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1. INTRODUCTION

Given a graph with edge lengths, and given a subset Q of vertices called terminals,
the Steiner tree problem in networks aims to find a minimum-length connected
subgraph that spans all vertices in Q. The minimum spanning tree problem is the
special case where every vertex in the graph is a terminal.

The Steiner tree problem in networks is one of the most well-studied problems
in combinatorial optimization. It was one of Karp’s original NP-complete prob-
lems [Karp 1975], and is now known to be max SNP-complete [Bern and Plassmann
1989], so there is no polynomial-time approximation scheme for the problem unless
P=NP. 2-approximation algorithms have been presented in [Takahashi and Mat-
suyama 1980; Kou et al. 1981] (among others), with improvedments to running time
in [Wu et al. 1986; Widmayer 1986; Mehlhorn 1988]. The approximation ratio has
been improved by [Zelikovsky 1993; Berman and Ramaiyer 1994; Zelikovsky 1994;
Prömel and Steger 1997; Karpinski and Zelikovsky 1997; Hougardy and Prömel
1999], leading to a 1.55-approximation [Robins and Zelikovsky 2005].

A natural restriction on the Steiner tree problem in networks is to require that the
input vertices are points in the Euclidean plane (or in low-dimensional Euclidean
space) and the lengths are Euclidean distances. For the Euclidean Steiner tree
problem, Arora [Arora 1998] and Mitchell [Mitchell 1999] gave polynomial-time
approximation schemes (the running time of [Arora 1998] is near-linear in n with a
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polylog factor whose degree depends on ε). Rao and Smith [Rao and Smith 1998]
gave an O(n log n)-time approximation scheme. In this Euclidean case, n denotes
the number of terminals.

Another natural restriction on the Steiner tree problem in networks is to require
that the input graph be planar. Even in this restricted case, the problem is NP-
hard [Garey and Johnson 1977]. Baker, in a very influential paper [Baker 1994],
gave a general approach for deriving approximation schemes for planar graphs. The
approach is useful for problems without global connectivity requirements. Demaine
and Hajiaghayi [Demaine and Hajiaghayi 2005] showed how to derive other approx-
imation schemes, for planar graphs and generalizations. However, until now, the
best approximation ratio known for the Steiner tree problem in planar graphs was
no better than for general graphs.

Here, we first give a different kind of result: a spanner type result for Steiner
trees. For a graph G and terminal set Q, let OPT(G, Q) denote the minimum length
of a Steiner tree in G that spans all vertices in Q. For a fixed number 0 < ε < 1, a
subgraph H of G is a Steiner-tree spanner with respect to Q if it has the following
two properties:

Spanning Property:. There is a connected subgraph of H that spans Q and has
length at most (1 + ε)OPT(G, Q) (Lemma 4.2.)

Shortness Property:. The total length of H is at most some function f(ε) times
OPT(G, Q) (Lemma 4.1.)

Theorem 1.1. For any ε > 0, there is an algorithm that, given a planar graph
G with edge-lengths and a set Q of vertices of G, finds a Steiner-tree spanner. The
running time is O(n log n), where n is the number of vertices of G.

We prove the above theorem for f(ε) = 2poly(1/ε) in Section 4. The complete running
time to build the spanner, including the dependence on ε, is O(2poly(1/ε)n+n logn).

Such a spanner-type result can be used to obtain an O(n log n) approximation
scheme, following the approach of Klein [Klein 2005a; ]. (The resulting running

time is O(22poly(1/ε)
n + n log n).)

The idea of using such a spanner-type result for an approximation scheme was
also used by Arora, Grigni, Karger, Klein, and Woloszyn [Arora et al. 1998], and
by Rao and Smith [Rao and Smith 1998]. In fact, Rao and Smith gave a version of
Theorem 1.1 for fixed-dimensional Euclidean space. (Their construction was in fact
more powerful, in that the spanner included a nearly optimal Steiner tree spanning
any subset of Q.)

In our second and main result, we exploit a main structural theorem (Theo-
rem 3.2), used in proving Theorem 1.1, to give an approximation scheme. The
algorithm is much faster than what can be achieved using Theorem 1.1 as a black
box. Namely, our algorithm is singly exponential, instead of doubly exponential, in
poly(1/ε).

Theorem 1.2. For any ε > 0, there is an algorithm that, given a planar graph
G with edge lengths and a set Q of vertices of G, finds a Steiner tree that spans
Q and whose length is at most 1 + ε times the length of the optimal Steiner tree
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spanning Q. The running time is O(n log n), where n is the number of vertices of
G.

More specifically, the running time, including the dependence on ε, is O(2poly(1/ε)n+
n log n). This theorem is proved in Section 5.4.

Both the approximation scheme and the spanner construction algorithm use a
dynamic-programming algorithm of Erickson, Monma, and Veinott [Erickson et al.
1987] to find the optimal Steiner tree in a planar embedded graph for a set of
terminals on the boundary of a single face. We summarize their result in the
following theorem:

Theorem 1.3. [Erickson et al. 1987] Let G be a planar embedded graph and
Q be a set of k terminals that all lie on the boundary of a single face. Then there is
an algorithm1 to find an optimal Steiner tree of Q in G in time O(nk3+(n log n)k2).

The algorithm of [Erickson et al. 1987] uses as a subroutine an algorithm for
computing single-source shortest paths. Using instead the linear-time planarity-
exploiting algorithm of [Henzinger et al. 1997] as a subroutine, one can improve the
running time to O(nk3).

This article is based on two conference papers. In the first [Borradaile et al.
2007], we proved Theorem 1.1 for a function f(ε) that is doubly exponential in
1/ε. We showed that this result, combined with the framework of [Klein 2005a],
yielded an O(n log n) approximation scheme. However, the resulting dependence of
the approximation scheme’s running time on ε−1 was triply exponential.

In the second conference paper [Borradaile et al. 2007], we showed how to improve
the spanner result so that f(ε) was only singly exponential. We also developed a
different approach to obtaining an approximation scheme, one that more directly
uses the structure theorem underlying the spanner construction. The different
approach yielded an approximation scheme for which the running time was singly
exponential in poly(1/ε). The approach turns out to be more generally applicable
to other connectivity problems, which we mention at the end of the paper.

Outline of this paper

For notational convenience, we give a spanner construction H with a slightly weak-
ened version of the spanning property:

There is a connected subgraph of H that spans Q and has length at
most (1 + cε)OPT(G, Q), where c is an absolute constant.

The difference between this property and the spanning property is the constant
c. To prove Theorem 1.1, for any given ε̄ > 0, we assign ε = ε̄/c and carry out
the construction; the result is a subgraph H that satisfies the original spanning
property and shortness property with respect to ε̄.

1This algorithm has been generalized by Bern [Bern 1990] and by Bern and Bienstock [Bern
and Bienstock 1991] to handle some additional special cases, e.g. where the terminals lie on a
constant number of faces. Provan [Provan 1988b; 1988a] used the same approach to give exact
and approximate algorithms for some geometric special cases.
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Similarly, we show that, for any ε > 0, there is an O(n log n) algorithm to find a
Steiner tree whose length is at most (1+2cε)OPT(G, Q), where c is a constant. To
prove Theorem 1.2, for any given ε̄ > 0, we set ε = ε̄/2c and invoke the algorithm.

Sections 3 through 5 give a broad outline of the proof, omitting technical ele-
ments that are deferred to later sections. In Section 3, we define a particular graph
decomposition, define portal vertices, and state our main Structure Theorem (The-
orem 3.2). This is used to prove both Theorem 1.1 (Section 4) and Theorem 1.2
(Section 5). The full details of the construction are given in Sections 6 through 9.
In Section 10, we prove the Structure Theorem. In Section 4, we complete the proof
of Theorem 1.1.

2. PRELIMINARIES

The boundary of a face of a planar embedded graph is the set of edges adjacent to
the face; it does not always form a simple cycle (Figure 2(a)). The boundary ∂H of
a planar embedded graph H is the set of edges bounding the infinite face. An edge
is strictly enclosed by the boundary of H if the edge belongs to H but not to ∂H .

Graphs are identified with sets of edges, thus a subgraph H of a graph G is also
considered a subset of the edges of G. The set of vertices that are endpoints of
edges in H is denoted V (H). For a tree T and vertices x, y ∈ V (T ), we denote the
unique simple x-to-y path in T by T [x, y]. In particular, if T is a path then T [x, y]
is the x-to-y subpath, while T (x, y] denotes T [x, y] with x removed. P ◦Q denotes
the concatenation of paths P and Q. We denote the length of a shortest x-to-y
path in G as distG(x, y).

The dual of a planar graph G is denoted G∗; it is the graph with vertices corre-
sponding to faces of G and edges between adjacent faces.

We assume, without loss of generality, that Gin (the input graph) is planar
embedded. Such an embedding can be found in O(n) time [Hopcroft and Tarjan
1974]. Further, we assume that Gin has degree at most three. This is used in the
proof of Lemma 9.2, Lemma 8.5 and Corollary 8.9. Degree three can be achieved
by triangulating the dual with edges of large length. The input graph has positive
edge-lengths # (·) and an identified set of terminal vertices Q. For a set A of edges,
we use # (A) to denote

∑
e∈A # (e).

3. GRAPH DECOMPOSITION

In this section, we present a decomposition of the input graph into regions called
bricks interconnected with a mortar graph. This decomposition is used for both
Theorem 1.1 and Theorem 1.2. The first few steps of constructing this decom-
position (Steps 1(a) through 1(d)) are borrowed from [Klein 2006], for a spanner
construction for distances between a subset of vertices of a planar graph.

3.1 Mortar Graph

We first find a connected grid-like subgraph of the input graph Gin, based on the
set Q of terminals and the given precision ε. The subgraph is called the mortar
graph and is denoted MG (see Figure 1(b)).

Step 1: Construct the mortar graph, MG.
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An O(n log n) algorithm for finding it is given in Section 6. We show in that section
that MG satisfies the following two properties:

Terminal Property:. Every terminal in Q is a vertex of MG (Lemma 6.8).

Mortar-Graph Length Property:. The length of MG is at most 9ε−1OPT(Gin, Q)
(Lemma 6.9).

(a) (b) (c)

(d) (e)

Fig. 1. (a) An input graph Gin with bold edges forming the mortar graph MG in (b). (c) The
set of bricks corresponding to MG (d) A portal-connected graph, B+(MG). The portal edges are
grey. (e) B+(MG) with the bricks contracted, resulting in B÷(B+(MG)). The dark vertices are
brick vertices.

