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Abstract

This paper takes a systematic look at methods for estimating the curvature of
surfaces represented by triangular meshes. We have developed a suite of test cases
for assessing the sensitivity of curvature calculations to noise, mesh resolution, and
mesh regularity. These tests are applied to existing discrete curvature approximation
techniques and common surface fitting methods. We also look at alternatives to the
standard parameterization techniques. The results illustrate the impact of noise
and mesh related issues on the accuracy of these methods and provide guidance in
choosing an appropriate method for applications requiring curvature estimates.
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1 Introduction

There has been substantial growth in the use of polygonal mesh represen-
tations for complex free-form shapes. Advances in scanner technology, 3D
sensors, etc., and algorithms for constructing meshes from this coordinate
data [Amenta et al., 2000, Bernardini et al., 1999, Hoppe et al., 1992, Lodha
and Franke, 1997], have made models for such objects readily available. Meshes
support wide variations in complexity and resolution for local regions of an ob-
ject. They use a relatively simple representation consisting of vertices (points
sampled from the surface), and polygonal faces defining connectivity between
vertices. Today’s visualization tools are extremely compatible with this mesh
data structure. However, tools for extracting surface properties, such as smooth-
ness, from meshes have not yet progressed to match the state-of-the-art for
more traditional representations such as those used in the Computer-Aided
Design (CAD) environment.
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Curvature is an intrinsic property of surfaces. It can be used to identify features
such as ridges and valleys, and planar, convex, concave, or saddle shapes.
Surfaces can be segmented into regions based on these curvature features, and
the segments and features can be used for object recognition and registration.

The ability to compute curvature from meshes is complicated by the lack of
an analytic definition for the surface shape. Meshes are defined at discrete
vertices, while curvature is a function of how the surface behaves in a lo-
cal region around the vertex. This is evident since curvature is based upon
derivatives, which are themselves defined as a limit function. Thus, some as-
sumption on the behavior of the surface is required to estimate curvature for
a localized set of vertices. Past experience indicates that curvature metrics
tend to be noisy [Interrante, 1997, Hertzmann and Zorin, 2000]. Scanners and
sensors typically introduce some noise into the data. Small amounts of noise
may be compensated for by smoothing, while large amounts may render the
data unusable. Other factors include the resolution, i.e., how finely the surface
is sampled, and regularity, i.e., the uniformity in size and shape of the mesh
faces.

1.1  Mesh Representation vs. Range Data

A number of researchers [Flynn and Jain, 1989, Sander, 1989, Abdelmalek,
1989, Stokely and Wu, 1992, Hilton et al., 1995] have looked at curvature es-
timation from 3-D range images for computer vision applications. While some
of these methods may be adapted to mesh representations, others cannot.
Range data provides a rectangular array of sample data, usually in the form
of pixels. Adjacency is implicit in this array structure. Many of the methods
operate on an N x N window centered at a point, where the parameter N
is an odd integer, typically 5 or 7. This window provides a natural orthog-
onal parameterization that can be used to compute first and second partial
derivatives with respect to the parametric coordinates. Mean and Gaussian
curvature can be computed from these derivatives. The regular nature of the
data also provides preferred directions. A curve through points aligned along
the horizontal, vertical, or either of the two diagonals can provide derivatives
and curvatures in these directions. Other approaches use the array of sample
data directly to estimate curvature.

Mesh representations have adjacency information embedded in the mesh con-
nectivity, but there is not generally any regular organization or preferred di-
rection. We define neighbors as vertices that are part of the same face. All
of the vertices that are neighbors to a given vertex constitute its one-ring
neighborhood. We extend this to a two-ring neighborhood by adding all of the
neighbors of the one-ring vertices, and so on. Sample one-ring, two-ring, and



Fig. 1. Sample Test Case Meshes. Left: 1-Ring Neighborhood (valence=6), Middle:
2-Ring Neighborhood (valence=5), Right: 3-Ring Neighborhood (valence=4)

three-ring meshes are shown in Figure 1. A given vertex of the mesh can have
an arbitrary number of neighbors. These vertices need not be equidistant from
the given vertex or equally spaced around the one-ring neighborhood. There
is no guarantee that vertices in the i** ring are closer than vertices in the ;™
ring for i < j.

