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Problem Definition

Given a directed, planar graph G = (V,E) with arc capacities c : E → <+, a source
vertex s and a sink vertex t, the goal is to find a flow assigment fe for each arc e ∈ E
such that:

max
∑

su:su∈E

fsu

s.t.
∑

uv:uv∈E

fuv −
∑

vw:vw∈E

fvw = 0 ∀v ∈ V \ {s, t} (1)

0 ≤ fe ≤ ce ∀e ∈ E (2)

Key Results

In the paper proposing the maximum flow problem in general graphs, Ford and Fulk-
erson [5] gave a generic method for computing a maximum flow: the augmenting-path
algorithm. The algorithm is iterative: find a path P from the source to the sink such
that capacity contraint (2) is loose for each arc on P (residual); increase the flow on
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each arc in P by a constant chosen so that at least one of the capacity constraints
become tight; update the capacities of each arc, making note that the reverse of these
arcs now have residual capacity; repeat until there is no path from the source to the
sink along which the flow can be augmented. By augmenting the flow along a path,
the balance constraints (1) are always satisfied.

st-planar graphs

Ford and Fulkerson further showed that, in the case of planar graphs when the source
and the sink are on a common face (st-planar graphs), by selecting the augmenting
paths to be as far to the left as possible in each iteration (viewing s on the bottom and
t on the top), each arc is saturated at most once, resulting in at most |E| iterations [5].
In 1979, Itai and Shiloach showed that each iteration of this algorithm could be im-
plemented in O(log n) time using a priority queue and gave a simple example showing
that any implementation of this algorithm is capable of sorting n numbers [11]. In 1991,
Hassin demonstrated that such a maximum st-flow could be derived from shortest-path
distances in the planar dual G∗ of G where capacities in G are interpreted as lengths
in G∗ [7]. Faster algorithms for computing shortest paths in planar graphs culminated
in a linear-time algorithm for this case of maximum st-flow in planar graphs with s
and t on a common face [9].

Undirected planar graphs

For undirected planar graphs, Reif gave an algorithm for computing the maximum
st-flow where s and t need not be on a common face, by way of several shortest path
computations in the dual [19]. The algorithm finds a shortest path P in G∗ from a vertex
adjacent to the face corresponding to s to a vertex adjacent to the face corresponding
to t. Reif proves that C only crosses P once; by finding the minimum separating
cycle Cv through each vertex v of P , we will surely find C: C is the minimum of the
cycles Cv. These cycles can be found in time log n times the time for one shortest
path computation via divide and conquer over the length of P . Hassin and Johnson
show that the corresponding maximum flow can be computed within this framework
by computing shortest path distances between the nested cycles Cv [8]. The shortest
path algorithms of Henzinger et al. [9] or Klein [15] can be used to re-implement these
algorithms in O(n log n) time. Italiano et al.[12] further improved this running time to
O(n log logn) by using an r-division to break the graph into sufficiently small pieces
through which shortest paths can be efficiently computed.

If the capacities are all unit, the maximum st-flow can be computed in linear
time [1].

Directed planar graphs

Maximum st-flow in directed graphs is more general since the problem of maximum st-
flow in an undirected graph can be converted to a directed problem by introducing two
oppositely oriented arcs of equal capacity for each edge. Johnson and Venkatesan gave a
divide-and-conquer algorithm that finds a flow of input value v in O(n1.5 log n) time [13].
The algorithm divides the graph using balanced separators, finding a flow in each side
of value v. However, the flow on the O(

√
n)-boundary edges of each subproblem might

not be feasible. Each boundary edge is made feasible via an st-planar flow computation.
Miller and Naor showed that finding a directed st-flow of value v could be reduced to
computing shortest-path distances in a graph with positive and negatives lengths [17].
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Here, v units of flow are routed (perhaps violating the capacity constraints) along
any s-to-t path P . For those arcs whose capacity are violated, we must route the
excess flow through the rest of the graph. This is a feasible circulation problem and
can be solved using shortest-path distances in the dual graph, where lengths may be
negative (representing the negative or violated capacities). Using an O(n poly log n)-
time algorithm for computing shortest paths in a planar graph with negative edge
lengths [4; 16; 18] gives an O(n poly log n logC)-time algorithm where C is the sum of
the capacities.

If the capacities are all unit, the maximum st-flow can be computed in linear
time [21].

Leftmost-path algorithm

Borradaile and Klein gave an augmenting-path, O(n log n)-time algorithm for the max-
imum st-flow problem in directed planar graphs. The algorithm is a generalization of
the algorithm for the st-planar case, augmenting flow repeatedly along the leftmost
path from s to t. However, with s and t not on a common face, what leftmost is not
clear. With the graph embedded such that t is on the external face and the clockwise
cycles saturated, a leftmost path is well-defined and can be found with a left-first,
depth-first search into t. Clockwise cycles can be initially saturated with a circulation
defined by potentials on the faces given by shortest-path distances in the dual graph [14]
and clockwise cycles remain saturated under leftmost augmentations. Borradaile and
Klein, and Erickson improved the analysis [3] showed that under these conditions an
arc and its reverse can be saturated at most once, resulting in at most 2n augmen-
tations. Augmentations can be performed in O(log n) time using a dynamic-tree data
structure, resulting in an O(n log n) running time.

Applications

Maximum st-flow in directed planar graphs has applications to computer vision prob-
lems. Schmidt et al. [20] use it as a black box for image segmentation and Greig et al. [6]
provide an example for smoothing noisy images.

Open Problems

Currently, maximum st-flow in undirected planar graphs can be computed more quickly
than in directed. Can this gap be closed?

Experimental Results

Schmidt et al. [20] have implemented this algorithm and compared its performance on
an image segmentation problem.

URLs to Code and Data Sets

Hoch and Wang have provided an open-source implementation of the algorithm [10].
Eisenstat has an implementation of the linear-time algorithm for unit-capacity graphs. [2].
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