3.2 Bricks

Each face f of the mortar graph that strictly encloses at least one edge of Gin

defines a graph called a brick. The brick consists of the edges of Gin that are
enclosed by the boundary ∂f of f . This boundary is a cycle of edges, possibly
with repetition if some edges occur twice in the boundary (an example of such a
situation is shown on Figure 2). We duplicate the repeated edges as follows:

Cut the original graph Gin along ∂f , duplicating the edges you cut along
(and replicating the vertices), and define the brick to be the subgraph
of Gin embedded inside that cycle, including the boundary edges ac-
cording to their multiplicity in ∂f . That is, if an edge occurs twice in
the boundary of the face, then there are two copies of that edge in the
corresponding brick.

Step 2: Compute the set of bricks, B.

It is easy to see that Step 2 takes O(n).
The boundary ∂B of a brick B is the simple cycle of boundary edges. The

corresponding face of MG is called the mortar boundary of B. Each edge of the
mortar graph occurs at most twice in the disjoint union of the boundaries of the
bricks. Since we defined bricks corresponding only to non-empty faces, every brick
contains at least one edge not belonging to MG. Figure 1(c) is an example of the
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set of bricks corresponding to the mortar graph of Figure 1(b). The construction
of a brick is illustrated in Figures 2(a) and (b).

(a) (b) (c)

Fig. 2. Construction of a brick: (a) The boundary of a face f of MG is a cycle of edges (thick
edges), possibly with repetition (i.e. an edge can occur twice in the boundary). The light edges
are those in the interior of f in Gin. (b) We obtain the corresponding brick via Step 2. The
resulting brick B has boundary ∂B. (c) A brick, copied.

3.3 Portals

The next step uses a positive integer parameter θ which depends polynomially on
1/ε (Equation (5)).

Step 3: For each brick B, designate some vertices of ∂B as portals.

A linear-time greedy algorithm for portal selection is given in Section 7. We show
that the portals selected for brick B satisfy the following properties:

Coverage Property:. For any vertex x on ∂B, there is a portal y such that the
x-to-y subpath of ∂B has length at most # (∂B)/θ (Lemma 7.1).

Cardinality Property:. There are at most θ portals on ∂B (Lemma 7.2).

3.4 Portal-connected graph and the operation B+

In preparation for stating the Structure Theorem, we define an operation called
brick insertion. For any subgraph G of MG, we derive a planar embedded graph
B+(G) as follows. For each face f of G corresponding to a brick B, embed a copy
of B inside the face f , and, for each portal vertex v of B, connect v in the brick to
the corresponding vertex in f , using a zero-length artificial edge (Figure 2(c)). We
refer to the artificial edges as portal edges. This step is illustrated in Figure 1(d).

We refer to B+(MG) as the portal-connected graph. Intuitively, this graph is
almost the same as the input graph Gin, except that artificial zero-cost separations
have been added so that paths that connect vertices stricly enclosed by faces of the
mortar graph to outside vertices are forced to go through the portals.

Even if a vertex of MG is a terminal, we do not consider its copy on the brick to
be a terminal vertex. Thus a brick has no terminals; this is used in Section 9.3.

The following simple lemma follows directly from the fact that each portal edge
in B+(MG) connects a vertex of a brick to the corresponding vertex of MG.

Lemma 3.1. If A is a connected subgraph of B+(MG), then A − {portal edges}
is a connected subgraph of Gin that spans the same vertices of B+(MG).

The following theorem, proved in Section 10, is central to the proof of correctness
of the spanner construction and the approximation scheme. Indeed, taken together,
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Lemma 3.1 and Theorem 3.2 provide a reduction from the Steiner tree problem in
Gin to the Steiner tree problem in B+(MG).

Theorem 3.2 Structure Theorem. There exists a constant θ = θ(ε) depend-
ing polynomially on 1/ε such that, for any choice of portals satisfying the Coverage
Property, the corresponding portal-connected graph B+(MG) satisfies

OPT(B+(MG), Q) ≤ (1 + cε)OPT(Gin, Q)

where c is an absolute constant.

4. SPANNER RESULT: PROOF OF THEOREM 1.1

To construct the spanner we exhaustively compute optimal Steiner trees within
each brick.

4.1 Spanner Construction

Step Spanner 4: For each brick B and for each subset X of the portals of B,
find the optimal Steiner tree for B and X .

Since the number of terminals of each Steiner-tree problem solved here is at most θ
by the Cardinality Property, the remark after Theorem 1.3 implies that the running
time of this step is O(2θθ3n).

Step Spanner 5: Return the union of all the edge sets found in Step 4, together
with the edges of MG.

This completes the spanner construction.

Combining the running time of Step Spanner 4 with the running times of Steps 1
through 3, gives a total running time for constructing the spanner of O(2θθ3n +
n log n) which is O(2poly(1/ε)n + n log n) since θ depends polynomially on 1/ε.

4.2 Correctness

To complete the analysis, we prove that the output set of edges satisfy the shortness
and the spanning properties defined in the introduction.

Lemma 4.1. (Shortness property) The total length of the output edges is at most

(1 + 21+θ)9ε−1OPT(Gin, Q).

Proof. For each brick B, the length of any Steiner tree spanning terminals on
∂B is bounded by # (∂B). By construction of the bricks, each edge occurs at most
twice as the edge of a brick boundary, so the sum of brick boundary lengths is at
most 2# (MG). For each brick B, the Cardinality Property for B implies that Step
Spanner 4 finds at most 2θ Steiner trees, each of length at most # (∂B), so the total
length of all Steiner trees found, summing over bricks B, is at most 21+θ · # (MG).
The output also includes each edge of the mortar graph, so the total length of
the output is at most (1 + 21+θ) · # (MG). Appealing to the Mortar-Graph Length
Property completes the proof.

Lemma 4.2. (modified Spanning property) The output contains a tree that spans
all vertices of Q and has length at most (1+ cε)OPT(Gin, Q) where c is a constant.
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Proof. By the Structure Theorem (Theorem 3.2), there exists a tree T in
B+(MG) that spans all vertices of Q and has length at most (1 + cε)OPT(Gin, Q).
For each brick B, for each connected component K of the intersection of T with B,
let Q′ be the set of portals of B belonging to K, and replace K with the optimal
Steiner tree for B and Q′ found in Step Spanner 4. Let T ′ be the subgraph resulting
from all these replacements: we have # (T ′) ≤ # (T ) ≤ (1 + cε)OPT(Gin, Q). By
Lemma 3.1, the edges of T ′, not including the portal edges, form a solution to the
Steiner tree problem for Gin and Q.

We have now completed the proof of Theorem 1.1.

5. APPROXIMATION SCHEME: PROOF OF THEOREM 1.2

In this section we will give the remaining steps of the approximation scheme.
The approximation scheme makes heavy use of planar duality. For a connected

planar embedded graph G, there is another connected planar embedded graph
denoted G∗. The faces of G and the vertices of G∗ are identified; the edges of the
two graphs are identified. We refer to G as the primal graph and to G∗ as the dual.

5.1 Parcels

First we further decompose MG into a set H of subgraphs called parcels. The
construction uses a positive integer parameter η is used at the end of Section 5.4.
We define

η = η(ε) = 18/cε2 (1)

where c is the constant appearing in Theorem 3.2 (and will be defined in the proof
of Theorem 10.7).

Step 4: Decompose the mortar graph MG into a set H of parcels.

A linear-time algorithm for Step 4 is given in Section 8. The basic idea, which comes
from [Klein 2005a], is to use breadth-first search in the dual of MG, together with
the shifting technique of [Baker 1994]. Each parcel is a planar embedded subgraph
of MG. Each edge is in at most two parcels. A boundary edge is one that belongs
to two parcels. We denote the set of boundary edges by ∂H. We say two parcels
are adjacent if they share a vertex. The parcel graph is defined to be the simple
graph whose vertex set is the set of parcels, and whose edges are defined by parcel
adjacency.

The parcel decomposition has the following properties:

Parcel-Boundary Length. # (∂H) ≤ # (MG)/η (Corollary 8.2).

Parcel Graph. The parcel graph is a tree (Corollary 8.9).

Parcel Boundary. For two adjacent parcels, the subgraph of shared vertices and
edges in MG forms a simple nonempty cycle (Corollary 8.9).

Radius. The planar dual of each parcel has a spanning tree of depth at most η+1
(Lemma 8.10).

As we show in Section 8, for each parcel H , the Radius Property makes it possible
to compute an optimal Steiner tree within B+(H) in polynomial time. Our plan
is to compute such an optimal Steiner tree for each parcel and take their union to
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Fig. 3. On the left, the nested cycles that form the boundaries of the parcels are pictured. On the
right, we see that parcels drawn according to their level in the breadth-first search. Given original
terminals x, y and z (left and right), new terminals a and b must be introduced to connect these
through the parcel boundaries (right). Note that when the parcels are separated (as shown on the
right), we get two copies of each terminal that is on the boundary of a parcel.

obtain a solution for the original graph. To ensure that the union of the the parcel
solutions is a connected subgraph of the original graph, in Step 5 we introduce
new terminals on the boundaries of the parcels. Our algorithm for selecting new
terminals uses the Parcel Boundary and Parcel Graph Properties. In Section 5.4,
we use the Parcel-Boundary Length Property to bound the increase in length due
to new terminals and we use the Structure Theorem (Theorem 3.2) to prove that
the length of the union is nearly optimal.

5.2 New terminals

The next step is to introduce some new terminals. The Parcel-Boundary Length
Property, together with Lemma 5.1 below, ensures that connecting to these new
terminals does not increase the length of the optimal parcel solution by much. As
we show in Lemma 5.2, these new terminals will ensure that the Steiner trees we
find within parcels will combine to form a connected subgraph.

A pair of adjacent parcels gives rise to an edge e in the parcel graph. By the
Parcel Boundary Property, the common vertices and edges form a simple cycle, and
we denote it by Ce.

Step 5: Root the parcel graph at some parcel containing a terminal. For each
edge e of the parcel graph that lies on the path from the root to another parcel
containing a terminal, designate as a new terminal some vertex of V (Ce).

(Note that the new terminals are vertices of the mortar graph, not of the bricks.)

Recall that ∂H denotes the set of parcel boundary edges.

Lemma 5.1 Spannability. Let T be a tree in B+(MG) that spans the original
terminals and let H be a parcel. Then T ∪ ∂H contains a tree in B+(H) that spans
the original and new terminals in H.

Proof. We show that the following set of edges is connected and spans all
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terminals:

E(T )
⋃

{E(Ce) : e lies on the path from the root to a parcel containing a terminal}
(2)

Every original terminal belongs to T . Every new terminal belongs to some cycle
Ce appearing in (2). This shows that (2) spans all terminals.

