
DOI: 10.1111/j.1467-8659.2007.01098.x COMPUTER GRAPHICS forum
Volume 27 (2008), number 1 pp. 81–90

A Sketch-Based User Interface for Reconstructing
Architectural Drawings

Sangwon Lee1, David Feng2, Cindy Grimm3 and Bruce Gooch4

1Northwestern University, Evanston, IL USA
s-lee@cs.northwestern.edu

2University of North Carolina, Chapel Hill, NC USA
d.feng1@gmail.com

3Washington University in St. Louis, MO USA
cmg@wustl.edu

4University of Victoria, BC, CANADA
brucegooch@gmail.com

Abstract
We present a framework for interactive sketching that allows users to create three-dimensional (3D) architectural
models quickly and easily from a source drawing. The sketching process has four steps. (1) The user calibrates a
viewing camera by specifying the origin and vanishing points of the drawing. (2) The user outlines surface polygons
in the drawing. (3) A 3D reconstruction algorithm uses perceptual constraints to determine the closest visual fit for
the polygon. (4) The user can then adjust aesthetic controls to produce several stylistic effects in the scene: a smooth
transition between day and night rendering, a horizon knockout effect and entourage figures. The major advantage
of our approach lies in the combination of perception-based techniques, which allow us to minimize unnecessary
interactions, and a hinging-angle scheme, which shows significant improvement in numerical stability over previous
optimization-based 3D reconstruction algorithms. We also demonstrate how our reconstruction algorithm can be
extended to work with perspective images, a feature unavailable in previous approaches.

Keywords: visual perception, single-view reconstruction

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Visible line/surface

algorithms: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Modeling packages

ACM CCS: I.3.5 [Computational Geometry and Object Modelling]: Modelling packages

1. Introduction

Constructing three-dimensional (3D) models that match a

given two dimensional (2D) drawing enables navigation of

the 2D line-drawing world, viewing of pictures and paintings

from different angles, and adjustment of architectural design

based on 3D model walkthrough. Manual construction of

such models is a tedious, involving CAD software training;

CAD has a complex interface that requires the user to impose

3D information on the model in ways that include manual

matching between the drawing and predefined 3D primitive

shapes, specification of correspondences between multiple

pictures, and use of various guiding lines to trace landing

positions of strokes.

A similar problem exists when designing a 3D model from

scratch. The user interface of most CAD systems focuses

on structural processes of 3D model construction. However,

drawing, a skill architects spend 7–10 years mastering, con-

cerns itself foremost with a building’s visual impact. Chang-

ing a few lines in hand drawing requires little work and can

produce dramatic changes in building structure; creating an

analogous change in a CAD model may require extensive,

time-consuming adjustments.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and
Blackwell Publishing Ltd. Published by Blackwell Publishing,
9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main
Street, Malden, MA 02148, USA.

81

Submitted September 2006
Revised May 2007

Accepted June 2007

82 S. Lee et al. / Sketch-Based User Interface

Figure 1: (a) A 2D line can be a projection of infinitely many
3D lines. (b) Two arbitrary, non-parallel lines l1 and l2 in
3D space are translated to the center of a sphere. The plane
P containing these two lines intersects the sphere along the
circle C. The only cameras that lie on this circle and aim the
center of the sphere represent the possible camera directions
that produces parallel lines on 2D camera plane from l1 and
l2. Considering that cameras can have arbitrary position on
the sphere, this is a significantly limited range.

In order to address this problem, we propose an intuitive

sketching interface that retains the familiarity of hand draw-

ing in conjunction with a perceptually-based 3D reconstruc-

tion algorithm for inferring a 3D depth information. Given a

2D line drawing, we construct a cost function using several

known visual constraints based on principles of human visual

perception that, upon optimization, results in a 3D model. In

this way, we achieve an integrated interface for modelling

and reconstruction, with minimal user annotation for assign-

ing 3D positions to the model. While our results focus on

reconstruction from existing drawings, the same procedure

can be applied to generate 3D models from scratch. Note that

our primary goal is creation of a smart and intuitive user inter-

face for modelling and reconstruction, rather than generating

3D models from rough, conceptual design sketches.

