worth highlighting an important difference
between transmit and receive beamforming. In the receive
beamforming scenario, we may be required to control the
phase response as a function of θ, e.g., for phase coherence
or constructive combining of specular multipath components.
In transmit (including multicast) beamforming, however, it is
sufficient to specify a desired magnitude for each direction or
general channel vector of interest, as the receiver will have
to perform any necessary phase estimation/correction anyway,
due to local oscillator phase mismatch. We can mathematically
model this situation by considering the modified optimization
problem

min
w∈CN ,θ∈RM ,s∈C

‖y ~ ejθ − sAw‖22 (14)

subject to |wi| = 1, i = 1, . . . , N,

where θ represents the additional degrees of (phase response)
freedom. Let u = ejθ; we can equivalently express (14) as

min
w∈CN ,u∈CM ,s∈C

‖Yu− sAw‖22 (15)

subject to |wi|2 = 1, i = 1, . . . , N,

|ui|2 = 1, i = 1, . . . ,M,

where Y = Diag(y). Performing alternating optimization on
w, u and s (projecting w and u onto the unit-modulus space
after each iteration), we obtain the following algorithm:

Algorithm 3

1: Initialization: Set k = 0, obtain initial w(0) from Al-
gorithm 2, initialize u(0) = ξ(0) = 1, β ∈ (0, 1),
α2 = β/λmax(YHY)

2: Let J = {i : yi 6= 0}, Y = Diag(y), Ỹ = Diag(y(J ))
3: Repeat
4: s(r+1) = (w(r))HAHYu(r)/‖Aw(r)‖22
5: α

(r+1)
1 = β/λmax(|s(r+1)|2AHA)

6: ζ(r+1) = w(r) + α
(r+1)
1 (s(r+1))∗AH(Yu(r) −

s(r+1)Aw(r));
7: w(r+1) = ej∠(ζ(r+1));
8: ξ(r+1) = ξ(r);
9: ξ(r+1)(J ) = u(r)(J ) − α2Ỹ

H(Ỹu(r)(J ) −
s(r+1)A(J , :)w(r+1));

10: u(r+1) = ej∠(ξ(r+1));
11: k = k + 1
12: until convergence

Note that for the u update, only the elements corresponding
to the non-zero values of y are of interest. As such, the set
J has been defined as the set of indices where yi 6= 0 and
A(J , :) denotes a matrix comprised of the rows of A corre-
sponding to the indices in J . Thus, only the elements of u(J )
are updated (steps 6 and 7 of the algorithm). Algorithm 3 can
also be interpreted as an alternating upper bound minimization
algorithm, and thus decreases its cost value monotonically.

Remark 1: One may also consider the conceptually simpler
formulation

min
z∈CM+N

‖Bz‖22 (16)

subject to |zi|2 = 1, i = 1, . . . ,M +N,

where
B :=

[
Y −sA

]
, z :=

[
u
w

]
. (17)

Algorithm 2 can be directly applied to this formulation. How-
ever, the step size for GP in (16) is a function of the largest
eigenvalue of BHB; depending on the scaling of Y and A, the
freedom that Algorithm 3 provides (with respect to employing
different step sizes for the w and u updates) yields faster
convergence, as demonstrated in the supplementary material
that accompanies this paper.

Remark 2: Typically, first-order methods feature low per-
iteration complexity, but the number of iterations required to
converge may be high. For convex optimization, a common
trick for reducing the number of iterations it to employ
Nesterov’s acceleration scheme, known as ‘extrapolation’ [28].
Extrapolation can also be used in Algorithms 1-3. For exam-
ple, applying extrapolation to (2), the resulting algorithm is
defined by the following updates (with w(1) = z(1)):

z(r+1) = w(r) − α∇f(w(r)) (18)

= w(r) − αAH(y −Aw(r))

w(r+1) = γ(r)z(r+1) + (1− γ(r))z(r)

with

Γ(0) = 0, Γ(r) =
1 +

√
1 + 4(Γ(r−1))2

2
, γ(r) =

Γ(r−1)

Γ(r+1)
.

