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Problem Definition
Given a directed, planar graph G = (V, E) with arc capacities ¢ : E — R, a source

vertex s and a sink vertex t, the goal is to find a flow assigment f, for each arc e € FE
such that:
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Key Results

In the paper proposing the maximum flow problem in general graphs, Ford and Fulk-
erson [B] gave a generic method for computing a maximum flow: the augmenting-path
algorithm. The algorithm is iterative: find a path P from the source to the sink such
that capacity contraint is loose for each arc on P (residual); increase the flow on
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each arc in P by a constant chosen so that at least one of the capacity constraints
become tight; update the capacities of each arc, making note that the reverse of these
arcs now have residual capacity; repeat until there is no path from the source to the
sink along which the flow can be augmented. By augmenting the flow along a path,
the balance constraints are always satisfied.

st-planar graphs

Ford and Fulkerson further showed that, in the case of planar graphs when the source
and the sink are on a common face (st-planar graphs), by selecting the augmenting
paths to be as far to the left as possible in each iteration (viewing s on the bottom and
t on the top), each arc is saturated at most once, resulting in at most |E| iterations [5].
In 1979, Itai and Shiloach showed that each iteration of this algorithm could be im-
plemented in O(logn) time using a priority queue and gave a simple example showing
that any implementation of this algorithm is capable of sorting n numbers [I1]. In 1991,
Hassin demonstrated that such a maximum st-flow could be derived from shortest-path
distances in the planar dual G* of G where capacities in GG are interpreted as lengths
in G* [7]. Faster algorithms for computing shortest paths in planar graphs culminated
in a linear-time algorithm for this case of maximum st-flow in planar graphs with s
and ¢ on a common face [9].

Undirected planar graphs

For undirected planar graphs, Reif gave an algorithm for computing the maximum
st-flow where s and ¢ need not be on a common face, by way of several shortest path
computations in the dual [19]. The algorithm finds a shortest path P in G* from a vertex
adjacent to the face corresponding to s to a vertex adjacent to the face corresponding
to t. Reif proves that C' only crosses P once; by finding the minimum separating
cycle C, through each vertex v of P, we will surely find C: C' is the minimum of the
cycles C,. These cycles can be found in time logn times the time for one shortest
path computation via divide and conquer over the length of P. Hassin and Johnson
show that the corresponding maximum flow can be computed within this framework
by computing shortest path distances between the nested cycles C, [8]. The shortest
path algorithms of Henzinger et al. [9] or Klein [I5] can be used to re-implement these
algorithms in O(nlogn) time. Italiano et al.[12] further improved this running time to
O(nloglogn) by using an r-division to break the graph into sufficiently small pieces
through which shortest paths can be efficiently computed.

If the capacities are all unit, the maximum st-flow can be computed in linear
time [1].

Directed planar graphs

Maximum st-flow in directed graphs is more general since the problem of maximum st-
flow in an undirected graph can be converted to a directed problem by introducing two
oppositely oriented arcs of equal capacity for each edge. Johnson and Venkatesan gave a
divide-and-conquer algorithm that finds a flow of input value v in O(n'logn) time [13].
The algorithm divides the graph using balanced separators, finding a flow in each side
of value v. However, the flow on the O(y/n)-boundary edges of each subproblem might
not be feasible. Each boundary edge is made feasible via an st-planar flow computation.
Miller and Naor showed that finding a directed st-flow of value v could be reduced to
computing shortest-path distances in a graph with positive and negatives lengths [17].
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Here, v units of flow are routed (perhaps violating the capacity constraints) along
any s-to-t path P. For those arcs whose capacity are violated, we must route the
excess flow through the rest of the graph. This is a feasible circulation problem and
can be solved using shortest-path distances in the dual graph, where lengths may be
negative (representing the negative or violated capacities). Using an O(n poly logn)-
time algorithm for computing shortest paths in a planar graph with negative edge
lengths [4; 16} 18] gives an O(n polylog nlog C')-time algorithm where C' is the sum of
the capacities.

If the capacities are all unit, the maximum st-flow can be computed in linear
time [21].

Leftmost-path algorithm

Borradaile and Klein gave an augmenting-path, O(n logn)-time algorithm for the max-
imum st-flow problem in directed planar graphs. The algorithm is a generalization of
the algorithm for the st-planar case, augmenting flow repeatedly along the leftmost
path from s to t. However, with s and ¢ not on a common face, what leftmost is not
clear. With the graph embedded such that ¢ is on the external face and the clockwise
cycles saturated, a leftmost path is well-defined and can be found with a left-first,
depth-first search into ¢. Clockwise cycles can be initially saturated with a circulation
defined by potentials on the faces given by shortest-path distances in the dual graph [14]
and clockwise cycles remain saturated under leftmost augmentations. Borradaile and
Klein, and Erickson improved the analysis [3] showed that under these conditions an
arc and its reverse can be saturated at most once, resulting in at most 2n augmen-
tations. Augmentations can be performed in O(logn) time using a dynamic-tree data
structure, resulting in an O(nlogn) running time.

Applications

Maximum st-flow in directed planar graphs has applications to computer vision prob-
lems. Schmidt et al. [20] use it as a black box for image segmentation and Greig et al. [0]
provide an example for smoothing noisy images.

Open Problems

Currently, maximum st-flow in undirected planar graphs can be computed more quickly
than in directed. Can this gap be closed?

Experimental Results

Schmidt et al. [20] have implemented this algorithm and compared its performance on
an image segmentation problem.

URLs to Code and Data Sets

Hoch and Wang have provided an open-source implementation of the algorithm [10].
Eisenstat has an implementation of the linear-time algorithm for unit-capacity graphs. [2].
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