The cost function of the optimization algorithm is inti-

mately related to determining depths of geometric primitives

forming the 3D model. This is an under constrained prob-

lem: a line in 2D has infinitely many possible projections in

3D [Figure 1(a)]. The architectural drawing domain, how-

ever, affords us several conventions we can leverage to sim-

plify the problem. For example, architectural drawings gen-

erally contain many sets of parallel lines, and lines that are

parallel in 2D architectural drawings are likely also to be

parallel in 3D. While there are cases when this assumption

does not hold, such accidental viewpoints only occur under

very restricted camera positions and avoided by architects

[Figure 1(b)].

Previous methods have used the parallel line assumption to

find the optimal positions of all vertices in a 3D model from

a graph of lines in a 2D image [MKL05]. Such approaches is

that they require minimization of a multi-dimensional non-

linear function where the dimension of the problem space

is determined by the number of vertices in the scene. This

is problematic because algorithms for optimizing such func-

tions tend to get stuck in local minima. Furthermore, the

runtime can become impractical as the number of vertices

increases. Observing that architectural structures are highly

planar, we instead use polygons as our fundamental opti-

mization primitive, resulting in a more robust, single param-

eter per-polygon optimization that scales well with complex

models and that, due to its speed and compatibility with hand-

drawn sketches, supports the drawing stage of architectural

design well.

2. Related work

Our user interface and 3D reconstruction algorithm are com-

parable with previous work in two areas: 3D model recovery

from a single image and interactive 3D sketching systems.

Shesh et al. [SC04] and Lipson et al. [MKL05] both use

optimization-based techniques for 3D model construction

from an orthographic projection. These methods have two

restrictions: they can only handle drawings that show and

annotate all hidden lines, and they do not support perspec-

tive drawings. Our tool removes these limitations by allowing

reconstruction from perspective images without hidden lines.

Hoiem et al. [HEM] suggest a completely automatic

method for popping up a scene by assuming that all objects

in the scene are vertical to a ground plane. Although their

method shows that a simple structure can be effective for

viewing a picture in 3D, the approximate nature of the cor-

responding reconstruction process prohibits editing or com-

positing and restricts final models to vertical billboards. We

impose no such restrictions, and our interface gives the user

the option to edit the resulting geometry.

In Facade [DTM96], the user assembles geometry in a

CAD-style user interface by choosing among a pre-defined

set of primitives. The advantage of this approach is the ro-

bust geometric accuracy achieved by manual assignment of

3D position. However, it restricts the number and form of al-

lowable shapes to those in the primitive set. Our interface is

not restricted to a primitive set and can generate any realizable

polygonal shape.

Because any user-drawn stroke can be interpreted in a mul-

tiple ways, a sketching interface must acquire additional in-

formation to correctly infer the 3D model’s desired geometry.

The Chateau [IH01] system is a polygonal model draw-

ing system that lets the user quickly turn sketched lines into

polygons and 3D shapes. Chateau addresses reconstruction

ambiguity by building several candidate reconstructions and

letting the user select the intended one.

Zeleznik et al. [ZHH96] first introduced Sketch, a system

for rapidly creating and editing a 3D scene using a purely

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

S. Lee et al. / Sketch-Based User Interface 83

Figure 2: A snapshot of the complete user interface win-
dows, consisting of a sketching window (top) and a 3D nav-
igation window (bottom).

gestural interface. The system supports a variety of primitives

(including any shape that can be extruded vertically from a

planar curve, such as cones, spheres, etc.,) along with basic

solid modelling operators. Sketch could be used to create

most of the models shown here. However, extrusion-based

modelling is conceptually very different from drawing. By

retaining a simple drawing interface, our system is better

suited to complement designers’ and architects’ training.

Sketchup [Ske] is a commercial software package that ad-

dresses the drawbacks of many CAD tools. Although the

reconstruction process is completely manual, and requires

many user-specified lines for tracking 3D positions, its resem-

blance to traditional drafting procedure makes 3D modelling

far easier and faster for non-expert users. Shesh et al. [SC05]

shares a goal similar to ours; an intutive interface for pro-

gressively constructing 3D model. Although their modelling

procedure employs an optimization method for intelligent

reconstruction, perceptual constraint selection is manual.