(19)
The update for z(r+1) is effectively identical to a simple
gradient step; the w(r+1) update then leverages the momentum
from the previous iteration to descend further in the direction
of z(r). The derivation of the sequences defined in (19) can
be found in [29]. Empirically, using extrapolation provides
measurable gains in terms of runtime complexity, as we will
illustrate in Section IV.

IV. SIMULATIONS

We first test the performance of Algorithm 1 by considering
the generative signal model y = Aw+n, where n is circularly
symmetric zero-mean unit-variance i.i.d. Gaussian noise. The
elements of A ∈ CM×N are drawn from NC(0, I); each w is
also drawn from NC(0, I), but is then projected onto the unit-
modulus torus. To find our estimate ŵ, we can consider the
ULS formulation as in (2). The noise variance for the desired
SNR was obtained via the relationship

SNR = 10 log10

E
[
trace(AHAwwH)

]
Mσ2

. (20)

The algorithms under test are compared both in terms of
mean squared error and runtime performance; the results are
all averaged over 100 independent Monte Carlo trials. In the
simulations, we fix the step size α = 0.999 × (1/L), where
L = λmax(AHA).
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In this section, we mainly use the the FastSDR algorithm
(FastSDR (w/Rand)) [24] as a baseline. FastSDR solves the
relaxed SDP using a very efficient block coordinate descent al-
gorithm and is state-of-the-art. In the simulations, we use 1000
randomization trials after solving the relaxed SDP. The result
of MERIT that was reported to exhibit good performance in
solving UQP [7] is also presented when applicable. Note that
under the described generative model, the result given by (2)
is in fact a maximum likelihood estimator of w (MLE) under
the model y = Aw + n. Therefore, in the simulations, the
Cramér-Rao bound (CRB) of this generative model is also
used as a baseline. The CRB with respect to the angles in w
can be shown to be (see Appendix D for derivation)

CRB =
σ2

2

[
Re
{

diag(w)HAHAdiag(w)
}]−1

. (21)

Remark 3: Note that using the CRB to evaluate the perfor-
mance of algorithms for non-convex and NP-hard estimation
problems is common, but bringing in the CRB to assess
algorithmic performance for pure optimization (or, design)
problems unrelated to estimation seems like an unexplored
idea. For ULS/UQP, SDR provides a generally unattainable
(optimistic) lower bound on the least squares cost for each
instance of this NP-hard problem, and we can take the average
of these lower bounds as a bound on the average least
squares cost. This, however, tells us nothing about how far
the design variables are from the optimal ones. An alternative
to using the SDR lower bound as a gauge is to think of our
design problem as arising from maximum likelihood (ML)
estimation for the generative signal model y = Awo + n,
where A is given, wo is known to have unit-modulus elements
but is otherwise unknown, and n is circularly symmetric
i.i.d. Gaussian. ML estimation for this model boils down to
ULS, and the associated CRB provides a lower bound on
the variance of unbiased estimators of wo. Under certain
conditions (M >> N , appropriate signal to noise ratio), ML
approaches the CRB, which makes the latter predictive of ML
performance. This way, the CRB can serve as a benchmark
on the average attainable distance of the design variables
from their optimal settings for our design problem. Of course,
this bound will only be valid if we generate design problem
instances from the given generative signal model, i.e., if we
indeed draw desired response patterns from y = Awo + n.
Note that any y can be written in this way if we allow for low-
enough signal to noise ratio in the generative model, but then
the CRB will not be as predictive of the average attainable
performance – albeit still a lower bound. This gives us an
alternative way to explore algorithm performance for our NP-
hard design problem.

Figures 3 and 4 compare the above algorithms for the
described general ULS/UQP for N = 2, . . . , 200. Here, we
set M = 144 and SNR= 10dB, and observe the mean-
squared-error (MSE) of the angles of the estimated ŵ as
our performance measure. We see that both GP and its
accelerated counterpart (GP accel; cf Remark 2) exhibit better
MSE performance relative to FastSDR and MERIT in this
simulation, which is rather encouraging. Furthermore, GP
is approximately 10 times faster than FastSDR for all N
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FastSDR (w/Rand)
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GP (accel)

Fig. 3: The MSEs of Algorithm 1 and FastSDR under various
N ’s; SNR= 10dB.