To show that (2) is connected, we show that, for each cycle Ce appearing in (2),
some vertex of Ce belongs to T .

Let R denote the root of the parcel graph as chosen in Step 5. Suppose e lies on
the path in the parcel graph from the root R to a parcel H containing a terminal.
Because R and H both contain terminals, T must contain a path P between a
vertex in R and a vertex in H . The path P induces a path P̂ in the parcel graph
between R and H . By choice of H , this path P̂ must contain e. Therefore P
contains a vertex common to the two parcels whose adjacency is represented by e.
Each such vertex belongs to Ce, so P contains a vertex of Ce.

Lemma 5.2 Connecting Property. For each parcel H, let TH be a tree in
B+(H) that spans the original and new terminals in H. (If H has no terminals,
then TH is empty.) Then

⋃
H TH is a connected subgraph of B+(MG).

Proof. Let R be the root chosen in Step 5. We prove that, for each nonnegative
integer i,

⋃
{TH : H at distance ≤ i from R in the parcel graph} (3)

is connected. The case i = 0 is trivial. We prove the induction step as follows.
Assume that (3) is connected. We show that adding TH for each parcel H

at distance i + 1 from R preserves connectivity. If TH is empty, this is trivial.
Otherwise, H contains a terminal. Let e be the first edge on the path in the parcel
graph from H to R. In Step 5, some vertex v of Ce is designated a new terminal.
Therefore v belongs to the subgraph (3) and also to TH . This shows that adding
TH to the subgraph (3) preserves connectivity.

5.3 Construction

Step 6: For each parcel H , find an optimal Steiner tree in B+(H) spanning the
original and new terminals in H .

This step is solved by a O(kθηm)-time dynamic programming algorithm where m
is the number of edges in H and k is a constant. The details are in Section 9.

Step 7: Return the union of the edge-sets of all the Steiner trees found in Step 6
(not including portal edges).

This completes the high-level description of the approximation scheme.

The running time of the approximation scheme is given by the sum of the running
times of Steps 1 through 6, which is O(2poly(1/ε)n + n log n) and will be given by
the algorithms details in Sections 6 through 9.
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5.4 Correctness

We first need to check that the output is a valid solution to the Steiner tree problem
for Gin and Q. By the Connecting Property of new terminals (Lemma 5.2), the
union of the Steiner trees spans the original terminals in B+(MG). By Lemma 3.1,
therefore, the output is a connected subgraph of Gin that spans the original termi-
nals.

We need to compare the length of the output to the length of an optimal solution.
Let Q̂ denote the set of new terminals.

Let T be the optimal Steiner tree in B+(MG) spanning the set Q of original
terminals. By the Spannability Property of the new terminals (Lemma 5.1), for
each parcel H , there is a (possibly empty) tree TH in B+(H) consisting of edges of
T ∪ ∂H spanning all the new and original terminals in H . We have:

OPT(B+(H), Q ∪ Q̂) ≤ # (TH) = # (TH − ∂H) + # (TH ∩ ∂H).

Every edge of T not in ∂H appears in TH for exactly one parcel H , and so∑
H # (TH − ∂H) ≤ # (T ) = OPT(B+(MG), Q). Every edge of ∂H appears in two

parcels, and so
∑

H # (TH ∩ ∂H) ≤ 2 · # (∂H). Thus the length of the output is at
most

OPT(B+(MG), Q) + 2# (∂H).

By Theorem 3.2, the first term is bounded by (1+ ε) OPT(Gin, Q). For the second
term, combining the Parcel-Boundary Length Property (Section 5.1), the definition
of η (Equation (1)), and the Mortar-Graph Length Property (Section 3), we obtain
# (∂H) ≤ 1

2cεOPT(Gin, Q), where c is the constant in the statement of Theorem 3.2.
Adding the two terms completes the proof of Theorem 1.2.

6. STEP 1: DEFINING THE MORTAR GRAPH

In this section, we give the details for Step 1, construction of the mortar graph.
The construction of the mortar graph MG of Gin and Q is illustrated in Fig-

ures 1(a) and (b). Steps 1(a) through (d) of the algorithm for constructing MG are
identical to the first steps of [Klein 2006] for a subset spanner.

Step 1(a): Find a 2-approximate Steiner tree T spanning Q in Gin.

Viewed as a planar embedded graph, the graph induced by the edges of T has a
single face whose boundary is an Euler tour that traverses each edge once in each
direction.

Step 1(b): Let G1 be the planar embedded graph obtained by duplicating each
edge of T and introducing multiple copies of vertices, thereby transforming the
Euler tour corresponding to T into a simple cycle H that encloses no vertices
and bounds a single new face.

This process is illustrated in Figure 4. Change the embedding to take this new
face to be the infinite face of G1.

Lemma 6.1. [Klein 2006] # (H) ≤ 4 OPT(Gin, Q).

Step 1 can be done in O(n log n) time [Mehlhorn 1988; Widmayer 1986; Wu et al.
1986].
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(a)

!

(b) (c)

!"

Fig. 4. The process of cutting open a graph along a tree T (a): duplicate edges, replicate vertices
(b) and create a new face, fT (c).

We next decompose G1 into strips. Let H [x, y] denote the x-to-y subpath of ∂G1

(which is precisely H) in the counterclockwise direction in the embedding. If x = y
then by convention H [x, y] = H . We use a recursive algorithm to find ε-short paths
in G1.

Definition 6.2 ε-short. A path P in a graph G is ε-short in G if for every pair
of vertices x and y on P , the distance from x to y along P is at most (1 + ε) times
the distance from x to y in G: distP (x, y) ≤ (1 + ε)distG(x, y).

Step 1(c): Find vertices x, y on H such that H [x, y] is a minimal subpath of
H that is not ε-short in H . (Such a pair of vertices always exists since H [x, y]
with x = y is not ε-short.) Let N be a shortest path from x to y in G1: the
subgraph enclosed by H [x, y]∪N is called a strip. Recursively decompose the
subgraph of G1 enclosed by N ∪ (H − H [x, y]) into strips (if this subgraph is
nontrivial).

Step 3 is illustrated in Figure 5(a) and (b). The path N (a shortest path) is
called the north boundary of the strip. The path H [x, y] (whose interior is an
ε-short path) is called the south boundary of the strip, and is denoted S.

Lemma 6.3. (Inequality (10), Klein [Klein 2006]) The total length of all the
boundary edges of all the strips is at most (ε−1 + 1) times the length of H.

Klein [Klein 2006] shows that the strip decomposition of an n-vertex planar graph
can be found in O(n log n) time using the shortest-path algorithm of [Klein 2005b].

In the next step, for each strip we find short paths crossing the strip, called
columns. Consider a strip, with north and south boundaries N and S. We select
vertices s0, s1, . . . on S inductively as follows. Embedding the strip with the north
boundary above the south boundary, we direct S and N from left to right. Let s0

be the left endpoint common to S and N . By convention column C0 is defined to
be the (empty) shortest path from s0 to N .

Step 1(d): For i = 1, 2, . . ., find the first vertex si on S (in left-to-right order)
such that the distance from si−1 to si along S is greater than ε times the
distance from si to N in the strip: distS(si−1, si) > ε diststrip(si, N) Column
Ci is defined to be the shortest path in the strip from si to N .
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We also include as a column the trivial path starting and ending at the rightmost
vertex common to S and N . Columns are illustrated in Figure 5(c).

(a)

G’

x
yx’ y’ (b)

G’

(c)

N

S

Fig. 5. (a) The first strip is created by a path (dashed) connecting x to y. The distance between
every pair of vertices, x′ and y′, between x and y on the boundary is well approximated by the
boundary distance. We recurse on the shaded face. (b) A graph is divided into strips (by the
dashed lines). One strip is shaded and enlarged in (c). Columns (vertical lines) are taken from the
set of shortest paths from the lower, south boundary S (dashed) to the upper, north boundary N

(solid).

Lemma 6.4 Lemma 5.2, Klein [Klein 2006]. The sum of the lengths of the
columns in a strip is at most ε−1# (S).

Klein [Klein 2006] describes how to reduce the problem of finding the columns in a
strip to a single shortest-path computation in the strip. It is therefore easy to find
all the columns in O(n) time.

Let

κ = κ(ε) = 4ε−2(1 + ε−1). (4)

In the next step, for each strip we select a subset of the columns C0, C1, . . . , Cs of
that strip as follows:

Step 1(e): Let Ci = Ci ∪ Ci+κ + ∪Ci+2κ ∪ . . . for i ∈ {0, 1, . . . , κ − 1}. Let
i∗ be the index that minimizes # (Ci). We designate the columns in Ci∗ as
supercolumns.

Lemma 6.5. The sum of lengths of the supercolumns in a strip is at most 1/κ
times the sum of the lengths of the columns in the strip.

Lemma 6.6. The sum over the strips of the lengths of all the supercolumns is at
most ε OPT(Gin, Q).

Proof. Combine Lemmas 6.1, 6.3, 6.4, 6.5 and Equation (4).

Definition 6.7 Mortar graph. We define the mortar graph MG of Gin to be the
planar embedded subgraph consisting of the edges of the 2-approximate Steiner
tree T of Step 1, the edges of the shortest paths used in Step 2, and the edges of
the supercolumns in Step 5.

The mortar graph is illustrated in Figure 1(b).

Lemma 6.8. (Terminal Property) Every terminal in Q is a vertex of MG.
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In fact every terminal is a vertex of a strip boundary. This establishes the Terminal
Property given in the overview of the algorithm. Next we establish the Length
Property. We bound the total length of MG as follows:

Lemma 6.9. (Mortar-Graph Length Property) The length of MG is at most
9ε−1OPT(Gin, Q).

Proof. From Lemma 6.1 and Lemma 6.3, we have that the lengths of the strip
boundaries is at most 4(ε−1 +1)OPT(Gin, Q). From Lemma 6.6, the lengths of the
supercolumns is at most ε OPT(Gin, Q). Adding those quantities yields

# (MG) ≤ 4(1 + ε + ε2/4)ε−1OPT(Gin, Q),

hence the Lemma for ε < 1.

The construction of the mortar graph takes O(n log n) time (independent of ε)
in total.

The boundary of a brick B is the union of subpaths NB and SB of the north and
south boundaries of a strip and two supercolumns EB and WB (east and west).
The construction implies the following lemma, which summarizes the properties of
a brick.

Lemma 6.10. The boundary of a brick B, in counterclockwise order, is the con-
catenation of four paths WB ∪ SB ∪ EB ∪ NB such that:

(1 ) The set of edges B − ∂B is nonempty.

(2 ) Every terminal of Q that is in B is on NB or on SB.

(3 ) NB is 0-short in B, and every proper subpath of SB is ε-short in B.