Methods for 3-D range images that rely on the regular array structure, natural
orthogonal parameterization, or preferred directions, are not readily adapted
to mesh representations. However, methods that rely primarily on adjacency,
such as surface fitting, may be adapted to mesh representations if a suitable
set of vertices can be found. This set of vertices is typically an N-ring neigh-
borhood, where most commonly N = 1.

1.2 Surface Fitting vs. Discrete Methods

Curvature calculation methods fall into one of two main categories. The first
category, surface fitting, involves finding a function that fits the mesh locally,
and calculating the curvature of the fitting function. This function can be in-
terpolating, where the function goes through each vertex, or approximating,
where the function minimizes some measure of distance from the vertices. In
both cases, the method solves for the coefficients of the function. Interpolat-
ing functions require a specific relation between the number of vertices and
the number of coefficients in the function. Approximating functions require a
minimum number of vertices and compute the coefficients as a solution to a
least square minimization.

The second category, discrete methods, involves developing discrete approx-
imations based on the definition of curvature. These methods do not use an
intermediate analytical fit of the surface. Discrete methods often approximate
an integral equation around a vertex by a summation of contributions at-
tributed to each face or edge adjacent to the vertex.



1.3  Contribution

We expect that certain methods may consistently outperform others for real
meshes with irregular distributions of vertices and some amount of noise. For
example, it is reasonable to expect an algorithm based on a bigger support
region (more vertices) to perform better in the presence of noise.

Past evaluations have compared specific methods, generally for very regular
meshes, and have looked at the effect of noise and the benefits of smoothing.
The impact of other mesh factors has often been ignored. In addition to pre-
senting a survey of curvature calculation methods, we develop a suite of test
cases to evaluate the accuracy of these methods. We construct these test cases
using mesh regularity and noise parameters and assess their effect on curva-
ture estimation accuracy. We apply this suite to the existing algorithms and
examine how reliably different algorithms over- or under-predict the actual
curvature values.

In this paper we:

e I[dentify methods for which we can establish bounds on accuracy.
e Determine which method is likely to perform best in a particular scenario.
e Develop an understanding of when and why a method might break down.

This knowledge allows us to select algorithms that are robust and reliable for
application to tasks such as shape matching and registration. An understand-
ing of the errors in the curvature calculations can be combined with techniques
from the Baysian community to add confidence levels to the data.

Curvature metrics include scalar properties such as maximum and minimum
principal curvatures, mean and Gaussian curvatures, and vector quantities
such as principal curvature directions. In this paper we focus on the esti-
mation of curvature magnitudes and principal directions, and discuss surface
normals only to the extent that they affect the curvature calculation. We
assume meshes contain only triangular faces. This is the simplest and most
common representation and is not really a restriction since meshes containing
higher-order faces can always be decomposed into sets of triangles.

Section 2 highlights some previous work on curvature calculations for meshes.
In Section 3, various curvature estimation methods are evaluated using our
suite of test surfaces with parametric mesh perturbations. Section 4 summa-
rizes the conclusions of this study and outlines possible areas for future work.



Curvature Calculation Taxonomy - Fitting Methods
Princ | Crv | Req
Fit Param | Paper Data | Gauss | Mean | Crv | Dir | Norm
Range tmage methods
Flynn & Jain NxN X X
Quadric | Grid Abdelmalek NxN X X
Stokely & Wu Voxels X X
Mclvor & Valkenburg Voxels X X X
Mesh methods
Quadric | Planar | Hamann 1-Ring X X
Proj. Meek & Walton 1-Ring X X
Goldfeather & Interrante | 1-Ring X X
Gatzke & Grimm N-Ring X X
Quadric | Natural | Gatzke & Grimm N-Ring X X
Cubic Goldfeather & Interrante | 1-Ring X X X
Conic Implicit | Douros & Buxton N Pts X X X X
Radial | Natural | Gatzke & Grimm N-Ring X X
Basis
Table 1

Curvature Calculation Taxonomy - Fitting Methods

2 Curvature Estimation

This section describes the methods that have been developed to calculate
curvature on meshes. These methods are again categorized as fitting methods
or discrete methods.

2.1 Fitting Methods

Fitting methods are listed in Table 2.1. Fitting methods depend first of all on
the function chosen to model the local surface shape, and may also require a
local frame of reference and surface parameterization.