considered and is more than 1000 times faster compared to
MERIT when the number of antennas N ≥ 25. One thing
that we noticed is that MERIT does exhibit better MSE
performance relative to FastSDR when N increases, but it is
not as scalable as FastSDR and GP for larger N ’s – we were
only able to test MERIT for N ≤ 75 since it is too slow for
larger N ’s. The accelerated implementation of GP provides a
twofold improvement over GP when N is large, as shown in
Fig. 4. GP and the extrapolated version of GP also approach
the CRB quite closely, which means that the estimation result
is nearly optimal (although the estimator is biased). Another
remark is that FastSDR is known to be a surprisingly fast
algorithm for approximating UQP, which has demonstrated
around 1000 times speed improvement from using interior
point methods in some applications [2], and our results show
that GP is even more promising in dealing with ULS/UQP.

Figures 5-6 show the results under various M ’s when N is
fixed to 144. One can see that GP and its accelerated version
always approach the CRB, while FastSDR has a large gap
between its estimation MSEs and the CRB when M ≤ 1, 000.
In terms of runtime, the proposed algorithms are faster than
FastSDR for all M , especially when M ≤ 1, 000.

Starting from Figure 7, we test the algorithms that are
tailored for beamforming, i.e., Algorithm 2 and Algorithm 3.
We test the algorithms versus the number of antennas ranging
from N = 2 to N = 200 with the angle space discretized
into 36 and 144 regions (resulting in A of dimension 36×N
and 144 × N , respectively). The ULA scenario is consid-
ered, with rows of A admitting the Vandermonde structure
[1, ejθi , ej2θi , . . . , ej(N−1)θi ] for each row i in A. 100 inde-
pendent Monte Carlo trials were performed for each N , and a
K = 2 receiver multicast beamforming scenario is considered.
We impose per-antenna power constraints on all the antennas,
resulting in unit-modulus constraints on wi. The two user
angles are randomly drawn in each problem instance, with
each y constructed in accordance with (10).

Figures. 7-8 present a simulation of phase-only beamform-
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Fig. 4: Run times of Algorithm 1 and FastSDR under various
N ’s; SNR= 10dB.

Number of Measurements (M)
102 103 104

M
S

E
 o

f a
ng

le
(w

)

10-3

10-2

10-1

100

101

CRB
FastSDR (w/Rand)
GP
GP (accel)

Fig. 5: CRB/MSE comparison for M = 102, . . . , 104, SNR =
10 dB.

ing for a ULA, where A is Vandermonde (A ∈ C36×N and
A ∈ C144×N , respectively). We compare Algorithms 2-3 with
FastSDR in this simulation. We plot the values of cost func-
tions associated with FastSDR, Algorithm 2, and Algorithm
3, respectively. These cost values reflect the matching errors
between the designed and desired beam patterns, and thus are
meaningful in the context of beamformer design. As shown in
Fig. 7, Algorithm 2 performs comparably with FastSDR for
N ≤ M , and increasingly outperforms FastSDR for N > M
in terms of the matching errors. Note that it is challenging
to incorporate an automatic scaling factor in SDR, and this
may explain the performance of FastSDR – it also serves as
evidence that adding s to the formulation is much helpful in
this special ULS problem. Algorithm 3 yields even slightly
lower costs compared to that of Algorithm 2 since it explores
additional degrees of freedom.

The companion plots illustrating runtime complexity are
shown in Figs. 9 and 10. The proposed algorithms clearly
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Fig. 6: Runtime comparison for simulation in Fig. 5, N = 144,
M = 102, . . . , 104, SNR = 10 dB.
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Fig. 7: Matching error for Vandermonde A ∈ C36×N , N =
2, . . . , 200.

outperform FastSDR. The performance gap widens as the
number of antennas increases. Further, the accelerated version
of the proposed algorithms (i.e., with extrapolation) perform
similarly to their unaccelerated counterparts in terms of cost,
and we see modest gains in terms of runtime performance
(1.1-1.5 times faster).