(4 ) There exists a number k ≤ κ and vertices s0, s1, s2, . . . , sk ordered from west to
east along SB such that, for any vertex x of SB[si, si+1), the distance from x to
si along SB is less than ε times the distance from x to NB in B: distSB (x, si) <
ε distB(x, NB).

7. STEP 3: DESIGNATING PORTALS

In this section, we give the details for Step 3, portal selection.
For each brick B, we designate a subset of the vertices of the boundary ∂B as

portals of the brick. Let

θ = θ(ε) = 2α(ε)9ε−2, (5)

where α(ε) will be defined in Theorem 10.7. We use the following greedy algorithm:

Step 3(a):

Let v0 ∈ V (∂B) be the endpoint of an edge strictly enclosed by ∂B.
Designate v0 as a portal vertex.
Set i = 0.
Repeat:

Let vi be the first vertex of ∂B such that # (∂B[vi−1, vi]) > # (∂B)/θ.
If v0 ∈ V (∂B(vi−1, vi]), stop.
Otherwise, designate vi as a portal vertex.
Set i = i + 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.



A PTAS for Steiner Tree in Planar Graphs · 15

The following lemma follows trivially:

Lemma 7.1. (Coverage Property) For any vertex x on ∂B, there is a portal y
such that the x-to-y subpath of ∂B has length at most # (∂B)/θ.

Lemma 7.2. (Cardinality Property) There are at most θ portals on ∂B.

Proof. Suppose there are p iterations. Each iteration selects a subpath of length
more than # (∂B)/θ, so we have # (∂B) ≥

∑p
i=1 # (∂B[vi−1, vi]) > p # (∂B)/θ, and

so it follows that p < θ.

The running time of this step is linear.

8. STEP 4: DECOMPOSITION INTO PARCELS

In this section, we give details for Step 4, decomposition into parcels.
Let t0 be a terminal, and let r be a face of MG whose boundary includes t0.

Step 4(a): Do breadth-first search in the planar dual MG∗ starting from r.

Define the level of a vertex of MG∗ (face of MG) as its breadth-first-search dis-
tance from r. Let Ei denote the set of edges whose two endpoints are at levels i
and i + 1. Recall the parameter η defined in Equation (1).

Step 4(b): For k = 0, 1, . . . , η − 1, let Ek = Ek ∪ Ek+η ∪Ek+2η ∪ . . .. Let k∗ be
the index that minimizes # (Ek).

Let Y denote the set of connected components of MG∗ − Ek∗ . For each Y ∈ Y,
let HY denote the subgraph of MG consisting of the boundaries of faces in V (YK)
The set of parcels of MG is H = {HY : Y ∈ Y}

Step 4(c): Find the set H of parcels of MG.

This step takes O(n) time.
Next we prove the Parcel-Boundary Length, Parcel Boundary, Parcel Graph, and

Radius Properties given in Section 5.1. Except for Corollary 8.2 given below, the
rest of this section gives formal proofs of properties which are intuitively obvious
considering Figure 3. (The cursory reader may wish to simply stare at that figure
until the Parcel Boundary, Parcel Graph, and Radius Properties are believable.)

Lemma 8.1. Every boundary edge belongs to Ek∗ .

Proof. Suppose e is a boundary edge, belonging to two parcels HY1 and HY2 .
In MG, e is on the boundary of a face f1 ∈ V (Y1) and a face f2 ∈ V (Y2). In MG∗, e
is incident to both vertex f1 and vertex f2. Since Y1 and Y2 are distinct connected
components of MG∗ − Ek∗ , we conclude that e ∈ Ek∗ .

Corollary 8.2. (Boundary Length Property) # (∂H) ≤ # (MG)/η.

Proof. By definition of k∗, # (Ek∗) ≤ # (MG)/η.

For a graph G and a subset W of vertices, let δ(W, G) denote the set of edges e
of G such that e has exactly one endpoint in W . The following is a classical result
in planarity [Whitney 1933]:
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Lemma 8.3. Let G be a planar embedded graph. If the subgraph of G induced
by W is connected and the subgraph of G induced by V (G) − W is also connected,
then the edges of δ(W, G) form a simple cycle in the planar dual G∗.

For an interval [i, j], we denote by MG∗[i, j] the subgraph of MG∗ induced by
vertices whose breadth-first-search distance from r is in [i, j].

Lemma 8.4. For a positive integer i, and for any connected component K of
MG∗[i,∞), the edges of δ(V (K),MG∗) form a simple cycle in MG.

Proof. Consider any vertex v of MG that is not in K, and let P be the v-to-r
path through the breadth-first search tree. Then P = P1 ◦ P2 where P1 (which
might be empty) consists of vertices of level at least i, and P2 consists of vertices
of level less than i. Because v is not in K, P1 contains no vertices of K. Certainly
P2 contains no vertices of K because every vertex of K has level at least i. Hence
P contains no vertices of K.

We have shown that the subgraph of MG∗ consisting of vertices not in K is
connected. By Lemma 8.3, the edges of δ(V (K),MG∗) form a simple cycle in
MG.

We denote by CK the simple cycle of Lemma 8.4. When we consider the face r of
MG as the infinite face, the faces enclosed by CK are exactly the vertices of K.

Lemma 8.5. Two vertices u and v of MG∗ whose levels are in [i, j] are B con-
nected in MG∗[i, j] iff they are connected in MG∗[i,∞).

Proof. Let P be a u-to-v path in MG∗[i,∞), chosen to minimize the number
of vertices of P that are at levels greater than j. Suppose for a contradiction that
this number is positive, and let P ′ be a maximal subpath of P consisting of vertices
at levels greater than j. Let K be the connected component of MG∗[j + 1,∞)
containing P ′. The edges of CK form a simple cycle e1 e2 · · · eg in MG. For
j = 1, . . . , g, let fj be the face whose corresponding vertex in MG∗ is at level i and
whose boundary includes ej . Note that the vertices of P just before and just after
P ′ are among f1, . . . , fg.

For j = 1, . . . , g−1, since the common endpoint of ej and ej+1 in MG has degree
at most three, either fj and fj+1 are the same or they share an edge on their
boundaries. This shows that f1, . . . , fj are connected, which contradicts the choice
of P .

For Y ∈ Y, define the level of Y to be the minimum breadth-first-search level of
a vertex belonging to Y . For Y, Ŷ ∈ Y, if the level of Ŷ is less than that of Y and
Ŷ is adjacent to Y , we say Ŷ is a parent of Y .

Lemma 8.6. For Y ∈ Y, if the level of Y is greater than zero then Y has exactly
one parent.

Proof. Let i + 1 be the level of Y , and let u be a vertex of Y whose level is
i + 1. Since i + 1 > 0, u has a parent v in the breadth-first-search tree. Thus at
least one component of MG∗[i − η, i] is adjacent to Y . Let w be any other level-i
vertex that is adjacent to Y . By Lemma 8.5, v and w are connected in MG∗[i−η, i].
This shows that there is only one component of MG∗[i−η, i] adjacent to Y . By the
properties of breadth-first-search, no node adjacent to Y has level less than i.
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Lemma 8.7. For some i > 0, let K be a connected component of MG∗[i,∞).
Suppose that in MG there is a vertex v that is on the boundary of some face in
V (K) and also on the boundary of some face not in V (K). Then v is on CK .

Proof. The vertex v is on the boundary of a face enclosed by CK and a face
not enclosed by Ck, so by planarity it must be on CK .

Lemma 8.8. Suppose Y ∈ Y has level greater than 0 and Ŷ is the parent of Y .
The vertices and edges in MG common to HY and HŶ form a simple cycle in MG.

Proof. Let i + 1 be the level of Y . Let K be the connected component of
MG∗[i + 1, i + η] that contains Y . An edge belongs to both HY and HŶ if in
MG∗ the edge has level i and is incident to Y . Such edges are exactly the edges of
δ(V (K),MG∗), so they form the simple cycle CK .

Suppose a vertex v is common to HY and HŶ . Then it belongs to the boundary
of a face in V (K) and a face not in V (K), so by Lemma 8.7 it is on CK . Conversely,
any vertex on CK is on the boundary of a face of HY and a face of HŶ .

Corollary 8.9. (Parcel Graph Property and Parcel Boundary Property) The
parcel graph is a tree, and, for two adjacent parcels, the subgraph of shared vertices
and edges in MG forms a simple nonempty cycle.

Proof. Let HY1 and HY2 be any pair of adjacent parcels. We show that Y1 is
the parent of Y2 or vice versa. By Lemma 8.6, this shows that the parcel graph is
a tree, and Lemma 8.8 shows that the vertices and edges shared by HY1 and HY2

form a simple nonempty cycle.
By definition of adjacent parcels, there must exist faces f1, f2 of MG such that

f1 ∈ V (Y1), f2 ∈ V (Y2), and v is on the boundary of both f1 and f2. Since the
input graph has degree at most three, v has degree at most three, so it follows that
f1 and f2 have an edge e in common. By Lemma 8.1, e ∈ Ek∗ . Therefore the level
of e must be k∗ + i · η for some nonnegative integer i. That is, the levels of f1 and
f2 must be k∗ + i · η and k∗ + i · η + 1, in some order. Therefore the level of one of
Y1, Y2 must be less than that of the other, so one is the parent of the other.

Lemma 8.10. (Radius Property) The planar dual of each parcel has a spanning
tree of depth at most η + 1.

Proof. Consider a component Y ∈ Y, and let i be the level of Y . . First
suppose i > 0.

Let K be the connected component of MG∗[i,∞) that contains Y . The edges
of δ(V (K),MG∗) appear in the parcel HY because they are on the boundaries of
faces belonging to V (Y ). Moreover, by Lemma 8.4 they form a simple cycle CK in
MG. The faces in V (K) (including faces in V (Y ) are all embedded on one of the
two sides of CK in MG. Therefore the other side has no edges of HY , so CK is the
boundary of a face of HY . Let us denote this face by rY . The edges comprising its
boundary all have level i − 1.

Now suppose i = 0, which means Y contains the breadth-first-search root r. In
this case, the edges of level zero are the edges incident to r in MG∗. These edges
form the boundary of a face that is in MG∗ and in Y . Let rY denote this face.
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Let j be the maximum breadth-first-search level of a node in Y . By Step 2,
j− i+1 ≤ η. Hence each such node is at most η hops from the face rY in the graph
H∗

Y .
Finally, let f be a face of H∗

Y that is not rY and is not a face of MG. By definition
of HY , some edge e of the boundary of f also belongs to the boundary of some face
f ′ ∈ V (Y ). Hence f is at most η + 1 hops from rY in H∗

Y .