2.1.1 Parameterization and Local Coordinates

When calculating curvature at a vertex, many methods utilize a local reference
frame centered at the vertex. This reference frame is based on the normal
vector at the vertex. This normal can be approximated by the normal to the
plane that best fits the vertex and some number of nearby vertices. Other
approximations are based on the average of the face normals for the faces
adjacent to the vertex, with various weightings applied. For methods that fit a
surface to the data near the vertex, the normal can be refined using the normal
calculated from the surface fit. A local coordinate system is formed by the
normal vector and two arbitrary orthogonal axes in a plane perpendicular to
this vector. Using a standardized local coordinate system does not restrict the
curvature calculation, but does simplify the solution of the equations defining
the surface representation.

Most fitting methods represent the surface as a function of two parametric
variables u and v in the form

F(u,v) = (z(u,v),y(u,v), z(u,v))

The simplest representation is as a height function, also referred to as a Monge
patch, relative to the local tangent plane, so that

Fu,v) = (u,v, f(u,v))

and the parametric coordinates are the projections of vertices onto the tangent
plane. This projection can cause distortion in the relative distances between
points, and projection of complex regions can even cause folding. As an alter-
native, we can find a mapping that transforms the vertices to the plane while
minimizing some measure of distortion. Several algorithms [Floater, 1997, Des-
brun et al., 2002, Sheffer and de Sturler, 2001] have been developed to generate
such mappings for a mesh that better preserves relationships and avoids fold-
ing.

2.1.2  Quadric Fitting

Locally fitting a quadric function is the most popular curvature estimation
technique, both for range data [Flynn and Jain, 1989, Abdelmalek, 1989,
Stokely and Wu, 1992, McIvor and Valkenburg, 1997] and for mesh represen-
tations [Hamann, 1993, Meek and Walton, 2000]. For a general second-order
polynomial with six coefficients, applied to a height function, we have:

2 = f(us,v;) = Au? + Bugv; + Cv? + Du; + Ev; + G



The coefficients are determined by solving a least squares problem. Two fac-
tors distinguish variations of this approach. First, the constant term, or the
constant and linear terms, can be dropped. The former forces the fit to go
through the vertex, while the latter forces the normal to line up with the z
axis of the local reference frame. The second factor is the choice of vertices
to fit. This generally corresponds to the one-ring neighborhood, but can be
expanded to a larger neighborhood [Gatzke and Grimm, 2003].

2.1.3 Cubic Fitting with Normals

Goldfeather and Interrante [2004] expand the quadric method by adding third-
order terms, and use the coordinates and normal vectors at vertices on the one-
ring neighborhood to set up a system of equations. Their focus is on calculation
of principal curvature directions rather than the curvature magnitudes.

2.1.4 Implicit Conic Functions

Conic surfaces, particularly ellipsoids, have been used for surface fitting in
applications such as medical imaging. Douros and Buxton [2002] extend this
approach to a general conic:

azx® + by* + c2® + dvy +exz + fyz+gr+hy +iz+j =0

Unlike other surface fitting techniques, this method does not require a param-
eterization.

2.1.5 Other

Gatzke and Grimm [2003] investigate use of radial basis functions as an alter-
native to the quadric polynomial. These functions are implemented for both
the planar projection and parameterization using the flattening algorithms
of Desbrun et al. [2002], Sheffer and Sturler [2002]. They choose a uniformly
weighted Gaussian so that the derivatives at the data points are well-behaved.

2.2 Discrete Methods

One of the main motivations for discrete methods is to avoid the computational
costs associated with fitting algorithms. These methods do not involve solving
a least square problem and are generally very fast. Table 2.2 lists several
common discrete curvature estimation methods.



Curvature Calculation Taxonomy - Discrete Operators

Princ | Crv | Req

Type Paper Data | Gauss | Mean | Crv | Dir | Norm
Range tmage methods
Finite Diff. Mclvor & Valkenburg | NxN X X X
Srf Norm. Change | Flynn & Jain NxN X X X
Cross Patch Stokely & Wu NxN X X
Mesh methods
Integral Form. Taubin 1-Ring X X
Angle Deficit Stokely & Wu 1-Ring X

Meek & Walton 1-Ring X

Meyer et al. 1-Ring X
Angle Excess Stokely & Wu 1-Ring X
Norm. Crv. Vec. Meyer et al. 1-Ring X X
Spherical Image Meek & Walton 1-Ring X X

Table 2

Curvature Calculation Taxonomy - Discrete Operators

2.2.1 Spherical Image

The spherical image method [Meek and Walton, 2000] uses the unit normals
for the one-ring vertices, translated to a common origin, to define a region of a
unit sphere, and approximates Gaussian curvature as the ratio of the spherical
area to the one-ring area.

