crash course in theoretical computer science

Glencora Borradaile
Oregon State University

eecs.orst.edu/ "glencora/other/tcscrashcourse.pdf

theoretical computer science
= complexity (What are the limits of computation?)
+ algorithms (Design within those limits?)

[follow the links to learn more]

http://eecs.orst.edu/~glencora/other/tcscrashcourse.pdf

what is computation?

e solving problems with a (restricted) set of operations

e a better name for computer science

abstract model of computation: the Turing machine

a tape (memory)
at any moment reads one scanned symbol (bus)
can alter scanned symbol according to a finite set of elementary operations (register)

(remains a good model for modern computers)

what is computable? what is incomputable?

e product of two integers is computable

e Entscheidungsproblem is incomputable

of the computable, what is efficiently computable?

http://plato.stanford.edu/entries/turing-machine
http://plato.stanford.edu/entries/computability

larger problems = longer computation
eg. computing 761498762598 x 319870897543 takes longer than computing 32 x 54

T(n,X,A) = time to solve instance of size n of problem X using algorithm A
= # computational steps = # bits to represent instance
= Turing machine operations

e.g. what is T'(2n, product of two n bit numbers, grade-school)?

at most n bit multiplications + n bit additions (for the carry) per row
at most n bit additions per column
at most 2n columns and n rows
or 4n? bit additions/multiplications
or at most k(4n?) Turing machine steps for some constant k
O(n?) computational steps

O(n?) time on any single processor

algorithm analysis: for a particular X and A, what is T'(n, X, A)?

algorithm design: for a particular X, find A to minimize T'(n, X, A) for all n

http://www.cs.berkeley.edu/~vazirani/algorithms/chap1.pdf

efficiently means quickly

when is A efficient? what values of T'(n, X, A) are good?
faster O(n) O(n?) O(n?) O(nloz nlosn 0(2") O(n!) O(n") slower

Vv Vv
polynomial exponential

polynomial ~ practical
if T'(n, X, A) is O(n®)
e in twice the time, can solve problems 2'/¢ times bigger
e if a processor gets twice as fast, can solve problems 2/¢ times bigger in the same

time

exponential ~ impractical
if T(n, X, A) is O(c")
e in twice the time, can solve problems bigger by log.2 additively

e if a processor gets twice as fast, can solve problems bigger by log,. 2 additively

http://www.cs.berkeley.edu/~vazirani/algorithms/chap8.pdf#page=2

million-dollar question: P v NP

P = set of (decision) problems that can be solved in polynomial time
(on a deterministic Turing machine)
e.g. is this number divisible by this other number?

NP = set of (decision) problems that can be solved in polynomial time
(on a non-deterministic Turing machine)
e.g. is this boolean formula satisfiable?

NP = set of (decision) problems with ‘yes” answers verifiable in polynomial time
(on a deterministic Turing machine)

co-NP = set of (decision) problems with ‘no” answers verifiable in polynomial time
(on a deterministic Turing machine)
e.q. 1s this boolean formula a tautology?

[Venn diagram of P, NP, co-NP]

http://www.claymath.org/millennium/P_vs_NP/

a direction for showing P = NP

design a poly-time algorithm for every problem in NP
what are all the problems in NP? this could take a long time
start with the most computationally-difficult problem

hard problems

problem X is NP-hard <=
poly-time algorithm for X = poly-time algorithm VY € NP
(= P =NP)

Cook-Levin Theorem boolean formula satisfiability is NP-hard

more generally:

problem X s C-hard <=
poly-time algorithm for X = poly-time algorithm VY € C

[Venn diagram of P, NP, NP-hard]

http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/29-nphard.pdf
http://en.wikipedia.org/wiki/Cook-Levin_theorem

reductions

problem X reduces to problem Y
if algorithm for X can be designed using algorithm for Y

problem X poly-time reduces to problem Y
if a poly-time algorithm for X can be designed using a poly-time algorithm for Y

more definitions of hardness

problem X is NP-hard <= every problem in NP can be poly-time reduced to X
problem X is NP-hard <= a known NP-problem can be poly-time reduced to X

e.g. boolean-formula satisfiability reduces to graph Hamiltonicity
so, graph Hamultonicity € NP-hard
take-home lesson

if you can show your problem is NP-hard (by reducing a known NP-hard problem to it),
then you shouldn’t look for a poly-time algorithm to solve your problem

http://www.cs.berkeley.edu/~vazirani/algorithms/chap8.pdf

designing poly-time algorithms
example problem: max subarray
given array of small integers a[l, ..., n], compute
j
max y alk]

i<j
k=i

e.g. MAXSUBARRAY([31, —41, 59,26, —53, 58,97, —93, —23,84]) = 187

algorithmic design techniques

1. enumeration
2. 1teration
3. simplification & delegation (aka divide & conquer)