As expected, Algorithm 3 performs worse than Algorithm 2
in terms of runtime (particularly as the number of antennas
increases) since it has one more block to update. However,
even though we are only introducing K = 2 additional degrees
of freedom (since the additional freedom to conveniently set
the phase response can only be exercised at angles where the
target magnitude response is nonzero), we observe a noticeable
difference in matching error performance between the two
proposed algorithms. To test a case with more degrees of
freedom, we next consider a sector beamforming scenario with
many more non-zero entries in y.

Consider the scenario where rather than attempting to
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Fig. 8: Matching error for Vandermonde A ∈ C144×N , N =
2, . . . , 200.
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Fig. 9: Trial runtime comparison for Vandermonde A ∈
C36×N , N = 2, . . . , 200

design a beamformer that confines the energy to selected
discrete directions (i.e., pencil beamformer), a symmetric
wedge spanning [−40o, 40o] and its reflection is chosen
as the desired magnitude response. For M = 144, this is
equivalent to J = {1 . . . 18, 55 . . . 90, 127 . . . 144}, with
yi = 1 for all i ∈ J . Figure 11 is a polar plot of the resulting
transmit beampattern. In this scenario, we again have N +K
degrees of freedom in (15), but now K >> 2; as such,
it is reasonable to expect improved performance relative
to (12) compared to the previously considered ‘pencil beam’
scenario. Indeed, we observe a substantial improvement
for Algorithm 3, as shown in Figure 12. To summarize,
the alternating optimization algorithm for the formulation
in (15) provides performance gains (in terms of least squares
cost), even with the introduction of very few additional
degrees of freedom (K). Further, these improvements become
increasingly pronounced as K increases (as in the sector
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Fig. 10: Trial runtime comparison for Vandermonde A ∈
C144×N , N = 2, . . . , 200
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Fig. 11: Sector beamforming illustration, M = 144, J =
{1 . . . 18, 55 . . . 90, 127 . . . 144}

beamforming scenario).

Although the beamforming examples discussed so far
employed a ULA (Vandermonde steering vectors), it is
natural to consider the case where A is complex Gaussian,
modeling a Rayleigh fading scenario. The simulations shown
in Figures 7-10 are repeated for A which is circularly
symmetric Gaussian with unit variance. As shown in
Figures 13 and 14, all the proposed algorithms outperform
FastSDR in terms of matching error. Again, accelerated
methods demonstrate modestly improved average trial times
with respect to their plain versions (cf. Figures 15-16.)

V. CONCLUSION

In this paper we have considered the ULS/UQP problem
and certain extensions that arise in phase-only beamforming,
with emphasis on emerging massive MIMO applications. To
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Fig. 12: Matching error comparison for sector case, M = 144,
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Fig. 13: Matching error comparison for Gaussian A ∈ C36×N ,
N = 2, . . . , 200

circumvent the scalability issues of using SDR for handling
ULS, a gradient projection-based algorithm has been proposed.
Convergence properties of the algorithm have been carefully
studied. To enhance the performance of large-scale beam-
former design, two variants of the plain-vanilla ULS formu-
lation have been proposed, which introduce more degrees of
freedom to the design problem. Generalizations of the GP al-
gorithm have been proposed, and their convergence properties
have been discussed as well. The proposed algorithms have
been carefully compared against state-of-art methods such as
SDR and MERIT, and have been found to perform at least as
well in terms of accuracy, and even better in several scenarios
at significantly lower runtime complexity.
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APPENDIX A
PROOF OF LEMMA 1

The gradient projection step can be written as follows:

w̃(r+1) ∈ arg min
w̃∈W

f(w̃(r)) + 〈∇f(w̃(r)), w̃ − w̃(r)〉

+
1

2α
‖w̃ − w̃(r)‖22, (22)

where we define

W = {w̃ | w̃2
i + w̃2

N+i = 1, i = 1, . . . , N}.

By arranging terms, one can verify that the solution of
Problem (22) can be obtained via the following equivalent
form:

w̃(r+1) ∈ arg min
w̃∈W

∥∥∥w̃ − (w̃(r) − α∇w̃f
(
w̃(r)

))∥∥∥2

2
,
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Fig. 16: Trial runtime comparison for Gaussian A ∈ C144×N ,
N = 2, . . . , 200

which is exactly a GP step. The above implies that w̃(r+1)

satisfies the KKT conditions of the right hand side (RHS) of
Problem (22), i.e.,

0 = ∇f(w̃(r)) +
1

α
(w̃(r+1) − w̃(r)) + 2w̃(r+1) ~ λ(r+1)

(23a)

⇒‖∇f(w̃(r)) + 2w̃(r+1) ~ λ(r+1)‖22 =
1

α2
‖w̃(r+1) − w̃(r)‖22.