2.2.2  Angle Deficit

The angle deficit method [Stokely and Wu, 1992, Meek and Walton, 2000,
Meyer et al., 2002] approximates Gaussian curvature as 27 minus the sum of
the angles for the faces at a vertex, divided by an area associated with the
vertex.

2.2.3 Angle Fxcess

The angle excess or turtle-walking method [Stokely and Wu, 1992] is similar
to the angle deficit method, but approximates Gaussian curvature as 27 minus
the total turning angle for a path around a vertex divided by the area enclosed
by the path. The path is taken as the boundary of a one-ring neighborhood.




2.2.4 Integral Formulation

Taubin [1995] proposes a method that estimates the tensor of curvature from
the eigenvalues and eigenvectors of a 3 x 3 matrix, which approximates an
integral as a summation around a one-ring neighborhood. He also incorporates
a smoothing step for noisy meshes. A key benefit of his method is its simplicity
with the complexity being linear in both time and space.

2.2.5 Clurvature Normal Operator

Meyer et al. [2002] compute mean curvature by using a summation to approx-
imate the integral of the Laplacian over the area associated with a vertex, and
normalize by this area. This area can be a mixture of Voronoi and Barycen-
tric area, depending on whether or not triangles are obtuse. They assume
mild smoothness conditions and incorporate local operators to denoise arbi-
trary meshes while preserving features. The mean curvature is combined with
Gaussian curvature computed using the angle deficit method to derive princi-
pal curvatures, and a least square method is employed to calculate principal
directions.

2.2.6 Derivative Calculation

Csakany and Wallace [2000] use a simplified approach to compute the second
derivatives at a vertex of a mesh. They first compute the surface normal by
averaging adjacent face normals. The normal defines the first partial deriva-
tives. A substitution scheme is used to directly compute the second partial
derivatives, which can be used to estimate curvature. Their scheme is con-
sidered a simplification of an auto-correlation method and an Hessian matrix
method which have been applied to both range images and tessellated data.

3 Evaluations

Stokely and Wu [1992] look at the effect of patch size on range images for
spheres of various sizes, with and without added noise, and on image data
from the left ventricle of a human heart. As the patch size decreases, accuracy
decreases since the digitization error dominates. They also note that as the
patch size increases, the parabolic fit over-predicts the curvature of a sphere.

Hamann [1993] uses surfaces defined by eight different types of analytic func-
tions to assess the accuracy of the quadric fitting algorithm. His analysis is
based on a very regular mesh and does not consider noise in the data.



Taubin [1995] looks at the effect of mesh resolution using regular meshes for
a sphere, torus, and a more general analytic surface shape. He also applies
his method to different triangulations (although with similar resolution and
uniformity) to determine the effect of the triangulation on the error.

Mclvor and Valkenburg [1997] apply quadric fitting and finite differences to
range image data from planar, cylindrical, and spherical surfaces with Gaus-
sian noise added. They note that there is bias in the curvature estimates since
cylindrical and spherical patches cannot be represented exactly by a quadric.
Also, large curvature magnitude or curvature variation over the patch size can
cause the selection of an incorrect eigenvector and the method breaks down.
Their results show the quadric fitting method performs better than the finite
difference methods.

Meek and Walton [2000] perform asymptotic analysis for several methods using
both regular data (as in range data) and irregular data (as in meshes). They
state that asymptotic analysis applies only to discretization and interpolation
methods, but not to least-square fitting methods. Since asymptotic analysis
predicts behavior as the cell size h approach zero, they note that if h is not
close enough to zero, the results may not be suitable for comparing different
methods.

Goldfeather and Interrante [2004] create an analytic surface for comparing
their cubic method to quadric fitting. They also introduce some randomness
into the mesh on the surface to look at the affect of mesh irregularity. As
mentioned previously, their focus is on the calculation of principal directions
rather than curvature magnitudes.