3. User Interface

Our user interface consists of two windows: a sketching win-

dow and a model-view window (Figure 2). The sketching

window provides the user with a simple, intuitive means of

drawing lines and shapes over an existing drawing or pho-

tograph. The model-view window supports arbitrary model

viewpoints including textured and flat-shaded. Before poly-

gons can be drawn, the user calibrates the scene camera by

annotating several on top of the 2D drawing. In orthographic

projection, the user draws three lines which correspond to

projection of the three unit-length principal axes. For perspec-

tive images, the user refines camera parameters by sketching

lines which converge on the vanishing points of the scene

(Figure 3(a)), or several edges that represents a portion of

the unit cube in 3D space projected onto the camera plane

(Figure 3(b)). We discuss our camera calibration techniques

in section 4.

Figure 3: Two suggested methods for camera calibration.
a) Specifying principal axes followed by vanishing lines. b)
Drawing I shape corresponding to a unit cube in 3D space.

Figure 4: From left to right: a) Sketching the first polygon
relative to the coordinate system. b) Sketching a new polygon
adjacent to an existing polygon. c) The resulting 3D geometry.
d) The texture mapped geometry.

After camera calibration, the user starts at the origin

(Figure 4), indicating a new polygon by tracing its silhouette;

the system finds the most likely 3D polygonal reconstruction

and adds the new 3D polygon to the model. Our algorithm

requires that each new polygon either share an edge with

an existing polygon (e.g. adjoining walls) or be connected

to the surface of an existing polygon. This process parallels

hand drawing in that the basic shape of the structure must be

outlined before additional details can be added.

Because line drawings by user may not perfectly match the

desired 3D model, our tool provides the option of rectifying

the polygon edges so that they align to vanishing points (or

to perfect vertical lines, in case y axis is up direction). Rec-

tification of a 2D polygon is achieved by iterating through

the edges, forcing each to snap to nearby important lines.The

rectified polygon is used to generate 3D geometry, and the

original 2D polygon is used to create the texture map.

4. Specifying the Camera

When finding the 3D model that best represents the given 2D

drawing, 3D vertex positions can be represented as an x and

y coordinate lying in the camera plane, and a z coordinate

denoting depth from the camera plane. The depth depends

on camera parameters that define the shape of the projection

frustrum. The projection frustrum determines the vector from

the eye position to the 2D point on the camera plane, on

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

84 S. Lee et al. / Sketch-Based User Interface

Figure 5: Example of orthographic drawings: planview (a)
and sectionview (b). Note that the target plane is unskewed
(shown with red angle) and the perpendicular side planes
are drawn diagonally. In standard orthographic projection
with 1:1 aspect ratio, side planes should be invisible in the
drawing. If it were to show side planes, the angle in red should
be larger (in (a)), or smaller (in (b)). We calibrate these scenes
by allowing to adjust the aspect ratio of the camera.

which the 3D position in world coordinate should lie. We

find camera parameters through user annotation and existing

camera calibration techniques. Once the scene camera of the

scene is found, we can represent a 3D model as a collection

of depths on vertex points.

In perspective projection, we can infer camera parameters

from various cues like point correspondences, corner orthog-

onality or vanishing points locations. These cues indicate the

relationship between 3D and 2D coordinates, suggesting the

shape of the frustrum and location of the camera in 3D space.

In orthographic projection, however, it is less obvious that we

need a calibrated camera since the frustrum’s shape remains

perpendicular to the camera plane and depths of vertices do

not change regardless of the external camera parameters, as

long as the internal parameter has 1:1 aspect ratio. There-

fore previous methods for 3D model reconstruction for or-

thographic projections do not include a camera calibration

step [IH01] [LS96] [SC04]. However, architectural drawings

frequently include different variations of orthographic pro-

jection which are devised from the architect’s point of view

[Chi95]. For example, a house plan may be drawn from a cam-

era view projecting perpendicular to a target plan and have

the side walls raised as diagonal lines in 2D (Figure 5). In

ordinary orthographic projections with 1:1 aspect ratio, when

the plan is parallel to the camera plane, sides of walls may not

be shown with the frontal wall drawn unskewed. However,

this technique is commonly used among architects because

it allows viewing of the overall 3D structure at the same time

that plans are drawn to scale without foreshortening. Another

drawing technique uses three principal axes foreshortened at

an arbitrary rate (trimetric projections). In order to represent

these drawings correctly, we have to find the unique internal

as well as external camera parameters through calibration

under orthographic as well as perspective projection.