9. STEP 6: FINDING A STEINER TREE IN THE PARCELS

In this section, we give the details of Step 6. We use dynamic programming.

9.1 Defining the recursion tree

Let H be a parcel in the set of parcels H found in Step 4. In this section, we
will show that for any set of terminals that are in the vertex set of H , there is a
dynamic programming algorithm with running time O(cθηm) to find an optimal
Steiner tree in B+(H), where m is the number of edges of B+(H). Recall that
B+(H) is obtained by embedding bricks in those faces of H for which bricks are
defined and connecting each brick to the corresponding face of H via at most θ
portal edges.

By Lemma 8.10, the dual graph H∗ has a breadth-first search tree T ∗ of depth
at most η + 1. The following lemma is a classical result in planarity [Sommerville
1929]:

Lemma 9.1. For any connected planar graph G, the set of edges not belonging
to a spanning tree of G∗ forms a spanning tree of G.

Step 6(a): Let T be the set of edges of H not in T ∗.

Next we describe another operation, applicable to a graph B+(H) obtained from
a graph H by applying the brick-insertion operation from Section 3.3. The new
operation is called brick contraction, and is denoted B÷(B+(H)). Starting with
B+(H), contract each brick to a single vertex, called a brick vertex, as illustrated
by Figure 1(e). The mortar edges of B+(H) are unaffected by this operation. Note
that the degree of each brick vertex is the number of portals for the corresponding
brick, which is at most θ by Lemma 7.1. The graph B÷(B+(H)) differs from H in
that it has a single vertex connected to H via portal edges rather than a brick.

Step 6(b): For each face of H that is the mortar boundary of a brick B, let eB

be the portal edge corresponding to the first portal vertex selected for B (see
Step 1). Let T̂ := T

⋃
B{eB}.

Observe that T̂ is a spanning tree of B÷(B+(H)).

Lemma 9.2. The degree of T̂ in B÷(B+(H)) is at most 3.

Proof. Note that each vertex of T̂ is either a vertex of H or the result of a brick
contraction.

If a vertex v of T̂ is obtained by contracting a brick B, then eB is the only edge
in T̂ adjacent to v: v has degree 1.
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If v is a vertex of H , then certainly v has degree at most 3 in Gin (by assumption
as mentioned in Section 2). So v has degree at most 3 in both H and T , which are
subgraphs of Gin. Since the first portal for a brick B has degree 3, with one edge
enclosed by ∂B and two edges in ∂B contributing to the degree, a vertex can only
be the first portal for one brick (see Step 1). If v is the first portal chosen for brick
B, then v has degree at most 2 in H , and the addition of eB gives degree at most
3.

Root T̂ at a non-brick-vertex of degree at most two. For each vertex v of T̂ , let
T̂ (v) denote the set of descendents of v in T̂ .

Lemma 9.3. In the graph B÷(B+(H))), there are at most 2θη + 1 edges between
T̂ (v) and the rest of the graph.

Proof. Let T̂ ∗ be the set of edges of B÷(B+(H)) not in T̂ . By Lemma 9.1,
T̂ ∗ forms a spanning tree of the dual graph (B÷(B+(H)))∗. Comparing T̂ ∗ to the
spanning tree T ∗ of H∗, we see that each vertex of T ∗ obtained by contracting a
brick B corresponds to a path in T̂ ∗ consisting of all but one of the portal edges
associated with B. Such a path has length at most θ − 1. Since the depth of T ∗ is
at most η (Lemma 8.10), the depth of T̂ ∗ is at most θη.

Now we use an argument from [Klein 2005a]. Let v be any vertex of T̂ other
than the root, and let ev be the edge connecting v to its parent. Then ev is not in
the tree T̂ ∗. The path in T̂ ∗ between the endpoints of ev has at most 2θη edges.
Combining this path with ev yields a simple cycle in the dual graph (B÷(B+(H)))∗

having at most 2θη + 1 edges. The edges of this cycle are exactly the edges in the
cut δ(V (T̂ (v)),B÷(B+(H))) in the primal graph (Lemma 8.3).

9.2 The dynamic programming table

Step 6(c): Solve the Steiner problem on B+(H) by doing dynamic programming
guided by the tree T̂ .

For each vertex v of T̂ , define

f(v) =

{
B if v is the result of contracting a brick B
v otherwise

,

and define W (v) to be the subgraph of B+(H) induced by
⋃
{f(w) : w ∈

T̂ (v)}. It follows from Lemma 9.3 that δ(V (W (v)),B+(H)) = 2θη +1 which equals
δ(V (T̂ (v)),B÷(B+(H))).

Since T̂ − T̂ (v) is connected, the complement of V (W (v)) is connected and by
Lemma 8.3, δ(V (W (v)),B+(H)) is a cycle e1e2 . . . ed in the dual graph (B+(H))∗.
This defines a cyclic ordering of the edges of δ(V (W (v)),B+(H)). A noncrossing
partition of δ(V (W (v)),B+(H)) is a partition in which no two blocks “cross” each
other, i.e., if ei and ej belong to one block and ek and e% to another, in the cyclic
ordering they are not arranged in the order eiekeje%. It follows from Lemma 9.3 and
the following well-known Catalan bound that the number of noncrossing partitions
is at most 42θη+1:

Lemma 9.4. [Catalan 1838] The number of non-crossing partitions of {1, 2, . . . , n}
is Cn, the nth Catalan number, which is less than 4n/(n + 1).
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For a partition C of δ(V (W (v)),B+(H)), we say a subgraph L of W (v) is consis-
tent with C if it satisfies the following consistency properties:

(1) For each set S ∈ C, there is a connected component KS of L that contains an
endpoint of each edge in S.

(2) Every connected component of L that does not contain all terminals of B+(H)
includes an endpoint of some edge appearing in C.

Define the C-cost of L to be
∑

{# (KS) + 1
2# (S) : S ∈ C}.

Suppose A is a connected subgraph of B+(H) that spans the terminal of H . Let L
be the intersection of A with the subgraph W (v). Let the connected components of
L be K1, . . . , Kp. Define Si to be the set of edges of A∩δ(V (W (v)),B+(H)) incident
to vertices of Ki. Then note that L is consistent with the partition C = {S1, . . . , Sp},
that C is noncrossing, and that the C-cost of L is # (L)+ 1

2# (A∩δ(V (W (v)),B+(H))).
A subgraph L of W (v) is terminal-covering if every terminal in W (v) is in L.

Note that if A is a connected subgraph of B+(H) that spans its terminals, then the
intersection of A with W (v) is terminal-covering.

We define the subproblem corresponding to T̂ (v) to be the construction of a ta-
ble Tabv[·] indexed by noncrossing partitions C of δ(V (W (v)),B+(H)) such that
Tabv[C] = minL∈L(C-cost of L) where the minimum is over all terminal-covering
subgraphs L of W (v) that are consistent with C.

9.3 Filling in the entries of the dynamic programming table

Solving the subproblems uses dynamic programming.
First suppose v is a leaf of T̂ . If v is a vertex of H then the corresponding subprob-

lem is trivial. If v is the result of having contracted a brick B, then W (v) = B and
δ(V (W (v)),B+(H)) is the set of portal edges corresponding to B. By Lemma 7.1,
there are at most θ such edges. Since H contains all the terminals, B contains
no terminals, and every subgraph of B is terminal-covering. For each partition
C = {S1, . . . , Sp} of the portal edges of B, we compute the value of Tabv[C] as
follows: for each set Si, find the optimal Steiner tree spanning the endpoints of
Si in B in O(θ3m) time, where m is the number of edges of B (Theorem 1.3).
Let Tabv[C] be assigned the sum of the lengths of these trees.2 The number of
noncrossing partitions is at most 4θ, so the time to populate Tabv[·] is O(4θm).

Given a collection {X1, . . . , Xp} of sets of edges, say two edges are related if they
appear in the same set Xi. Let Y1, . . . , Yq be the equivalence classes of the transitive
closure of this relation. In the following pseudo-code, we refer to {Y1, . . . , Yq} as
the transitive closure of {X1, . . . , Xp}.

Suppose v is not a leaf. Then v is a vertex of H , (i.e. f(v) = v), and v has
either one or two children in our recursion tree T̂ . Let v1, . . . , vs be its children,
1 ≤ s ≤ 2. We use the following algorithm to fill in Tabv[·]:

1 Initialize each entry of Tabv to ∞.
2 For each tuple (C0, C1, . . . , Cs) of noncrossing partitions of

δ({v},B+(H)), δ(V (W (v1)),B+(H)), . . . , δ(V (W (vs)),B+(H)),
3 if each edge not in δ(V (W (v)),B+(H)) occurs zero or two times in

2The edges of δ(B) are portal edges, so have zero length.
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C0 ∪ · · · ∪ Cs, and C0 is nonempty if v is a terminal,
4 let C′ be the transitive closure of C0 ∪ · · · ∪ Cs.
5 If every set in C includes some edge of δ(V (W (v)),B+(H)),
6 let C be the restriction of C′ to δ(V (W (v)),B+(H)).
7 Assign Tabv[C] := max{Tabv[C],

∑s
i=1 Tabvi [Ci] + 1

2# (
⋃
C0)}.

To prove correctness, consider a tuple in Line 2. By induction, for each Ci

(i = 1, . . . , s), there is a corresponding subgraph Li. By unioning these subgraphs
with the edges in

⋃s
i=0 Ci − δ(V (W (v)),B+(H)), we obtain a subgraph L. The

inductive hypothesis and the condition in Line 3 ensure that L is terminal-covering.
The inductive hypothesis and the condition in Step 3 imply the first consistency
property. The inductive hypothesis and the condition in Line 5 imply the second
consistency property.

We now analyze the running time of the dynamic program. Since v has degree
at most 3, for a non-leaf vertex v, the number of partitions C0 is at most 23. Since
s ≤ 2, the number of tuples of partitions is at most 42θη. The time required for
the dynamic program, not including the leaves, is therefore O(23 · 42θηn1), where
n1 ≤ n is the number of non-leaf vertices in the tree T̂ . The time for all the leaves
of T̂ is bounded by O(4θm) where m = O(n) is the total number of edges in all
bricks B in B+(H). The total time is therefore O(24θηn+22θm) = O(24θηn) where
n is the number of vertices in B+(H).

10. PROOF OF THE STRUCTURE THEOREM (THEOREM 3.2)

10.1 Simplifying trees

In this self-contained section, we establish a few combinatorial lemmas that simplify
trees whose leaves lie on an ε-short path (Definition 6.2). These lemmas will be
used in Section 10.2.