Each of these studies has concentrated on a few specific issues related to cur-
vature estimation. Meek and Walton [2000] highlight some of the advantages
of asymptotic analysis, but two major shortcomings are (a) not being applica-
ble to least squares quadric fitting, which is the most common approach, and
(b) the fact that we generally have a fixed resolution mesh, so behavior as the
cell size goes to zero is not so significant. Neither have these studies developed
an understanding of the differences between mesh size, regularity, and noise
issues. Therefore, we develop a small number of tests using surfaces for which
we know the exact curvature. We assess how noise (perturbation normal to the
surface) and triangulation effects (number, size, and regularity of triangles)
impact the accuracy of the curvature calculations. We apply these tests to the
majority of the curvature estimation methods for meshes discussed above.
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3.1 Noise Analysis Test Cases

We take a systematic look at the effect of different components of noise on the
curvature calculations. For space reasons we focus on the Gaussian curvature
and curvature directions. The test cases are also suitable for evaluating mean
and principal curvatures. Source code and data files for all metrics and meth-
ods are available from www.cs.wustl.edu/MediaAndMachines/Curvature.

Since the curvature calculation is a local operation on a mesh, we use sim-
ple shapes to model the range of positive and negative Gaussian curvatures.
We use portions of three basic shapes as our test cases: a sphere (constant
curvature), an ellipsoid (positive Gaussian curvature), and a saddle surface
(negative Gaussian curvature). Geometric parameters are the radius r for the
sphere, and two additional parameters, a and b, for the ellipsoid and saddle
shapes.

The sphere, ellipsoid, and saddle equations are:

(a/r)* + (y/r)* + (z/r)" =1

(¢/r)" + (y/a)” + (z/0)* = 1

r—(a—a®—y?)+(b—-Vb?—22)=0
For the sphere we use r = 1.0 which results in a Gaussian curvature value
of 1.0. For the ellipsoid we use r = 1.0, a = 1.0, b = 0.5, which results in a

Gaussian curvature value of 4.0. For the saddle surface we use r = 1.0, a = 1.0,
b = 0.5 which results in a Gaussian curvature value of —2.0.

The test cases built from these surfaces are split into three types: those that
have points on the surface but with perturbations of the triangulation, those
with noise in the normal direction, and different mesh resolutions.

3.1.1 Mesh Parameters

In order to assess the local curvature, we generate a triangular mesh around
a target point on the surface, encompassing an N —ring neighborhood around
a point as described previously, where N € {1,2,3}.

For methods requiring surface normals, we can calculate approximate normal

vectors or use the exact normals. To calculate approximate normal vectors at
the target point and its N — 1-ring neighbors, N must be greater than 1.
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Fig. 2. Mesh Noise Components. Left: Target point moved normal to the surface,
Center: Target point moved away from center, Right: Adjacent point moved along
ring.

Parameters that control the qualities of the mesh include:

e n, the number of points in the first ring, with the second ring containing
twice as many points, and

e ¢, the distance from the target point to the first ring, and between successive
rings, measured as an angle at the center of the sphere.

The vertices are equally spaced along the rings around the target vertex, except
for noise perturbations described below.

The ellipsoid and saddle meshes were created from the spherical mesh by
projecting points along the X axis to the surface defined by one of the equations
above. Sample two-ring meshes are shown in Figure 1. The mesh is also rotated
so that the curvature directions are not aligned with the coordinate axes.

3.1.2 Noise Parameters

We define five components of noise, two of which are applied to the target ver-
tex, and three of which are applied to a vertex in the first ring. Examples of
perturbations normal to and along the surface are shown in Figure 2. The tar-
get vertex can be perturbed either in a direction normal to the surface (left),
or along the surface (center) toward one of the vertices of the first ring. Simi-
larly, a vertex in the first ring can be perturbed in the normal direction, on the
surface toward or away from the central target vertex, or on the surface along
the one-ring toward a neighbor on the same ring (right) while maintaining a
constant distance from the target vertex.

The perturbation component normal to the surface represents noise, i.e., a
true deviation from the actual surface geometry. The components along the
surface, radial or circumferential, do not deviate from the true geometry, but
rather represent the effects of mesh quality. The baseline two-ring neighbor-
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hood around the target point is very regular, with fairly uniform angles and
edge lengths. Moving the target point radially toward a point on the first
ring, or moving a point of the first ring radially or circumferentially along the
surface reduces this regularity. The perturbations are limited to two vertices,
applied to one vertex at a time to track the effects of the specific perturba-
tion. As a result, the region around the target vertex is still, in general, better
behaved than that of a general mesh, which can have angle and edge length
variations associated with each adjacent vertex.