4. recursion inversion (aka dynamic programming)

http://dl.acm.org/citation.cfm?doid=358234.381162

enumeration for max subarray
evaluate every possible solution

MAXSUBARRAY (a[1,...,n])
for each pair (i,j) with 1 < i < j <n
compute alil+ali+1]+ --+al[j-1]+alj]
keep max sum found so far
return max sum found

analysis (O(n?) pairs) x (O(n) time to compute each sum) = O(n?) time

iteration for max subarray

don’t compute sums from scratch: A
J__alk] can be computed from Y"1 a[k] in O(1) time
k=i k=i

(really just clever enumeration)

MAXSUBARRAY (a[1,...,n])
fori=1, ..., n
sum = O
for j =1, ..., n
sum = sum + a[j]

keep max sum found so far
return max sum found

analysis (O(n) i-iterations) x (O(n) j-iterations) x (O(1) time to update sum) = O(n?)

simplification & delegation for max subarray

max subarray either has value
e MAXSUBARRAY(a[l,...
e or MAXSUBARRAY (a[3,. .., n]),

e or MAXSUFFIX(all, ..., §])+MAXPREFIX(a[3, ..., n])

compute MAXSUFFIX and MAXPREFIX in linear time by modifying previous algorithm

divide & conquer

MAXSUBARRAY(a[l,...,])
MAXSUBARRAY (a1, ...,n]) = max { MAXSUBARRAY(a[%,...,n])
MAXSUFFIX(a[l, . . g]) + MAXPREFIX(al3, ..., n))
analysis

(O(n) time for non-recursive work) x (O(logn) depth) = O(nlogn)

http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/01-recursion.pdf

recursion inversion for max subarray

the max subarray either uses the last element or doesn’t:

B MAXSUBARRAY (al[l,...,n — 1])
MAXSUBARRAY (al[l,...,n]) = max{ MAXSUFFIX(a[L, ... 7])
MAXSUFFIX(a[l, ..., n]) = max{0, MAXSUFFIX(a[l,...,n — 1]) + a[n|}

dynamic programming evaluate this non-recursively by computing
o first MAXSUBARRAY(a[1]) and MAXSUFFIX(a[1])
e then MAXSUBARRAY(a[l,2]) and MAXSUFFIX(a[l,2]) from above
e then MAXSUBARRAY(a[l,2,3]) and MAXSUFFIX(a[l,2, 3]) from above

e and so on

analysis computing MAXSUBARRAY (a[l,...,n|) and MAXSUFFIX(a[l,...,n]
from MAXSUBARRAY (a[l,...,n—1]) and MAXSUFFIX(a[l,...,n—1])
takes O(1) time
O(n) things to compute = O(n) time

http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/05-dynprog.pdf

does algorithm design matter?

TABLE |. Summary of the Algorithms

Algorithm 1 2 3 4

Lines of C Code 8 7 14 7

Run time in 3.4N3 13N? 46N log N 33N

microseconds

Time to solve 107 3.4 secs 130 msecs 30 msecs 3.3 msecs

problem of size 10° .94 hrs 13 secs .45 secs 33 msecs
10 39 days 22 mins 6.1 secs .33 secs
108 108 yrs 1.5 days 1.3 min 3.3 secs
10® 108 mill 5 mos 15 min 33 secs

Max problem sec 67 280 2000 30,000

solvedinone min 260 2200 82,000 2,000,000
hr 1000 17,000 3,500,000 120,000,000
day 3000 81,000 73,000,000 2,800,000,000

Digital Equipment Corporation VAX-11/750 in 1984

http://dl.acm.org/citation.cfm?doid=358234.381162
http://blogs.oregonstate.edu/glencora/2011/11/18/how-osu-professors-learnt-to-program-short-personal-histories/

what if my problem is not in P?

find something else in polynomial time:

a solution close to optimal (approzimate)

an optimal solution in expectation (average-case analysis)

solutions to problems with particularly good solutions (planted analyses)
solutions that are small (parameterized analysis)

solutions to nice instances (smoothed analysis)

a locally optimal solutions (local search)

or you could use a heuristic and not guarantee anything
or you could spend exponential time and have patience

what if I don’t know if my problem is in P or is NP-hard?

your problem could be NP-intermediate
such as:

comparing sums of square roots
integer factorization

computing the discrete logarithm

http://theory.stanford.edu/~tim/f11/f11.html
http://cstheory.stackexchange.com/questions/79/problems-between-p-and-npc/4010
http://maven.smith.edu/~orourke/TOPP/P33.html
http://en.wikipedia.org/wiki/Integer_factorization
http://en.wikipedia.org/wiki/Discrete_logarithm