Lemma 10.1. Let G be a planar embedded graph and let T be a tree in G whose
leaves all lie on an ε-short path P . There is a subpath of P spanning the vertices
of T ∩ P whose total length is at most (1 + ε)# (T ).

Proof. Let P ′ be the shortest subpath of P that spans all the vertices of T ∩P .
There is a path Q in T between the endpoints of T . Since P is ε-short, # (P ′) <
(1 + ε)# (Q) ≤ (1 + ε)# (T ).

In the rest of this subsection, G is a planar embedded graph and T is a tree in
G rooted at a vertex r with leaves on an ε-short path P that is a subpath of the
boundary ∂G of G.

Lemma 10.2. There is a tree T ′ that (a) is also rooted at r, (b) spans all the
vertices of T ∩ P , (c) is binary, and (d) has length at most (1 + ε)# (T ),

Proof. If T is binary then T ′ = T . Else, let U be the set of rootmost vertices
of T with at least three children, and for each u ∈ U , let Tu be the subtree of T
rooted at u. The trees Tu are disjoint from one another. For each u ∈ U , replace
Tu with T ′

u consisting of (1) the subpath P ′ of P that spans all the leaves of Tu

and (2) the shortest u-to-P path. The resulting tree T ′ satisfies properties (a), (b)
and (c) by construction.
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To analyze the length of T ′, note that Tu has length equal to distG(u, P ′)+# (P ′).
Since u has at least three children in T , it must be that Tu contains three disjoint
paths from u to P ′, including paths Q1 and Q2 to the endpoints of P ′ and a third
path Q3 to some other vertex of P ′. Note that # (Q1)+# (Q2) is at least the distance
in G between the endpoints of P ′ which in turn is at least # (P ′)/(1 + ε) because
P is ε-short. Also, # (Q3) ≥ dist(u, P ′). Combining, we get the following bound on
the length of T ′

u:

# (T ′
u) = # (P ′) + distG(u, P ′)

< (1 + ε)(# (Q1) + # (Q2)) + # (Q3)

< (1 + ε)# (Tu).

Summing over all u ∈ U , we infer that # (T ′) ≤ (1 + ε)# (T ).

Definition 10.3 Joining vertex. Let H be a subgraph of G such that P is a path
in H . A joining vertex of H with P is a vertex of P that is the endpoint of an edge
of H − P .

Lemma 10.4. There is a tree T̂ that (a) is also rooted at r, (b) spans all the
vertices of T ∩P , (c) has length at most (1 + 4 · ε)#(T ), and such that (d) T̂ has at
most 11 · ε−1.45 joining vertices with P .

Proof. Let T ′ be the tree derived from T in Lemma 10.2. Starting from T ′,
we construct a tree T ′′ from T ′ that satisfies the properties of the lemma. We
partition the edges of T ′ into super-edges, defined by maximal paths in T ′ whose
internal vertices all have degree 2 in T ′. The level of a superedge is equal to the
number of super-edges traversed when going from the root of T ′ to the beginning
of the super-edge. The endpoints of a super-edge are called super-vertices and the
level of a super-vertex is equal to the number of super-edges traversed when going
from the root of T ′ to the super-vertex.

Select a level k > 0 (to be determined shortly). Let U be the set of all super-
vertices at level k. For each u ∈ U , replace the subtree T ′

u of T ′ rooted at u with
another tree T ′′

u rooted at u that is the union of the shortest subpath P ′ of P
spanning the vertices of T ′

u ∩ P and the shortest u-to-P ′ path (Figure 6(a)). After
all such replacements, we get a new tree, T ′′, which satisfies Properties (a) and (b)
by construction.

Say that a super-edge (u, v) is a zig-zag edge if the two-step path from the parent
p(u) of u to u to v, either goes from p(u) to a left child and from u to a right child,
or goes from p(u) to a right child and from u to a left child. For each level i, let Li

denote the total length of the zig-zag super-edges at level i.
Note that for each vertex in level i > 0, exactly one child super-edge is in Li.

Let u be a vertex in level k. Let e be the super-edge in Lk whose parent is u (as
illustrated in Figure 6 (a)). Let Q1 be the path in T ′ between the endpoints of P ′

and let Q2 be the path from u to P that traverses e, makes a zig-zag turn, and
subsequently never makes a turn again until reaching P ′. We have:

# (T ′′
u ) = # (P ′) + distG(u, P ′) ≤ (1 + ε)[# (Q1) + # (Q2)].

Note that T ′′
u contains no turning superedge of level greater than k, and that only
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e appears in both Q1 and Q2, and so

# (T ′′) ≤ (1 + ε)[# (T ′) + Lk − (Lk+2 + Lk+3 + Lk+4 + · · ·)].

Claim 10.5. Let k0 = )logΦ(
√

5/ε + 1)+ (where Φ is the golden ratio). Then
there exists k ≤ k0 such that Lk ≤ ε# (T ′) + Lk+2 + Lk+3 + · · · + Lk0 .

Proof. Otherwise, for every k = 1, 2, . . . , k0, we have Lk > ε# (T ′) + Lk+2 +
Lk+3 + · · · + Lk0 , hence L1 > ε# (T ′)Fibk0 , where Fibk0 is the k0

th Fibonacci
number, which is greater than 1/ε. Thus L1 > # (T ′), a contradiction.

Choosing k according to the above Lemma yields # (T ′′) ≤ (1 + ε)2# (T ′), hence
Property (c).

Since each vertex of T ′′ has at most two children, the number of super-vertices
at level k is at most

2k ≤ 21+logΦ(
√

5(1/ε+1)) < 11 · ε−1.45

using our assumption that ε < 1, hence Property (d).

(a)

!"!#

$
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'

(b)

!

"

Fig. 6. (a) The dotted tree
replaces the subtree rooted
at u. The solid path be-
tween the endpoints of P ′

through u is Q1. The dashed
path from u to P ′ whose first
edge is e is Q2. (b) The bold
edges are in E1. The dotted
edges are in L2.

Lemma 10.6. Let p and q be two vertices of T . There is another tree T̂ that
spans p and q and the vertices of T ∩ P such that # (T̂ ) ≤ (1 + c1ε)# (T ) and T̂ has
at most c2 · ε−2.5 joining vertices with P , where c1 and c2 are constants.

Proof. Let Q be the unique p-to-q path in T . Removing the edges of Q from
T breaks T into a forest with k trees rooted at vertices of Q and leaves on P :
T = {T1, T2, . . . , Tk}, numbered according to the order of their leaves along P
(which is well defined, since P is on the boundary of the graph). We include as
(trivial) trees in this sequence all joining vertices of P with Q. Without loss of
generality, assume that p is the root of T1 and q is the root of Tk. The root of Ti

is ri.
First we define a transformation:

Let Ta and Tb be such that a ≤ b. Let x be the first vertex of Ta along
P and let y be the last vertex of Tb along P . Obtain a tree T ′ from T
by removing Ta, Ta+1, Ta+2, . . . , Tb and the ra-to-rb subpath of Q and
adding the paths from ra to x in Ta, from x to y along P , and from y
to rb in Tb (as illustrated in Figure 7).
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The p-to-q path in T ′, which we denote Q′, is composed of the q-to-ra subpath
of Q, the ra-to-x path in Ta, the x-to-y path of P , y-to-rb path in Tb, and the
rb-to-p subpath of Q. By construction, p and q are vertices of T ′. Further, this
transformation guarantees that T ′ spans the vertices of T ∩ P : a tree Ti that is
removed from T has leaves on the x-to-y subpath of P , which is included in T ′. So,
T ′ spans the vertices required by the Lemma.

The increase in length due to this transformation is given by

Φ = # (Ta[ra, x]) + # (Tb[y, rb]) + # (P [x, y]) − # (Q[ra, rb]) −
b∑

i=a

# (Ti).

AfterBefore

Fig. 7. The path Q is replaced by Q′, allowing us to remove the trees rooted between a and b.

Now we find values of a and b for the transformation that reduces the number
of joining vertices of the tree with P while not increasing the length of the tree by
much. Let P ′ be the shortest subpath of P that spans the vertices of T ∩P . Say a
subtree Ti is light if # (Ti) < ε# (P ′) and heavy otherwise. Let I = {i : Ti is light}.
Let

w =

{
(min I) − 1 + k − (max I) if I ,= ∅
k otherwise

Case I, w ≥ ε−1 + 2. In this case, there are at least ε−1 + 2 heavy trees in T .
We apply the transformation described above with a = 1 and b = k. The increase
in length is given by:

Φ = # (T1[p, x]) + # (Tk[y, q]) + # (P [x, y]) − # (Q) −
k∑

i=1

# (Ti)

≤ # (P ′) −
k−1∑

i=2

# (Ti)

< # (P ′) − ε−1ε# (P ′), since there are at least ε−1 + 2 heavy trees

= 0.

The resulting tree T ′ is a single path from p to q containing exactly two joining
vertices with P : x and y (since T ′ = {x, y}). Since # (T ′) < # (T ), T ′ achieves the
properties of the Lemma.
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Case II, w < ε−1 + 2. In this case, we apply the transformation described with
a = min I and b = max I. The increase in length is given by:

Φ = # (Ta[ra, x]) + # (Tb[y, rb]) + # (P [x, y]) − # (Q[ra, rb]) −
b∑

i=a

# (Ti)

≤ 2ε# (P ′) + # (P [x, y]) − (# (Ta[ra, x] ∪ Q[ra, rb] ∪ Tb[y, rb])︸ ︷︷ ︸
≥% (P [x,y])/(1+ε), since P is ε-short

)

= 2ε# (P ′) + # (P [x, y]) + ε# (Ta[ra, x] ∪ Q[ra, rb] ∪ Tb[y, rb]) − # (P [x, y])

≤ 2ε(1 + ε)# (T ) + ε# (T ),

For the last inequality, observe that there is a path in T between the endpoints of
P ′; since P ′ is ε-short, (1 + ε)# (P ′) is at most the length of this path in T (which
in turn is at most the length of T itself).

The new tree T ′ consists of the p-to-q path Q′ and, attached to Q′, the trees
T1, T2, . . . , Ta−1, Tb+1, . . . , Tk. The joining vertices of T ′ with P include p, q, and
the joining vertices of all the trees Ti. Though there are fewer than ε−1 + 2 such
trees remaining, each of the trees might itself have many joining vertices with P .

Let T ′
i be the tree obtained from Ti by applying Lemma 10.4 with the ε-short

path P . Obtain a new tree T ′′ from T ′ by replacing each tree Ti with T ′
i . By

Lemma 10.4, there are at most 11ε−1.45 joining vertices with P per tree T ′
i . Since

w < ε−1 +2, the new tree T ′′ has at most 11ε−1.45(ε−1 +2)+2 joining vertices with
P (the extra 2 counts the joining vertices x and y), achieving the last property of
the lemma.