We can extend these noise-generation techniques to a complete mesh repre-
senting an analytic surface. The magnitude of the noise is specified based on a
fraction of the smallest triangle edge around a vertex. We keep the magnitude
of the noise below 50% to avoid (as much as possible) folding in the mesh.
For each vertex we can either slide it along the surface (changing the mesh
quality) or off the surface (introducing noise).

3.2 Fitting Results

The first factor that we look at is valence, which is the number of vertices
making up the one-ring neighborhood around the target vertex, and its impact
on the Gaussian curvature estimate. All of the fitting methods that use just
the locations of the vertices in the one-ring neighborhood perform very poorly
if there are less than four vertices in the one-ring and most perform poorly
if there are less than five vertices. In this case, depending on the number of
coefficients in the particular equation being fit, the problem may be under-
constrained. With more vertices in the one-ring or multiple rings, the fitting
methods are relatively insensitive to the valence. The cubic fit based on vertex
locations and normals converges for all valences when based on the exact
surface normals, but has poor convergence when using normals calculated as
the weighted average of the adjacent face normals.

For a regular mesh, all of the fitting methods converge to the correct value as
the cell size is decreased, corresponding to finer resolution. Figure 3 illustrates
the convergence for various methods as a function of mesh resolution. Except
for a valence of three, the quadric fit methods converge to positive values from
above, and to negative values from below, i.e., they tend to over predict the
curvature magnitude. The cubic method converges from below for a valence of
three and from above for all other valences. The conic fit converges from below
for the saddle surface, and as would be expected, is exact for the ellipsoid.
This points to the importance of comparing methods for more than one type
of surface. If an evaluation case is based on the same equation as the fitting
method, the results of the evaluation will not necessarily reflect performance
for other surfaces to which the method will be applied.
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Fig. 3. Comparison of fitting methods applied to a saddle surface. A valence of
six was used for the data shown. The cubic fit with computed normals does not
converge to the exact curvature of —2.0. The one-ring and two-ring fits behaved
similarly, with the one-ring fits being a little more accurate than the two-ring fits.

The biggest factor distinguishing performance for the fitting methods is the
effect of noise normal to the surface, as shown in Figure 4. The quadric and
conic fitting methods based on one-ring neighborhoods are extremely sensitive
to this type of noise. The normals used with the cubic method effectively
provide information from a second ring, and this was the most accurate fitting
method in this situation. The fits based on two and three rings also performed
well in the presence of noise normal to the surface, with a three ring fit having
no clear advantage over the two ring fit. The Gaussian curvature estimates
from the fitting methods were not particularly sensitive to varying the vertex
location along the surface.

3.8 Discrete Results

The integral eigenvalue method performs poorly for valence three and four.
The impact of valence is most pronounced for the discrete curvature operator
based on the angle deficit method, as shown in Figure 5. This method is very
poor for valence three, converges to the correct value for valence four and six,
and is marginal for other values. The integral eigenvalue method is biased
in the negative direction for all cases, while the angle deficit method under
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Fig. 4. Impact of noise normal to a saddle surface on the discrete and fitting methods.
A wvalence of six was used for the data shown. The discrete methods and one-ring
fitting methods exhibit extreme sensitivity to noise. The cubic fit behaves as a

two-ring method and, along with the two-ring quadric fitting methods, shows the
least sensitivity.

predicts the magnitude for both positive and negative Gaussian curvature.

Like the one-ring fitting methods, both of the discrete curvature estimation
methods suffer from severe sensitivity to noise normal to the surface. But they
are also very sensitive to perturbations of the mesh vertices along the surface,
as shown in Figure 6. This is likely caused by the reliance on angles and areas
of the mesh faces, which do not enter directly into the fitting methods.

3.4 Discussion of Results

Results for the mean curvature calculations were similar to those for Gaussian
curvature. Mean curvature tends to be better behaved since it is an average
rather than the product of the principal curvatures.