We include two methods for camera calibration: the prin-

cipal axis method and the unit cube method. These two meth-

ods compliment each other in their ability to handle different

scene types and projection modes.

The basis of principal axis camera calibration is the Sim-

plex solver [CSB∗05], a general-purpose gradient descent

solver. Given default camera settings, the Simplex solver at-

tempts to iteratively adjust those settings until they match

those of the camera represented in the input image. This

mainly consists of two stages of user interaction. First, a user

draws three calibration lines that correspond to the camera’s

unit-length principal axes as represented in the input image

[Figure 3(a)]. To avoid shape ambiguity, we require users to

draw these axes on top of a convex corner. Second, the solver

uses endpoints of calibration lines as point constraints for the

Simplex solver’s error function, which is minimized by ad-

justing camera parameters. Let Pi be the user-drawn origin

and axis points, and qi their desired screen-space position.

The error function is:

[uvdw]T
i = C Pi (1)

E =
∑

i

||qi − (ui/wi , vi/wi)||2 (2)

Having approximately located the principal axes in image

space, we can further calibrate the camera by taking into

account the location of the image’s vanishing points. Given

lines drawn from the left and right vanishing points, we can

use the Simplex solver to enforce line parallelism constraints

[Figure 3(a)]. Once these constraints have been applied, the

camera is generally well-defined. Specification of vanishing

points is obviously unnecessary for orthographic images.

The second method of camera calibration uses Direct Lin-

ear Transformation (DLT) [HZ03]. The user draws an I shape

which matches several edges of the unit cube in 3D space

[Figure 3(b)]. This cube provides enough 3D–2D point cor-

respondences to recover the camera projection matrix. In our

experiment, use of cube edges’ mid-points and end-points

improved the solver’s numerical stability. We use Singular

Value Decomposition to remove point correspondence re-

dundancy and compute the optimal camera matrix. We apply

QR decomposition to the camera matrix to decompose it into

a product of the internal and external camera matrices. The

DLT method is more deterministic than the Simplex-based

method and generally performs more accurately when cali-

brating 2D perspective images. Interestingly, this unit-length

matching technique gives the user freedom to control scale

factors in x, y and z directions in 3D space.

5. Polygon Reconstruction

The reconstruction process consists of annotating the source

image with lines. These lines form a planar graph of 2D in-

tersection points. To define polygonal regions, we need to

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

S. Lee et al. / Sketch-Based User Interface 85

detect the smallest of any cycles in the graph that result from

drawing a line. Starting from the newest drawn edge in the

graph, we traverse from one endpoint in both a clockwise

and counter-clockwise direction, stopping when the other

endpoint of the line is reached. If the other endpoint isn’t

visited during traversal, then no new polygon exists. If the

other endpoint is visited, the path indicates two cycles: the

desired minimal cycle and the cycle enclosing the whole pla-

nar graph. A simple polygon inside-outside test picks the

desired cycle.

A new polygon may be connected to an existing polygon by

either a shared edge or a shared surface. Polygons that have

more than one neighbour already have sufficient information

to completely determine the plane of the new polygon. If the

polygon has only one neighbour, then it has only one degree

of freedom: rotation along the connecting edge. We optimize

this angle by minimizing a sum of weighted functions which

are based on three perceptual constraints: axis alignment,

parallelism and symmetry. These constraints are discussed

individually below.

We use Brent’s [Bre73] algorithm to find the optimal angle

at which the two polygons should be hinged. It is a robust

technique for one-dimensional functions and does not require

derivative calculations. The domain of the angle [0,180) is

discretized to integers, and we compare the local minima in

subdomains to get global minimum. For each subdomain,

approximately three iterations were sufficient to compute the

global minimum value. The cycle’s cost function is:

ftotal (θ) = faxis(θ) + fsymmetry(θ) + f parallel (θ) (3)

The primary advantage of this approach is that the cost

function optimizes over single variable, an angle from 0 to

180 degrees, and so is amenable to brute force search fol-

lowed by a refining optimization step. This avoids getting

stuck in local minima assuming that the cost function remains

smooth enough within the given integer sampling domain.