(23b)

From the above, one can see that

‖∇f(w̃(r)) + 2w̃(r+1) ~ λ(r+1)‖22 → 0

⇒‖w̃(r+1) − w̃(r)‖22 → 0

⇒‖∇f(w̃(r)) + 2w̃(r) ~ λ(r+1)‖22 → 0

which implies that the KKT conditions are satisfied since w̃(r)

is always feasible. Note that to show the last equation above,
it is required that the elements of |λ(r+1)| be bounded as r →
∞, which can be readily seen from (23a) and the assumption
that A and y are bounded.

APPENDIX B
PROOF OF THEOREM 1

Let us prove the a) part first. The proof follows the insight
of the convergence proof of the successive upper bound
minimization (SUM) algorithm in [30], with modifications to
accommodate the nonconvex constraints. Let us first relate
the gradient projection algorithm to SUM. Note that the cost
function of Problem (8) has Lipschitz continuous gradients and
L = λmax(ÃT Ã) is its smallest Lipschitz constant. Then, we
have

f(w̃(r)) ≤ u(w̃; w̃(r)) = f(w̃(r)) + 〈∇f(w̃(r)), w̃ − w̃(r)〉

+
1

2α
‖w̃ − w̃(r)‖22, ∀w̃,

since α < 1/L. So u(w̃; w̃(r)) is an upper bound on f(w̃).
Note that

f(w̃(r)) = u(w̃(r); w̃(r)) (24)

∇f(w̃(r)) = ∇u(w̃(r); w̃(r)). (25)

As we have seen in (22), the GP algorithm can be considered
as solving the following upper-bound problem:

w̃(r+1) ∈ arg min
w̃∈W

u(w̃; w̃(r)).

Such a procedure is the so-called majorization minimization
(MM) algorithm or SUM, and by the properties of MM, we
have

f(w̃(r)) = u(w̃(r); w̃(r)) (26a)

≥ u(w̃(r+1); w̃(r)) (26b)

≥ f(w̃(r+1)); (26c)

i.e., the cost function decreases at each iteration. Assume that
there is a subsequence {rj}j that converges to a limit point,
i.e., w̃(rj) → w̃?. We have

u(w̃; w̃(rj)) ≥ u(w̃(rj+1); w̃(rj)) (27a)

≥ f(w̃(rj+1)) (27b)

≥ f(w̃(rj+1)) (27c)

= u(w̃(rj+1); w̃(rj+1)), (27d)

where (27c) holds since rj+1 ≥ rj + 1 (as rj indexes a
subsequence). Taking j → ∞, and by the continuity of u(·)
we see that

u(w̃; w̃?) ≥ u(w̃?; w̃?), ∀w̃ ∈ W. (28)

The above means that there exists a λ ∈ R2N where λi =
λN+i for i = 1, . . . , N such that w̃? satisfies

∇u(w̃?; w̃?) + 2λ? ~ w̃? = 0, w̃? ∈ W,

since w̃? is a minimizer of u(w̃; w̃?) over W . By (25), we
have

∇f(w̃?) + 2λ? ~ w̃? = 0, w̃? ∈ W.

Therefore, every limit point of {w̃(r)}r is a KKT point of
Problem (8). In addition, since w̃(r) lives in a compact set,
we further claim that the whole solution sequence (instead of
every convergent subsequence) converges to K which consists
of all KKT points of (8). Indeed, suppose that {w̃(r)} does
not converge to K. Since w̃ lives in a compact set, there exists
a subsequence indexed by rj converging to a point z such that
d(z,K) ≥ γ where γ > 0. However, we have just shown that
every limit point is a KKT point, which is a contradiction.
Therefore, we have d(w̃(r),K)→ 0.