By Lemma 10.4, # (T ′
i ) < (1 + ε)# (Ti), and so # (T ′′) < (1 + ε)# (T ′) which, using

the bound on the length of T ′, is at most (1 + ε)(1 + cε)# (T ), satisfying T ′, is at
most (1 + ε)(1 + 2ε(2 + ε))# (T ), satisfying the length bound for the lemma.

10.2 Simplifying forests inside bricks

Why is our decomposition into bricks useful? Because there exists a near-optimal
Steiner tree that crosses the boundary of each face of MG a small number of times.
In this subsection, we formally state and prove this property (Theorem 10.7). The
proof relies on the Lemmas of Section 10.1 and on Lemma 6.10, and the result will
be a key ingredient to the proof of Theorem 3.2.

Theorem 10.7 Structural Property of Bricks. Let B be a plane graph
with boundary N ∪ E ∪ S ∪ W , satisfying the brick properties of Lemma 6.10. Let
F be a set of edges of B. There is a forest F̃ of B with the following properties:

—(F1) If two vertices of N ∪ S are connected in F then they are connected in F̃ .

—(F2) The number of joining vertices of F with both N and S is at most α(ε).

—(F3) # (F̃ ) ≤ # (F )(1 + cε).

In the above, α(ε) = o(ε−5.5) and c is a fixed constant.

The rest of this section is devoted to the proof of Theorem 10.7. Let F0 be a
minimal subgraph of F such that if two vertices of N ∪ S are connected in F , then
they are connected in F0: F0 is a forest whose leaves are all on N and S. We
partition F0 into two forests F1 and F2. Let T be the set of trees obtained from F0
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by cutting F0 at every joining vertex of F0 with N ∪ S. The forest F1 is the union
of trees in T that have vertices of either N or S (but not both) and F2 = F0 − F1.

From forest Fi (for i = 1, 2), we will build a forest F̂i satisfying the three prop-
erties of Theorem 10.7 for αi(ε) and ci.

Before specifying F̂1 and F̂2, let us see how this implies Theorem 10.7. Define F̂
as the union of F̂1 and F̂2.

Suppose two vertices z0 and zk of N ∪ S are connected in F . By construction,
they are connected in F0. By definition of F1 and F2, there are vertices z1, . . . , zk−1

of S ∪ N such that for i = 1, . . . k, vertices zi−1 and zi are connected in either F1

or F2. By (F1), zi−1 and zi are connected in either F̂1 or F̂2, and so they are
connected in F̂ . It follows that z1 and zk are connected in F̂ .

We have that F̂ has at most α(ε) = α1(ε)+α2(ε) = o(ε−5.5) joining vertices with
N ∪ S.

Moreover,

# (F̂ ) ≤ # (F̂1) + # (F̂2) ≤ (1 + c1ε)# (F1) + (1 + c2ε)# (F2)

≤ (1 + cε)(# (F1) + # (F2)) = (1 + cε)# (F0) ≤ (1 + cε)# (F ),

where c = max(c1, c2), and so F̂ satisfies all of the requirements of Theorem 10.7.

We now give the construction of F̂1. Let T be a connected component of F1.
Without loss of generality, assume that T does not span any vertices of S. Apply
Lemma 10.1 to T with ε-short path N (using Lemma 6.10) to get tree T̂ . Re-
peating for every connected component of F1 produces a forest F̂1 with the desired
properties (here α1(ε) = 0 and c1 = 1).

In the rest of the subsection, we give the construction of F̂2.
Let s0, . . . , st be the vertices of S guaranteed by Lemma 6.10 (where s0 is the

vertex common to S and W and st is the vertex common to S and E). We greedily
define a collection of disjoint S-to-N paths P0, P1, . . . . , Pt′ (and associated indices
k0, k1, . . . kt′) as follows. (See Figure 8.) Let P0 be the easternmost path in F2 from
S to N that does not go through any vertices of S or N . For each i ≥ 0, ki is the
integer such that the start vertex of Pi belongs to S[ski , ski+1). For i ≥ 1, let Pi be
the easternmost path in F2 from S[s0, ski−1) to N that does not go through any
vertex of S or N or Pi−1. Let t′ ≤ t be the last index for which Pt′ is defined.

For i ≥ 0, let xi and yi be the start vertex and end vertex, respectively, of Pi.
Now we define a partition (Hi) of F2. For i < t′, let Hi be the subgraph of F2

consisting of edges enclosed by the simple cycle in Pi∪N ∪Pi+1∪S, including edges
of Pi but not edges of Pi+1. For i = t′, let Ht′ be the subgraph of F2 enclosed by
Pt′ , N , W , and S. For i ≥ 1, if there is a vertex in Pi that belongs to Hi−1, define
qi to be such a vertex. For each i, we will define a tree Ĥi and set F̂2 to be the
union of Ĥi over all i.

Claim 10.8. Let Q be a minimal Pi+1-to-Pi ∪ S[ski , xi] path in Hi (if there is
no path, then Q is empty). Then Hi ∪ S[ski , xi] − Q is connected.
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Fig. 8. The north and south boundaries are indicated by horizontal lines. The paths P0, P1, and
P2 are indicated by thick gray lines. In the lower figures, the subgraphs H0 and H1 are indicated.
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Fig. 9. Illustration for the proof of Claim 10.8. The dashed lines are forbidden positions for P ′.

Proof. Let e be any edge of Hi that is not in Pi ∪S[ski , xi]∪Q. We claim that
e belongs to the same connected component of Hi ∪S[ski , xi]−Q as S[ski , xi]∪Pi.
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Because e is in F2, F2 contains some S-to-N path P through e. Let P ′ be the
maximal subpath of P that contains e and such that no internal vertex of P ′ is
belongs to Pi ∪ Pi+1 ∪ N ∪ S ∪ Q. Then all edges of P ′ belong to Hi, and the
endpoints of P ′ lie on Pi ∪ Pi+1 ∪ N ∪ S ∪ Q. Assume for a contradiction that
neither endpoint belongs to S[ski , xi] ∪ Pi. Since F2 has no cycles, at most one
endpoint of P ′ belongs to Pi+1 ∪ Q. Since P ′ is a subpath of a minimal S-to-N
path, at most one endpoint belongs to S and at most one endpoint belongs to N .
Then P ′ either connects S[xi+1, ski) to Pi+1 ∪ Q ∪ N or connects Pi+1 ∪ Q to N .
Each possibility contradicts the choice of Pi+1 as the easternmost path in H2 from
S[s0, ski) to N .

Suppose that qi+1 is not defined, i.e. no vertex of Pi+1 is in Hi. By Lemma 10.8,
Hi ∪ S[ski , xi] is connected. Let Ti be a tree of edges of Hi ∪ S[ski−1, xi] that
contains all of the edges of Pi ∪ S[ski−1, xi] and spans all vertices of Hi ∩N and of
Hi ∩S. Applying Lemma 10.4 to Ti with ri = ski and ε-short path S defines a tree
Ĥi.

Now suppose qi+1 is defined to be some vertex of Pi+1 that is in Hi. Let Qi be
a minimal path from qi+1 to S[ski , xi] ∪ Pi and let ri be the vertex common to Qi

and S[ski , xi]∪Pi. By Lemma 10.8, Hi ∪ S[ski , xi]−Qi is connected. By choice of
Pi+1, Qi contains no vertex of N . Let Ti be a tree of edges of Hi ∪ S[ski , xi] − Qi

that contains all the edges of S[ski , xi]∪Pi and spans all vertices of Hi∩N , Hi ∩S.

)")$

!"#$%
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'#
(

'#
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Fig. 10. The path Q0 is indicated by the dashed line. The trees T N
0 and T S

0 are indicated in solid
black and highlighted. They meet at r0.

As illustrated in Figure 10, let T S
i be the subgraph of Ti that is enclosed by the

cycle formed by Qi, S, Pi and Pi+1. Since Qi contains no vertex of N , neither
does T S

i . Let T N
i = Ti − T S

i . Since Ti does not use any edges of Qi, both T N
i and

T S
i are trees. The leaves of T N

i (except perhaps ri) are all on N . Without loss of
generality, assume that T S

i does not contain qi.

Let T̂ S
i be the tree guaranteed by Lemma 10.4 as applied to tree T S

i , vertex ri,

and ε-short path S: T̂ S
i spans V (T S

i ∩ S) ∪ {ri}. Let T̂ N
i be the tree guaranteed

by Lemma 10.6 as applied to tree T N
i , vertices ri and qi (if qi is defined, else use

Lemma 10.4), and ε-short path N . Let T̂i = T̂ S
i ∪ T̂ N

i ∪ S[ski , xi]. If two vertices
of N ∪ S ∪ {qi, ri} are connected in Ti, then they are connected in T̂i. Let Ĥi be
a spanning tree of T̂i ∪ Qi that contains T̂i. If two vertices of N ∪ S ∪ {qi−1, qi, ri}
are connected in Hi, then they are connected in Ĥi.

Finally, we define F̂2 to be the union of Ĥi over all i.
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It remains to show that F̂2 satisfies properties (F1), (F2), and (F3).
(F1) Suppose vertices z and z′ are vertices of N ∪ S that are connected in F2.

Let R be the path from z to z′ in F2. Let Ha, Ha+1, . . . , Hb be the subgraphs of
F2 that contain edges of R. Since R is a path in F2, Hi is connected to Hi+1 for
a ≤ i < b, and so qi and qi+1 are connected in Hi. Likewise since z is a vertex of
N ∪ S, z is connected to qj for some a ≤ j ≤ b (and likewise for z′). It follows that

z and z′ are connected in F̂2.
(F2) The number of joining vertices of Ĥi with N ∪S is at most c2ε−1.45+c3ε−2.5

where the first term comes from T̂ S
i and the second term comes from T̂ N

i using
Lemmas 10.4 and 10.6. Since i ≤ t ≤ 4ε−2(1 + ε−1) by Lemma 6.10, the total
number of joining vertices of F̂2 is at most c4ε−5.5.

(F3) To bound the length of F̂2, we bound the length of Ĥi in terms of the length
of Hi. Using the fact that # (S[ski , xi]) < ε# (Pi) (Lemma 6.10), we have that

# (Ĥi) = # (T̂ S
i ) + # (T̂ N

i ) + # (Qi) + # (S[ski , xi])

≤ (1 + cε)# (T S
i ) + (1 + c′ε)# (T N

i ) + # (Qi) + # (S[ski , xi])

for constants c, c′, by Lemmas 10.4, 10.6 and 6.10

≤ (1 + c′ε)# (Ti ∪ Qi) + # (S[ski , xi])

≤ (1 + c′ε)(# (Hi) + # (S[ski , xi]) + # (S[ski , xi])

≤ (1 + c′ε)(# (Hi) + ε# (Pi)) + ε# (Pi) by Lemma 6.10

≤ (1 + (c′ + 2)ε)# (Hi).