This is an important achievement because parameterization

using depths are usually unrestricted, which makes finding

the correct global minimum a difficult task.

If the newly drawn polygon does not share an edge with any

existing polygons in the 2D edge-vertex graph, we attempt

to project that polygon onto background surfaces. We first

identify this situation by noticing if the new polygon shares

no edges or vertices with the current 2D vertex-edge graph

but does lies in the interior of an existing projected polygon.

If this is the case, the most recently drawn line is projected

onto the existing polygon and uses this line as the hinging

edge (see Figure 6).

5.1. Axis alignment

For any image, the only edges which supply immediately

useful 3D information are those which are parallel to principal

Figure 6: Examples showing hinging angle scheme. The new
polygon is attached to an existing polygon by an edge (top).
The edges of new polygons can lie inside existing polygons.
Note that the chimney does not exist in the original drawing.
The detached stroke on roof extracts color information and
defines the style of the chimney’s sketching lines (bottom).

axes, as such lines are likely to be parallel in 3D as well.

The range of camera positions under which two non-parallel

3D lines are parallel in the projected 2D plane is limited; a

slight change of camera view direction reveals this accidental

view and is not usually considered to be the best view for

architectural objects. We enforce lines prallel to principal

axes to be parallel also in 3D by assigning a θ that minimizes

the function:

faxis(θ) =
∑

e∈cycle

we

∥∥I θ
e × Px |y|z

∥∥ (4)

where Px |y|z is principal axis, that is most parallel to the

edge being examined. The magnitude of the cross product

between current edge and Px |y|z favors a θ that projects 2D

axis-aligned lines to 3D lines parallel to the principal axis.

For orthographic images, we calculate the weight of each

edge we as:

we = max
i∈{x,y,z}

[G A(angle(Ie, Pi))]. (5)

Equation 5 calculates the degree of being parallel be-

tween current edge and the principal axis most parallel to

the edge. A Gaussian distribution function G A returns the

normalized value of the angle difference; 1 means alignment

while 0 means perpendicularity. This method provides far

smoother normalization than thresholding, where an angle

slightly larger than the threshold is assigned a full weight and

an angle slightly smaller than the threshold has zero weight.

In perspective projection, an edge’s parallelism to a princi-

pal axis is calculated as the distance from the edge to each

vanishing point:

we = max
i∈{x,y,z}

[GL (dist(Ie, Vi))]. (6)

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

86 S. Lee et al. / Sketch-Based User Interface

Figure 7: Left: Detecting symmetry with orthographic draw-
ings showing vertex pairs j with given best mirror axis. Right:
Symmetry in perspective drawing. We examine all possible
mirror axis i with different hinging angle theta.

Here, the unit of deviation in Gaussian GL is length in-

stead of angle. In one and two point perspective drawings, the

calculation of we uses both Equations 5 and 6 since ortho-

graphic and perspective style vanishing lines coexist.

5.2. Symmetry

The human visual system also has a strong tendency to detect

symmetry within polygons. Our system detects symmetry

by modifying a method suggested by Lipson and Shpitlani

[LS96]. We parameterize the problem using hinging angle

and extend it to perspective projection. In essence, we first

determine the best mirror axis for each possible hinging angle,

and then select the hinging angle corresponding to the best

mirror axis from the set of best mirror axes.

Computing the mirror axis is far easier in orthographic

projection than perspective projection; for all axes that divide

the polygon in half, we examine the deviations of angles and

distances between the axis and vertices along the axis. In

perspective images, finding candidate axes is difficult since

the mid-points of 2D edges do not correspond exactly to mid-

points in 3D due to perspective distortion. We remove this

distortion by projecting edges to planes with integer hinging

angles θ . Then we find the best mirror axis for each integer

hinging angle (see Equations 7–9). For angle θ , we pick the

candidate mirror axis i that divides the polygon in half, and

examine pairs of vertices j with respect to the chosen mirror

axis as shown in Figure 7.

ws = G0.1

[
min

θ=0..180

[
min
i=1..n

(σ (per pi [j]) + σ (symi [j]))
]]