Now we show that the b) part holds. Due to the Lipschitz
continuity of ∇f(w̃), we have

f(w̃(r+1)) ≤ f(w̃(r)) + 〈∇f(w̃(r)), w̃(r+1) − w̃(r)〉

+
L

2
‖w̃(r+1) − w̃(r)‖22. (29)
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We also have

〈∇f(w̃(r)), w̃(r+1) − w̃(r)〉+
1

2α
‖w̃(r+1) − w̃(r)‖22

≤〈∇f(w̃(r)), w̃(r) − w̃(r)〉+
1

2α
‖w̃(r) − w̃(r)‖22, ∀w̃ ∈ W,

since w̃(r+1) is a minimizer of u(w̃; w̃(r)) over W (also see
(22)). The above implies that

〈∇f(w̃(r)), w̃(r+1) − w̃(r)〉+
1

2α
‖w̃(r+1) − w̃(r)‖22 ≤ 0

⇒〈∇f(w̃(r)), w̃(r+1) − w̃(r)〉 ≤ − 1

2α
‖w̃(r+1) − w̃(r)‖22.

(30)

Plugging (30) into (29), we have

f(w̃(r+1))− f(w̃(r)) ≤
(
L

2
− 1

2α

)
‖w̃(r+1) − w̃(r)‖22.

(31)

Summing up over r = 0 to r = T − 1, we have

f(w̃(T ))− f(w̃(0)) ≤
T−1∑
r=0

(
L

2
− 1

2α

)
‖w̃(r+1) − w̃(r)‖22

Following (23b), the above means that

−f(w̃(T )) + f(w̃(0)) ≥
T−1∑
r=0

(
−L

2
+

1

2α

)
α2‖∇f(w̃(r))

+ 2w̃(r+1) ~ λ(r+1)‖22.

By the definition of T , we have(
1

2α
− L

2

)
α2ε

≤
∑T−1
r=0

(
1

2α −
L
2

)
α2‖∇f(w̃(r)) + 2w̃(r+1) ~ λ(r+1)‖22

T − 1

≤f(w̃(0))− f(w̃(T ))

T − 1

⇒ε ≤ v

T − 1
,

where

v =
f(w̃(0))− f?

α2
(

1
2α −

L
2

) ,
where f? denotes the global optimal value of Problem (8)

APPENDIX C
PROOF OF PROPOSITION 1

Let us denote

f(w, s) = ‖y − sAw‖22.

We can then define the surrogate upper bound

g(w;w(r), s(r)) = f(w(r), s(r)) + 〈∇f(w(r), s(r)),w −w(r)〉

+
1

2α(r)
‖w −w(r)‖22.

It follows that

f(w, s(r)) ≤ g(w;w(r), s(r)), ∀w (32)

f(w(r), s(r)) = g(w(r);w(r), s(r)) (33)

∇wf(w(r), s(r)) = ∇wg(w(r);w(r), s(r)), (34)

where the first inequality is due to the fact that α(r) <
1/λmax(|s(r)|AHA). Our updates can therefore be expressed
as

wr+1 = arg min
|wi|=1

g(w;w(r), s(r)) (35a)

s(r+1) = arg min
s
f(w(r+1), s) =

(w(r+1))HAHy

‖Aw(r+1)‖2
. (35b)

The objective function decreases monotonically because the
following holds:

f(w(r), s(r)) = g(w(r);w(r), s(r)) (36a)

≥ g(w(r);w(r+1), s(r)) (36b)

≥ f(w(r+1), s(r)) (36c)

≥ f(w(r+1), s(r+1)), (36d)

where (36a) follows (33). (36b) is obtained because
of (35a), (36c) holds due to the property in (32), and (36d) is
obtained by the fact that the subproblem w.r.t. s is optimally
solved via (35b).