This completes the proof of Theorem 10.7.

10.3 Completion of the proof of Theorem 3.2

The Structure Theorem (Theorem 3.2) states that

OPT(B+(MG), Q) ≤ (1 + ε)OPT(Gin, Q).

We now give the proof using the Lemmas of Sections 6 and 7 as well as Theo-
rem 10.7.

Proof. We start from an optimal solution T to the Steiner tree problem in Gin

and gradually transform it into a solution T̂ to the Steiner tree problem in B+(MG),
while almost preserving its length: # (T̂ ) < (1 + ε)# (T ).

First, we add the east and west boundaries of each brick. Let T1 be the union of
T with the east and west boundaries (EB and WB) for every brick B in G. Using
Lemma 6.6, we have

# (T1) ≤ OPT + εOPT(Gin, Q). (6)

We next reduce the number of joining vertices on the north and south boundaries
of each brick. Let T ′

1 be the subgraph of T1 that is strictly embedded in a brick
of Gin. Replace T ′

1 with the forest T ′
2 that is guaranteed by Theorem 10.7: from

the third part of the Theorem, we deduce that # (T ′
2) ≤ (1 + ε)# (T ′

1). Repeating
this process for every brick of Gin produces the subgraph T ′

2. Since the bricks are
disjoint, we have

# (T2) ≤ (1 + ε)# (T1). (7)
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Then, we map the edges to a subgraph of B+(MG). Every edge of Gin has at
least one corresponding edge in B+(MG). For every edge e of T2, we select one
corresponding edge in B+(MG) as follows: if e is an edge of MG select the corre-
sponding mortar edge of B+(MG), otherwise select the unique edge corresponding
to e in B+(MG). This process constructs a subgraph T3 of B+(MG) such that

# (T3) = # (T2). (8)

Since T3 is not connected, we connect it via portal and mortar edges. Let VB

be the set of joining vertices of T3 with NB ∪ SB for a brick B of B+(MG). For
any vertex v on the interior boundary ∂B of a brick, let pv be the portal on ∂B
that is closest to v, let Pv be the shortest v-to-pv path along ∂B and let P ′

v be the
corresponding path of mortar edges. Let e be the portal edge corresponding to pv.
Add Pv, P ′

v, and e to T3. Repeat this process for every v ∈ VB and for every brick
B, building a graph T̂ . This completes the definition of T̂ .

We now need to analyze the length of T̂ :

# (T̂ ) ≤ # (T3) +
∑

B∈B

∑

v∈VB

(# (Pv) + # (e) + # (P ′
v)), (9)

and we have:
∑

B∈B

∑

v∈VB

# (Pv) + # (e) + # (P ′
v) = 2

∑

B∈B

∑

v∈VB

# (Pv), since #(portal edges) = 0

≤ 2
∑

B∈B

∑

v∈VB

# (∂B)/θ(ε), by Lemma 7.1

≤ 2
∑

B∈B

α(ε)

θ(ε)
# (∂B), by Theorem 10.7, Part 2

≤ 2
α(ε)

θ(ε)
νε−1OPT(Gin, Q), using Lemma 6.9

≤ ε OPT(Gin, Q), using Equation (5).

Combining this with inequalities (9), (8), (7) and (6), we obtain

# (T̂ ) ≤ εOPT(Gin, Q) + (1 + ε)2OPT(Gin, Q) < (1 + 4ε)OPT(Gin, Q)

for the fixed constant c given by Theorem 10.7. The construction can be modified
to obtain # (T̂ ) < (1 + ε)OPT(Gin, Q) by inputting ε′ = ε/4 to the algorithm.

It remains to show that T̂ is a solution to the Steiner tree problem in B+(MG).
First we show that T2 is a solution to the Steiner tree problem in Gin.

Clearly, since T is a subgraph of T1 and T is a solution in Gin, T1 is a solution in
Gin. Now we argue that T2 is a solution to the Steiner tree problem in Gin. Let P
be a path of T that connects two terminals s and t. We partition P into a sequence
of subpaths as follows: Pi is a subpath of the partition if it is a maximal subpath
strictly enclosed by a brick, or if it is a maximal subpath on the boundary of a
single brick. Each subpath Pi is an xi-to-yi path. For a vertex x in MG, if x is a
vertex internal to an east boundary EB of a brick B, then define x̂ to be the vertex
common to EB and NB (likewise for a vertex internal to a west boundary). If x is a
vertex of a north or south boundary, then define x̂ = x. Note that for each path Pi,
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the first step of the construction guarantees that there is a corresponding x̂i-to-ŷi

path in T1. Since x̂i and ŷi are vertices on SB ∪ NB for a brick B, Theorem 10.7
guarantees that there is a x̂i-to-ŷi path in T2. It follows that there is a ŝ-to-t̂ path
in T2. By Lemma 6.10 since s and t are terminals of Q, they are on north or south
brick boundaries, and so ŝ = s and t̂ = t: there is an s-to-t path P̂ in T2.

The definition of T3 breaks P̂ into disjoint paths. Consider one such path, P̂i,
that is not a subpath of MG. By construction, the endpoints of P̂i are joining
vertices. To go from T3 to T̂ , these endpoints are connected to the corresponding
vertices on MG via portal edges. It follows that there is an s-to-t path P̂ in T̂ .

11. CLOSING REMARKS

The method used here to obtain a PTAS for the Steiner tree problem has been
extended to higher edge-connectivity problems in planar graphs. In particular, we
can give an O(n log n)-time approximation scheme for the following problem: given
integer requirements rv ∈ {0, 1, 2} for each vertex v, find a subgraph H that contains
at least min{ru, rv} edge-disjoint u-to-v paths for every pair u, v of vertices, where
H is allowed to use multiple copies of edges [Borradaile and Klein 2008]. This
includes the well studied 2-edge connectivity problem. In forthcoming work, we
will show that we can satisfy node requirements rv ∈ {0, 1, . . . , k} for fixed k.

The algorithm presented here has been implemented in [Tazari and Müller-
Hannemann 2008] with good results: by using small constants in the implemen-
tation (ie. number of portals per brick), good approximations are found.

REFERENCES

Arora, S. 1998. Polynomial-time approximation schemes for Euclidean TSP and other geometric
problems. Journal of the ACM 45, 5, 753–782.

Arora, S., Grigni, M., Karger, D., Klein, P., and Woloszyn, A. 1998. A polynomial-time
approximation scheme for weighted planar graph TSP. In Proceedings of the 9th Annual ACM-

SIAM Symposium on Discrete Algorithms. 33–41.

Baker, B. 1994. Approximation algorithms for NP-complete problems on planar graphs. Journal

of the ACM 41, 1, 153–180.

Berman, P. and Ramaiyer, V. 1994. Improved approximations for the Steiner tree problem.
Journal of Algorithms 17, 381–408.

Bern, M. 1990. Faster exact algorithms for Steiner trees in planar networks. Networks 20,
109–120.

Bern, M. and Bienstock, D. 1991. Polynomially solvable special cases of the Steiner problem
in planar networks. Mathematics of Operations Research 33, 405–418.

Bern, M. and Plassmann, P. 1989. The Steiner problem with edge lengths 1 and 2. Information

Processing Letters 32, 171–176.

Borradaile, G., Kenyon-Mathieu, C., and Klein, P. 2007. A polynomial-time approximation
scheme for Steiner tree in planar graphs. In Proceedings of the 18th Annual ACM-SIAM

Symposium on Discrete Algorithms. 1285–1294.

Borradaile, G. and Klein, P. 2008. The two-edge connectivity survivable network problem in
planar graphs. In Proceedings of the 35th International Colloquium on Automata, Languages

and Programming. To appear.

Borradaile, G., Klein, P., and Mathieu, C. 2007. Steiner tree in planar graphs: An O(n log n)
approximation scheme with singly exponential dependence on epsilon. In Proceedings of the

10th International Workshop on Algorithms and Data Structures. Lecture Notes in Computer
Science, vol. 4619. 275–286.

ACM Journal Name, Vol. V, No. N, Month 20YY.



32 · Glencora Borradaile et al.

Catalan, E. 1838. Note sur un problème de combinaisons. Journal de Mathématiques Pures et
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Prömel, H. and Steger, A. 1997. RNC approximation algorithms for the Steiner problem. In
Proceedings of the 14th International Symposium on Theoretical Aspects of Computer Science.
559–570.

Provan, J. 1988a. An approximation scheme for finding Steiner trees with obstacles. SIAM

Journal on Computing 17, 920-934, 920–934.

Provan, J. 1988b. Convexity and the Steiner tree problem. Networks 18, 55–72.

Rao, S. and Smith, W. 1998. Approximating geometrical graphs via “spanners” and “banyans”.
In Proceedings of the 30th Annual ACM Symposium on Theory of Computing. 540–550.

Robins, G. and Zelikovsky, A. 2005. Tighter bounds for graph Steiner tree approximation.
SIAM Journal on Discrete Mathematics 19, 1, 122–134.

Sommerville, D. 1929. An introduction to the geometry of n dimensions. London.

Takahashi, H. and Matsuyama, A. 1980. An approximate solution for the Steiner problem in
graphs. Mathematica Japonicae 24, 571–577.

Tazari, S. and Müller-Hannemann, M. 2008. To fear or not to fear large hidden constants:
Implementing a planar Steiner tree ptas. Tech. Rep. TUD-CD-2008-2, Technische Universität
Darmstadt, Department of Computer Science, Darmstadt, Germany.

Whitney, H. 1933. Planar graphs. Fundamenta mathematicae 21, 73–84.

ACM Journal Name, Vol. V, No. N, Month 20YY.



A PTAS for Steiner Tree in Planar Graphs · 33

Widmayer, P. 1986. A fast approximation algorithm for Steiner’s problem in graphs. In Graph-

Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, vol. 246. Springer
Verlag, 17–28.

Wu, Y., Widmayer, P., and Wong, C. 1986. A faster approximation algorithm for the Steiner
problem in graphs. Acta informatica 23, 2, 223–229.

Zelikovsky, A. 1993. An 11/6-approximation algorithm for the network Steiner problem. Algo-

rithmica 9, 463–470.

Zelikovsky, A. 1994. Better approximation bounds for the network and Euclidean Steiner tree
problems. Tech. Rep. CS-96-06, University of Virginia.

ACM Journal Name, Vol. V, No. N, Month 20YY.