(7)

where

per pi [j] = ∥∥I(v1,v2) · I(v3,v4)

∥∥ (8)

symi [j] = ∥∥dist
(
I(v1,v2), v3

) − dist
(
I(v1,v2), v4

)∥∥ (9)

v1 = v(
i
2

), v2 = v(
i+n

2

)

v3 = v(
i+ j

2

), v4 = v(
i− j

2

)

For a candidate axis I (v1,v2), vertices in the mirror direction

(v3, v4) should have a similar distance to the candidate axis

(symi [j]) and the edge connecting these edges I (v3,v4) should

also be perpendicular to the candidate axis (perpi [j]). Opti-

mizing the following cost function generates the actual 3D

reconstruction:

fsymmetr y(θ) = ws

∑
i=k, j=1..n

∥∥I θ
(v1,v2) · I θ

(v3,v4)

∥∥ (10)

where k is the optimal i found from Equations 7–9. The dot

product forces a 90 degree angle between the mirror axis and

edges with vertex pairs along the mirror axis. Note that the

weight ws is common to all edges within the current cycle.

5.3. Parallelism

A drawing can contain sets of parallel lines that are not par-

allel to a principal axis. For each edge in the current cycle,

we search for edges in the partially constructed 3D model

that are likely to be parallel. We find these edges and apply

parallelism constraint by minimizing the function:

f parallel (θ) =
∑

e∈cycle

we

∥∥I θ
e × I parallel

e

∥∥ (11)

where Iparallel
e is a direction in 3D to which edge e is likely to

be parallel. This is the direction of the 3D edge that returns

the best weight we. In orthographic projection, we for each

edge is:

we = max
i∈{3D edges}

[G A(angle(Ie, Ii))]. (12)

In perspective projection, parallel lines are parallel in 3D

if they merge at a single vanishing point in 2D. We compute

minimal distance from the edge being tested to the vanishing

points for we where V i is a vanishing point of parallel lines

in the image.

we = max
i∈{vanishing points}

[GL (dist(Ie, Vi))]. (13)

6. Texture Mapping

The texture mapping process consists of using 2D image ver-

tices as texture mapping coordinates and adjusting the subse-

quent texture map to account for perspective foreshortening

in the 2D image. We correct perspective distortion by intro-

ducing polygon subdivision (Figure 8). The subdivision al-

gorithm recursively divides n-sided polygons into n distinct

polygons by introducing edge mid-points and a centroid point

as vertices (i.e., Catmull–Clark subdivision). We subdivide

polygons in realtime before rendering each frame to sim-

plify mesh intersection. For modern machines, using fewer

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

S. Lee et al. / Sketch-Based User Interface 87

Figure 8: Adjusting for perspective distortion. Note the num-
ber of stripes between the porch roof and the window.

than four subdivision iterations does not seem to noticeably

reduce frame rates.

7. Results

7.1. Interactive drawing

In Figures 10 and 11, we analyse the polygon reconstruction

process by comparing cost function graphs. Recall that the

minimum cost hinging angle is used for 3D model recon-

struction. In Figure 10(a), the axis alignment cost function is

dominant, since all edges in polygon A are parallel to princi-

pal axes. Figure 10(b) shows a case where symmetry domi-

nates because edges parallel to principal axes have little effect

on hinge angle cost. In Figure 10(c), parallelism is the most

important cost since the new polygon was drawn unaligned

intentionally such that non-axis aligned edges are parallel to

edges in polygon B and the effect of symmetry cost function

is minimal.

Figure 11 shows cost function graphs in orthographic pro-

jection. In Figure 11(a), symmetry and parallelism are sup-

pressed since newly added lines are not parallel to existing

lines. In Figure 11(b), axis alignment and parallelism stay

constant because newly added lines remain aligned regardless

of the hinging angle in orthographic projection. These three

constraints have similar minimum hinging angle as shown in

Figure 11(c).

We show 2D drawings and photographs with their cor-

responding 3D model reconstructions in Table 1. The fifth

example, a line drawing of a barn, demonstrates the sys-

tem’s ability to quickly and accurately generate a 3D model,

and easily create additions to its structure. Notice the fine

details of the windows and skylight, and how the texture-

painting mechanism has been used to hide hidden lines in

the outputted 3D model. The system can also handle archi-

tectural photographs, as demonstrated by images in Table 2.

