
Title: Multiple-Source Multiple-Sink Maximum Flow in
Directed Planar Graphs

Name: Glencora Borradaile1

Affil./Addr. School of Electrical Engineering and Computer Sci-
ence, Oregon State University, Corvallis, OR, USA

Keywords: Planar graphs; Maximum Flow
SumOriWork: 2011; Borradaile, Klein, Mozes, Nussbaum, Wulff-

Nilsen

Multiple-Source Multiple-Sink
Maximum Flow in Directed Planar
Graphs
Glencora Borradaile1

School of Electrical Engineering and Computer Science, Oregon State University, Cor-
vallis, OR, USA

Years aud Authors of Summarized Original Work

2011; Borradaile, Klein, Mozes, Nussbaum, Wulff-Nilsen

Keywords

Planar graphs; Maximum Flow

Problem Definition

Given a directed, planar graph G = (V,E) with arc capacities c : E → <+, a subset S
of source vertices and a subset T of sink vertices, the goal is to find a maximum flow
from the source vertices to the sink vertices:

max
∑

su:s∈S,su∈E

fsu

s.t.
∑

uv:uv∈E

fuv −
∑

vw:vw∈E

fvw = 0 ∀v ∈ V \ (S ∪ T ) (1)

0 ≤ fe ≤ ce ∀e ∈ E (2)

Key Results

In general (i.e., non-planar) graphs, multiple sources and sinks can be reduced to the
single-source single-sink case by introducing an artificial source and sink and connecting
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them to all the sources and sinks, respectively, but this reduction does not preserve
planarity. Using Orlin’s algorithm for sparse graphs [21] leads to a running time of
O(n2/ log n). For integer capacities less than U , one could instead use the algorithm of
Goldberg and Rao [9], which leads to a running time of O(n1.5 log n logU).

Maximum flow in planar graphs with multiple sources and sinks was first studied
by Miller and Naor [19]. They gave a divide-and-conquer algorithm for the case where
all the sinks and the sources are on the boundary of a single face. Plugging in the linear-
time shortest-path algorithm of Henzinger et al. [12] yields a running time of O(n log n).
Borradaile and Harutyunyan have given an iterative algorithm with the same running
time [2]. Miller and Naor also gave an algorithm for the case where the sources and
the sinks reside on the boundaries of k different faces. Using the O(n log n)-time single-
source single-sink maximum flow algorithm of Borradaile and Klein [3] yields a running
time of O(k2n log2 n). Miller and Naor show that, when it is known how much of the
commodity is produced/consumed at each source and each sink, finding a consistent
routing of flow that respects arc capacities can be reduced to negative-length shortest
paths [19], which can be solved in planar graphs in O(n log2 n/ log log n) time [20].

Near-linear time algorithm

Borradaile et al. gave the first O(n poly log n)-time algorithm for the multiple-source,
multiple-sink maximum flow problem in directed planar graphs. The approach uses
pseudoflows [10; 14] (flows which may violate the balance constraints (1) in a limited
way) and a divide-and-conquer scheme influenced by that of Johnson and Venkate-
san [15] and that of Miller and Naor [19], using the separators introduced by Miller:
a (triangulated) planar graph G can be separated by a simple cycle C of O(

√
n) ver-

tices [18].
In each of the two subgraphs, a more general problem is solved in which, after

the two recursive calls have been executed, within each of the two subgraphs there is
no residual path from any source to any sink nor from any source to C or from C to
any sink. Then, since C is a separator, there is no residual path from any source to any
sink in G, but however, the balance constraints (1) may not be satisfied for vertices
in C. The flow is then balanced among the vertices in C by augmenting the flow so
that there is no residual path in G from a vertex with positive inflow to a vertex with
positive outflow. The resulting flow can then be turned into a maximum flow in linear
time.

The core of the algorithm is this final balancing procedure which involves a
series of |C| − 1 max-flow computations in G. Since |C| is O(

√
n), the challenge is

carrying out all these max-flow computations in near-linear time. The procedure uses a
succinct representation to keep track of the changes to the pseudoflow without explicitly
storing the changes. The representation relies on the relationship between circulations
in G and shortest paths in the dual and the computations make use of an adaptation
of Fakcharoenphol and Rao’s efficient implementation of Dijkstra’s algorithm [7]. The
resulting running time to balance the flow is O(n log2 n) time for an overall running
time of O(n log3 n)-time for the original multiple-source, multiple-sink maximum flow
problem.

Applications

Multiple-source multiple-sink min-cut arises in several computer-vision problems in-
cluding image segmentation (or binary labeling) [11]. For the case of more than two



3

labels, there is a powerful and effective heuristic [5] using very-large-neighborhood [1]
local search; the inner loop consists of solving the two-label case.

The maximum matching in a bipartite planar graph reduces to multiple-source,
multiple-sink maximum flow. Multiple-source, multiple-sink maximum flow can also
be used for finding orthogonal drawings of planar graphs with a minimum number of
bends [6] and uniformly monotone subdivisions of polygons [23].
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