Assume that {rj} signifies the index set of a convergent
subsequence, and that {w(rj), s(rj)} converges to (w?, s?).
Then, we have

g(w;w(rj), s(rj)) ≥ g(w(rj+1);w(rj), s(rj)) (37a)

≥ f(w(rj+1), s(rj)) (37b)

≥ f(w(rj+1), s(rj+1)) (37c)

≥ f(w(rj+1), s(rj+1)) (37d)

= g(w(rj+1);w(rj+1), s(rj+1)), (37e)

where (37b) holds because of (32) (i.e., g(w;w(r), s(r)) upper
bounds f(w, s(r)) for all w), (37d) is obtained by the fact that
rj+1 ≥ rj +1 since rj indexes a subsequence. Taking j →∞
and by the continuity of g(·), we see that

g(w;w?, s?) ≥ g(w?;w?, s?). (38)

The inequality in (38) means that w? is a blockwise mini-
mizer of g(w;w?, s?). Therefore, it satisfies the partial KKT
condition w.r.t. w, i.e.,

∇wg(w?;w?, s?) + 2λ? ~w? = 0. (39)

By (34), we have

∇wf(w?, s) + 2λ? ~w? = 0. (40)

Similarly, by the update rule in (35b), we have

f(w(rj), s) ≥ f(w(rj), s(rj)),

and thus
f(w?, s) ≥ f(w?, s?).

Then, the argument for s? satisfying the KKT conditions
follows. Therefore, every limit point of the solution sequence
is a KKT point. We also notice that both s and w live
in compact sets. Therefore, repeating the arguments as in
Theorem 1, one can show that the whole solution sequence
converges to K, which completes the proof.
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APPENDIX D
DERIVATION OF CRAMÉR-RAO BOUND (21)

Consider the generative signal model y = Aw+v, where w
is constrained to the unit-modulus torus and v ∼ N (0, σ2I).
We can explicitly parameterize in terms of the vector of angles
θ as y = Aejθ + v, hence y ∼ N (Aejθ, σ2I). The Fisher
Information Matrix for this model can be expressed as [31]

[F]k,l =
2

σ2
<

{(
∂Aejθ

∂θk

)H (
∂Aejθ

∂θl

)}
, (41)

where parameter vector θ = [θ1, . . . , θN ]T . We then obtain the
derivative with respect to each θi as ∂Aejθ

∂θi
= jejθiai, where

ai denotes the i-th column of A. It follows that

[F]k,l =
2

σ2
Re
{
e−jθkaHk ale

jθl
}
, (42)

from which we can construct the Fisher Information Matrix
as

F =
2

σ2
Re
{

Diag
(
e−jθ

)
AHADiag

(
ejθ
)}
. (43)

Thus, the CRB on θ can be compactly written as (w = ejθ)

CRB = F† =
σ2

2

[
Re
{

Diag(w)HAHADiag(w)
}]†

. (44)

REFERENCES

[1] J. Tranter, N. Sidiropoulos, X. Fu, and A. Swami, “Fast unit-modulus
least squares with applications in transmit beamforming,” in Proc. 24th
EUSIPCO Conference, Aug. 29 – Sep. 2, Budapest, Hungary, 2016.

[2] X. Fu, F. Chan, W.-K. Ma, and H.-C. So, “A complex-valued semidef-
inite relaxation approach for two-dimensional source localization using
distance measurements and imperfect receiver positions,” Signal Pro-
cessing (ICSP) Proceedings, IEEE, vol. 2, pp. 1491–1494, 2012.

[3] E. J. Candes, T. Strohmer, and V. Voroninski, “Phaselift: Exact and
stable signal recovery from magnitude measurements via convex pro-
gramming,” Communications on Pure and Applied Mathematics, vol. 66,
no. 8, pp. 1241–1274, 2013.

[4] I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery, Max-
Cut and complex semidefinite programming,” Mathematical Program-
ming A, vol. 149, pp. 47–81, February 2015.

[5] P. Thompson, “Adaptation by direct phase-shift adjustment in narrow-
band adaptive antenna systems,” Trans. Antennas Propagat., IEEE,
vol. 24, no. 5, pp. 756–760, 1976.

[6] C.-J. Lu, W.-X. Sheng, Y.-B. Han, and X.-F. Ma, “A novel adaptive
phase-only beamforming algorithm based on semidefinite relaxation,”
Phased Array Systems Technology, 2013 IEEE International Symposium
on, pp. 617–621, October 2013.