Figure 7 shows an example of the sensitivity of the principal direction esti-
mate to mesh variation for the discrete methods and the cubic fit with com-
puted normals. The principal direction calculations for the other methods
were much less sensitive. In general, the principal curvature direction calcula-
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Fig. 5. Impact of valence on the accuracy of the angle deficit method, applied to
an ellipsoid. Increasing ¢ represents decreasing mesh resolution. Only valence four

and six converge to the actual Gaussian curvature (4.0). This method is extremely
inaccurate for a valence of three, probably due to the effect of obtuse triangles.

tions appeared more stable than the curvature magnitudes. See Goldfeather
and Interrante [2004] for further discussion comparing calculation of principal
directions.

The discrete curvature methods are appealing because of their speed. Fitting
is by its nature a more expensive computation. However, the sensitivity to va-
lence, noise, and mesh regularity limit the usefulness of the discrete curvature
estimates to very regular meshes for which either noise is absent or smoothing
has been applied. And in fact the authors of these methods also have proposed
associated smoothing algorithms.

Similarly, the one-ring fitting methods have higher noise sensitivity, and re-
quire smoothing if noise is present. But smoothing can also mask surface detail
if not applied judiciously. The fitting methods based on two or more rings have
better overall performance, albeit at a greater computational cost. In our tests,
accuracies for three ring neighborhoods did not warrant the increased cost due
to the size of the fitting problem, so a surface fit based on a two ring neigh-
borhood is recommended. The cubic fit using surface normals is effectively
a two ring method. This method performs very well if accurate normals are
provided, but the effort required to generate accurate normals may negate its
other benefits. It may still be the most appropriate method for calculating
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Fig. 6. Impact of moving the target vertex along the surface toward a one-ring
point. The valence is six for all methods. The discrete methods and the cubic fit

with computed normals are very susceptible to this mesh quality issue, while the
other methods show little sensitivity.

curvature directions, as the stability of the directions seems independent of
the accuracy of the curvature magnitudes.

Conic fitting is usually phrased as a least-squares solution that minimizes
F(z,y,2)?. Scaling the conic equation by a constant value does not change
the zero set, but it does change the value of F(z,vy,z). For this reason, we
have found fitting to be more stable if the points are first transformed to a
local coordinate system centered around the origin, with the normal pointing
in the y direction.

Fitting using radial basis functions did not yield suitable curvature estimates.
However, there are a variety of possible formulations that may be worth inves-
tigating. Applying an alternate parameterization to the quadric fitting method
showed more promise. The parameterization based on a flattening of the local
mesh avoids potential problems due to folding or distortion when the mesh is
projected to a plane. Behaviors for a two-ring fit based on a natural flattening
[Desbrun et al., 2002] were similar to the two-ring planar fit, and in some cases
accuracies were slightly better.
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Fig. 7. Principal curvature direction error as a function of non-uniform spacing
around the ring. A valence of six is used for the data shown. The discrete methods
and the cubic fit with computed normals had extreme sensitivity relative to the
other methods.

3.5  Extension to General Surfaces

These curvature estimation methods have been applied to a torus (with meshes
having three different levels of resolution) and another general surface built
from rational polynomials. Noise was simulated by randomly moving each
vertex a random distance in a random direction. The curvatures were used to
segment the surfaces based on the sign of the Gaussian curvature.

The mean and standard deviation of the error in the curvature estimates was
also calculated. These statistics were compiled for the overall surface, and
individually for two groups, vertices with positive Gaussian curvature, and
those with negative Gaussian curvature. See Gatzke and Grimm [2003] for
further details.

4 Conclusions

We have presented a suite of test cases that model mesh variations to assess
the impact of mesh resolution, regularity, valence, and noise on the accuracy
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of curvature calculation algorithms for triangular meshes. This suite has been
applied to the most common surface fitting and discrete curvature estimation
methods, to produce guidelines for choosing an algorithm.

The results also show that most methods have a bias toward over- or under-
predicting curvature magnitudes. Further work will investigate if this bias,
along with behavior based on mesh resolution and other factors can be used
to place bounds on the error in the curvature estimates.

In comparing methods, it should be noted that some of these methods are
based on formulas for the integral of curvature over an area, while others
estimate curvature at a specific point. These methods will produce similar
results if the curvature is relatively constant over the integration area, but
may vary significantly in areas of rapidly changing curvature.
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