These images are considerably more complex than the barn

drawing.

Architects and designers from seven architectural schools

and firms evaluated our system’s user interface for usefulness

in their early design processes. Most evaluators note that our

system does not suffer from conceptual discrepancy and sti-

fled creativity that commonly occur when shifting from 2D

sketches to 3D models using traditional software. The eval-

uators suggested several possible applications of our tool:

Table 1: Notation used in the equations.

cycle set of edges in the new polygon

n number of vertices in the cycle

Px principal axis x
V x vanishing point of lines parallel to axis x

I e 2D line of edge e
I θ

e 3D line of I e projected to plane with

hinge angle θ

I (v1,v2) 2D line of edge connecting vertex v1 and

v2

I (v1,v2)
θ 3D line of I (v1,v2) projected to plane

with hinge angle θ

vn a nth vertex point

vn+1/2 mid-point of vertex vn and vn+1

dist(I , v) distance from 2D line I to vertex v
angle(I 1, I 2) angle between two 2D lines I1 and I2

G A(x), GL (x) a Gaussian distribution function whose

mean value is zero and deviation

depends on whether the unit of x is

angle (G A) or length (GL)

σ (xi) standard deviation of series xi

measuring total site area, judging how well a 3D model fits

in a location and measuring object volume from a single im-

age. The mathematics required to perform these tasks are

already well-understood; through our user interface we pro-

vide simple, easy access to these functions. Several evaluators

expressed concerns about the ability to construct hidden poly-

gons, but found this less problematic once they understood

our tool’s construction mechanism.

7.2. Aesthetic improvements

A key component of architectural design is being able to

see the structure in its destined environment. Doing this can

improve a viewer’s sense of scale by incorporating human

figures and trees into the drawing and viewing the structure

under various lighting conditions. In our system, users can

place both figures and trees in their image with a simple point-

and-click interface and can change time of day by adjusting

a slider (Figure 9). As the slider moves from day to night, the

sky changes from a bright blue to a dark blue sunset while

the hue of the structure changes accordingly. Additionally,

polygons that represent windows can be rendered with a soft

yellow glow upon selection. The user may also choose to

load a ground texture image if the default texture is not sat-

isfactory; both height and scale of ground texture are easily

adjustable. The video accompanying this paper demonstrates

the usage of these features.

In order to give rendered images a stronger visual effect,

our tool’s default setting is to display the 3D environment

with an effect commonly referred to as ‘knockout,’ or giving

the structure a soft glow along the horizon so as to make it

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

88 S. Lee et al. / Sketch-Based User Interface

Table 2: Left: original images. Right: resulting 3D model. Photo rendering in fifth row courtesy of Davis Brody Bond, LLP.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

S. Lee et al. / Sketch-Based User Interface 89

Figure 9: Day and night views of a line drawing by Francis Ching. Left: the original drawing. Center: a day time view including
trees, figures and ground texturing. Right: a night time view with a starry sky, structural knockout and glowing windows.

Figure 10: Results showing change of the cost function with
respect to hinging angle under perspective projection. In (a),
all constraints agree on a single hinging angle. Note that the
new polygon in (b) has symmetry condition as its dominant
constraint, while in (c), the prevailing constraint is paral-
lelism. The polygon in (c) was drawn with the intention that
the symmetry constraint would be suppressed.

Figure 11: Results showing change of the cost function un-
der respect to the hinging angle with orthographic projection.
(a) Axis alignment is dominant. (b) Symmetry determines the
hinging angle. (c) All constraints agree on a single angle. In
each figure, right top image is original 2D drawing and right
bottom one is the reconstructed 3D model.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

90 S. Lee et al. / Sketch-Based User Interface

stand out from the background. We implement this by attach-

ing several alpha-blended polygons to the silhouette of the

structure in screen space.

8. Discussion and Future Work

We provide a complete drawing system in which users can

interactively reconstruct architectural images in 3D space.