[7] M. Soltanalian and P. Stoica, “Designing unimodular codes via quadratic
optimization,” Trans. on Signal Processing, IEEE, vol. 62, no. 5, pp.
1221–1234, March 2014.

[8] J. Pan and W. K. Ma, “Constant envelope precoding for single-user large-
scale miso channels: Efficient precoding and optimal designs,” IEEE
Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 982–
995, Oct 2014.

[9] S. K. Mohammed and E. G. Larsson, “Single-user beamforming in large-
scale miso systems with per-antenna constant-envelope constraints: The
doughnut channel,” IEEE Transactions on Wireless Communications,
vol. 11, no. 11, pp. 3992–4005, 2012.

[10] ——, “Per-antenna constant envelope precoding for large multi-user
mimo systems,” IEEE Transactions on Communications, vol. 61, no. 3,
pp. 1059–1071, 2013.

[11] ——, “Constant-envelope multi-user precoding for frequency-selective
massive mimo systems,” IEEE Wireless Communications Letters, vol. 2,
no. 5, pp. 547–550, 2013.

[12] S. Zhang and Y. Huang, “Complex quadratic optimization and semidef-
inite programming,” SIAM Journal on Optimization, vol. 16, no. 3, pp.
871–890, 2006.

[13] Z.-Q. Luo, W.-K. Ma, A.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” Signal Processing Mag-
azine, IEEE, vol. 27, no. 3, pp. 20–34, May 2010.

[14] I. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecommun., vol. 10, no. 6, pp. 585–596, Nov.-Dec. 1999.

[15] X. Zhang, A. Molisch, and S.-Y. Kung, “Variable-phase-shift-based
RF-baseband codesign for MIMO antenna selection,” Trans. on Signal
Processing, IEEE, vol. 53, no. 11, pp. 4091–4103, November 2005.

[16] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, and
J. Zhang, “What will 5G be?” Journal on Selected Areas in Commun.,
IEEE, vol. 32, no. 6, pp. 1065–1082, June 2014.

[17] C. Baird and G. Rassweiler, “Adaptive sidelobe nulling using digitally
controlled phase-shifters,” Trans. Antennas Propagat., IEEE, vol. AP-24,
pp. 638–649, 1976.

[18] T. Ismail and M. Dawoud, “Null steering in phased arrays by controlling
the element positions,” Trans. Antennas Propagat., IEEE, vol. 39, pp.
1561–1566, 1991.

[19] S. Smith, “Optimum phase-only adaptive nulling,” Trans. on Signal
Processing, IEEE, vol. 47, no. 7, pp. 1835–1842, July 1999.

[20] W. Choi and T. Sarkar, “Phase-only adaptive processing based on a
direct data domain least squares approach using the conjugate gradient
method,” Trans. Antennas Propagat., IEEE, vol. 10, no. 6, pp. 585–596,
Nov.-Dec. 2004.

[21] T. Ismail and Z. Hamici, “Array pattern synthesis using digital phase
control by quantized particle swarm optimization,” Trans. on Antennas
and Propagation, IEEE, vol. 58, no. 6, pp. 2142–2145, June 2010.

[22] T. Sinhamahapatra, A. Ahmed, G. Mahanti, N. Pathak, and
A. Chakrabarty, “Design of discrete phase-only dual-beam array an-
tennas with minimum dynamic range ratio,” Applied Electromagnetics
Conference, IEEE, pp. 1–4, December 2007.

[23] N. Sidiropoulos and Z.-Q. Luo, “A semidefinite relaxation approach to
MIMO detection for high-order QAM constellations,” Signal Processing
Letters, IEEE, vol. 13, no. 9, pp. 525–528, September 2006.

[24] Z. Wen, D. Goldfarb, S. Ma, and K. Scheinberg, “Roy by row methods
for semidefinite programming,” Dept. of IEOR, Columbia University,
Tech. Rep., April 2009.

[25] N. Boumal, “Nonconvex phase synchronization,” arXiv preprint
arXiv:1601.06114, 2016.

[26] R. Luss and M. Teboulle, “Conditional gradient algorithms for rank-one
matrix approximations with a sparsity constraint,” SIAM Review, vol. 55,
no. 1, pp. 65–98, 2013.

[27] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre, “Generalized
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