The system uses perceptual constraints to automatically sug-

gest plausible 3D placement of polygons. Unlike previ-

ous optimization-based approaches, we significantly improve

speed and robustness using our polygon-based hinging-angle

scheme. Also, our system requires little interaction beyond

the drawing process itself. We had expert 3D modellers

construct a model from one of our test drawings in Maya

to gauge effectiveness of our solution. While it took mod-

ellers on the order of an hour to complete the task in Maya,

model creation time with our system was 5–10 minutes in-

cluding the sketching itself. In practice, users did not en-

counter any problem drawing on an existing image. The cam-

era calibration step, however, was relatively more difficult

and occasionally required repeated efforts especially when

the Simplex solver failed to find the optimal global camera

parameters.

One disadvantage of our system is that it only reconstructs

visible portions of surfaces in a source image. This is a con-

sequence of our initial assumption regarding input: a sin-

gle view containing no hidden lines. However, because our

system supports sketching from any view point, users can

remedy incomplete polygons in the 3D model.

Reconstruction quality depends on accuracy of the 2D line

drawing. For example, when a hinging axis line is signifi-

cantly misaligned in the original 2D drawing, the resulting

3D placement might have the polygon facing in the wrong

direction or accumulate error in subsequent optimizations.

We minimize this problem by snapping the hinging axis to

principal axes whenever appropriate. The degree of insen-

sitivity to the inaccurate drawing generally depends on two

factors: the parameters of Gaussian functions which control

alignment degree, and overall alignment of the newly drawn

polygon. If there is any single constraint applicable, the angle

optimization procedure will find the right hinging angle for

the whole polygon.

Compared with previous approaches, we provide a tech-

nique that is more stable than vertex-based optimization,

more accurate than completely automatic reconstruction

methods, and more automated than purely interactive meth-

ods. Our system provides a novel framework to efficiently

utilize several important perceptual constraints and enables

users to create a fast 3D model prototype based on a single

image.

References

[Bre73] BRENT R. P.: Algorithms for Minimization without
Derivatives. Prentice Hall, 1973.

[Chi95] CHING F.: A visual Dictionary of Architecture.

Wiley, 1995.

[CSB∗05] COLEMAN P., SINGH K., BARRETT L.,

SUDARSANAM N., GRIMM C.: 3d screen-space wid-

gets for non-linear projection. GRAPHITE (2005).

[DTM96] DEBEVEC P. E., TAYLOR C. J., MALIK J.: Mod-

elling and rendering architecture from photographs: A hy-

brid geometry- and image-based approach. ACM TOG, 3

(1996), 11–20.

[HEM] HOIEM D., EFROS A. A., HERBERT M.: Automatic

photo pop-up.

[HZ03] HARTLEY R., ZISSERMAN A.: Multiple View Geom-
etry in computer vision. Cambridge press, 2003.

[IH01] IGARASHI T., HUGHES J.: A suggestive interface for

3d drawing. Proceedings of UIST (2001).

[LS96] LIPSON H., SHPITALNI M.: Optimization-based re-

construction of a 3d object from a single freehand line

drawing. Computer-Aided Design 28, 8 (1996), 651–663.

[MKL05] MASRY M., KANG D., LIPSON H.: sketching in-

terface for progressive construction of 3d objects. Journal
of Computers and Graphics 29 (2005), 563–575.

[SC04] SHESH A., CHEN B.: Smartpaper: An interactive and

user friendly sketching system. Computer Graphics Forum
23, 3 (2004), 301–310.

[SC05] SHESH A., CHEN B.: Peek-in-the-pic: Architectural

scene navigation from a single picture using line drawing

cues. Pacific Graphics (2005).

[Ske] http://www.sketchup.com.

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES J.:

Sketch: An interface for sketching 3d scenes. ACM TOG,

3 (1996), 163–170.

Supplementary Material

The following supplementary material is available for this

article:

Video Clip S1.

This material is available as part of the online article from:

http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-

8659.2007.01098.x

(This link will take you to the article abstract).

Please note: Blackwell Publishing are not responsible for

the content or functionality of any supplementary materials

supplied by the authors. Any queries (other than missing ma-

terial) should be directed to the corresponding author for the

article.

c© 2007 The Authors
Journal compilation c© 2007 The Eurographics Association and Blackwell Publishing Ltd.

